research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-1-(4-tert-Butyl­phen­yl)-5-ethyl-4-ferrocenyl-5-hy­dr­oxy-1H-pyrrol-2(5H)-one

crossmark logo

aUniversity Koblenz, Institute of Integrated Natural Sciences, Universitätsstr. 1, 56070 Koblenz, Germany, and bFriedrich-Schiller-University Jena, Institute of Inorganic and Analytical Chemistry, Humboldtstr. 11, 07743 Jena, Germany
*Correspondence e-mail: imhof@uni-koblenz.de

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 27 January 2023; accepted 28 February 2023; online 7 March 2023)

The title compound, [Fe(C5H5)(C21H24NO2)], which is produced by the oxidation of 1-(4-tert-butyl­phen­yl)-2-ethyl-3-ferrocenyl­pyrrole, crystallizes as a racemic mixture in the centrosymmetric space group P21/n. The central heterocyclic pyrrole ring system subtends dihedral angles of 13.7 (2)° with respect to the attached cyclo­penta­dienyl ring and of 43.6 (7)° with the major component of the disordered phenyl group bound to the N atom. The 4-tert-butyl­phenyl group, as well as the non-substituted Cp ring are disordered with s.o.f. values of 0.589 (16) and 0.411 (16), respectively. In the crystal, mol­ecules with the same absolute configuration are linked into infinite chains along the b-axis direction by O—H⋯O hydrogen bonds between the hy­droxy substituent and the carbonyl O atom of the adjacent mol­ecule.

1. Chemical context

In a series of recent publications, we were able to show that the ruthenium-catalysed four-component reaction of an α, β-unsaturated aldehyde with a primary amine (producing an inter­mediate imine), carbon monoxide and ethyl­ene produces a library of chiral 1,3-di­hydro­pyrrolo­nes and pyrroles, respectively (Biletzki & Imhof, 2011[Biletzki, T. & Imhof, W. (2011). Synthesis, 2011, 3979-3990.]). The ratio of those two products is highly dependent on the relative permittivity of the solvent used, with the yield of the pyrrole increasing with the polarity of the solvent (Gillies et al., 2007[Gillies, G., Dönnecke, D. & Imhof, W. (2007). Monatsh. Chem. 138, 683-686.]). We were also able to show that the oxidation of the resulting pyrroles with oxygen leads to the formation of derivatives of the title compound (Dönnecke & Imhof, 2003[Dönnecke, D. & Imhof, W. (2003). Tetrahedron, 59, 8499-8507.]). There are some similar reactions reported in the literature where a pyrrole was transformed into a hy­droxy-pyrrolone by oxidation with O2, but the reaction mixture had to be irradiated in the presence of a photosensitizer, or radical initiators such as AIBN had to be added in order to induce the reaction (Machida et al. 1982[Machida, M., Takechi, H. & Kanaoka, Y. (1982). Tetrahedron Lett. 23, 4981-4982.]; Dannhardt & Steindl 1985[Dannhardt, G. & Steindl, L. (1985). Arch. Pharm. Pharm. Med. Chem. 318, 661-663.], 1986[Dannhardt, G. & Steindl, L. (1986). Arch. Pharm. Pharm. Med. Chem. 319, 500-505.]; Takechi et al. 1988[Takechi, H., Machida, M. & Kanaoka, Y. (1988). Chem. Pharm. Bull. 36, 2853-2863.]; Boger & Baldino 1991[Boger, D. L. & Baldino, C. M. (1991). J. Org. Chem. 56, 6942-6944.]; Procopiou & Highcock 1994[Procopiou, P. A. & Highcock, R. M. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 245-247.]; Gonzalez et al. 1999[Gonzalez, F., Sanz-Cervera, J. F. & Williams, R. M. (1999). Tetrahedron Lett. 40, 4519-4522.]). Therefore, a radical mechanism cannot be ruled out for the formation of the title compound, although no addition of any typical initiator is necessary. So overall, depending on the reaction conditions, either chiral 1,3-di­hydro­pyrrolo­nes, chiral 5-hy­droxy-1,5-di­hydro­pyrrolo­nes or 2,3-disubstituted pyrrole derivatives might be the main products of the catalytic synthetic methodology developed in our lab (Biletzki & Imhof, 2011[Biletzki, T. & Imhof, W. (2011). Synthesis, 2011, 3979-3990.]; Gillies et al., 2007[Gillies, G., Dönnecke, D. & Imhof, W. (2007). Monatsh. Chem. 138, 683-686.]; Dönnecke & Imhof, 2003[Dönnecke, D. & Imhof, W. (2003). Tetrahedron, 59, 8499-8507.]).

[Scheme 1]

2. Structural commentary

The title compound, rac-1-(4-tert-butyl­phen­yl)-5-ethyl-4-ferrocenyl-5-hydroxyl-1H-pyrrol-2(5H)-one, C26H29FeNO2, is derived from 1-(4-tert-butyl­phen­yl)-2-ethyl-3-ferrocenyl­pyrrole by an oxidation reaction. Therefore, a new centre of chirality is created at C1, which used to be an sp2 carbon atom in the starting compound. Since no chiral reaction conditions were applied, a racemate of the title compound is produced. The title compound also crystallizes as a racemic mixture in the centrosymmetric space group P21/n. The mol­ecular structure of the S-enanti­omer is shown in Fig. 1[link]. The central heterocyclic ring system N1/C1–C4 shows torsional angles of 13.7 (2)° with respect to the attached cyclo­penta­dienyl ring and of 43.6 (7)° with the major component of the disordered phenyl group bound to N1. The 4-tert-butyl­phenyl group, as well as the non-substituted Cp ring, are disordered with s.o.f. values of 0.589 (16) and 0.411 (16). Bond lengths and angles are of expected values with the C2—C3 bond length of 1.336 (5) Å, clearly indicating a double bond. In addition, the N1—C4 bond [1.366 (5) Å] is shortened with respect to the other nitro­gen carbon bonds, as is typical for amides.

[Figure 1]
Figure 1
Mol­ecular structure of the S-enanti­omer of the title compound showing the numbering scheme. Non-hydrogen atoms are drawn as displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules with the same absolute configuration at C1 are linked into infinite chains along the b-axis direction by O—H⋯O hydrogen bonds of the C(6) type (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) between the hy­droxy substituent and the carbonyl oxygen atom of an adjacent mol­ecule (Fig. 2[link], Table 1[link]). In addition, there are weak contacts between carbon atoms of the phenyl ring and H3A and H23A.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1i 0.80 (4) 1.91 (5) 2.699 (4) 166 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Infinite chain of the S-enanti­omers along the b-axis.

4. Database survey

Some years ago, we published the crystal structure of a derivative of the title compound, N-methyl-5-ethyl-5-hy­droxy-4-phenyl-1H-pyrrol-2(5H)-one CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode ULUJUG; Dönnecke & Imhof, 2003[Dönnecke, D. & Imhof, W. (2003). Tetrahedron, 59, 8499-8507.]]. The compound shows almost identical structural features concerning the pyrrolone ring system and also crystallizes as a racemate in the space group Pna21.

Compounds with related heterocyclic systems such as ferrocenyl-substituted male­imides or a 1,5-di­hydro-2H-pyrrole-2-one with an imino substituent at C5 have also been reported (CATTOI: Mathur et al., 2012[Mathur, P., Joshi, R. K., Rai, D. K., Jha, B. & Mobin, S. M. (2012). Dalton Trans. 41, 5045-5054.]; TASNEI, TASNIM: Hildebrandt et al., 2012[Hildebrandt, A., Lehrich, S. W., Schaarschmidt, D., Jaeschke, R., Schreiter, K., Spange, S. & Lang, H. (2012). Eur. J. Inorg. Chem. 2012, 1114-1121.]; ZEPLOY, ZEPLUE, ZEPMAL: Jha et al., 2017[Jha, B. N., Raghuvanshi, A., Joshi, R. K., Mobin, S. M. & Mathur, P. (2017). Appl. Organomet. Chem. 31, e3805.]; CIVCUI: Raghuvanshi et al., 2017[Raghuvanshi, A., Singh, A. K., Mobin, S. M. & Mathur, P. (2017). Chem. Sel. 2, 9245-9248.]).

5. Synthesis and crystallization

0.5 mmol (200 mg) of 1-(4-tert-butyl­phen­yl)-2-ethyl-3-ferrocenyl­pyrrole were treated with 5 mol% p-toluene sulfonic acid and were dissolved in 1.0 mL of anhydrous ethanol. The solution was placed in a 10 mL screw-cap vessel closed with parafilm. The process of the oxidation reaction was followed by thin layer chromatography and it could be observed that the reaction was finished after approximately 8 days. The reaction mixture was transferred to a Schlenk tube, the solvent was removed in vacuo and the remaining oily residue was purified by column chromatography (10 × 2 cm, silica) using CH2Cl2 as the eluent. Slow evaporation of the solvent at ambient temperature led to the formation of crystalline material of the title compound (yield 183 mg, 83%). 1H NMR (400 MHz, CDCl3, 298 K): (ppm) = 0.55 (t, 3H, JHH = 7.4 Hz, CH3); 1.31 (s, 9H, CH3); 1.92 (q, 2H, JHH = 7.5 Hz, CH2); 2.84 (s, 1H, OH); 4.17 (s, 5H, Cp); 4.44–4.50 (m, 2H, CpR); 4.72–4.73 (m, 2H, CpR); 6.24 (s, 1H, =CH); 7.37–7.43 (m, 2H, CHPh); 7.48–7.52 (m, 2H, CHPh). 13C NMR (100 MHz, CDCl3, 298 K): (ppm) = 7.80 (CH3); 26.37 (CH2); 31.32 (CH3); 34.50 (C); 68.03 (CpR); 68.85 (CpR); 70.03 (Cp); 72.96 (CpR); 95.55 (C); 118.48 (=CH); 125.44 (CHPh); 125.86 (CHPh); 135.19 (CPh); 149.21 (CPh); 160.63 (C); 169.10 (C=O). MS (DEI): m/z (%) = 443 (96) [M+]; 427 (76) [M+ − O]; 426 (40) [M+ − OH]; 425 (75) [M+ − H2O]; 398 (22) [M+ − 3CH3]; 360 (98) [M+ − C5H5 − H2O]; 322 (48) [M+ − C5H5Fe]; 305 (58) [M+ − C5H5Fe − OH]; 294 (64) [M+ − C5H5Fe − CO].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atom of the hy­droxy substituent (H1O2) was located in a difference-Fourier map and refined freely. All carbon-bound hydrogen atoms were placed in idealized positions and refined using a riding model with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) for methyl­ene and aromatic hydrogen atoms and H3 and Uiso(H) = 1.5Ueq(C) for methyl groups. The p-tBuC6H4 and Cp groups are disordered over two positions and were found to refine well with only one free variable. The proportion of the two positions is 58.94:41.06%. SIMU, RIGU, SAME, SADI and FLAT instructions were used to restrain the geometry and displacement parameters of the disordered moieties.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C21H24NO2)]
Mr 443.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 133
a, b, c (Å) 15.7256 (5), 7.0155 (2), 20.0725 (6)
β (°) 101.242 (2)
V3) 2171.97 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.09 × 0.07 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.693, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12993, 4945, 3348
Rint 0.083
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.144, 1.15
No. of reflections 4945
No. of parameters 418
No. of restraints 950
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.66, −0.46
Computer programs: COLLECT (Nonius 1998[Nonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2019/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).

rac-1-(4-tert-Butylphenyl)-5-ethyl-4-ferrocenyl-\ 5-hydroxy-1H-pyrrol-2(5H)-one top
Crystal data top
[Fe(C5H5)(C21H24NO2)]F(000) = 936
Mr = 443.35Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.7256 (5) ÅCell parameters from 12993 reflections
b = 7.0155 (2) Åθ = 2.6–27.5°
c = 20.0725 (6) ŵ = 0.72 mm1
β = 101.242 (2)°T = 133 K
V = 2171.97 (11) Å3Prism, red-brown
Z = 40.09 × 0.07 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3348 reflections with I > 2σ(I)
phi + ω – scansRint = 0.083
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 2.6°
Tmin = 0.693, Tmax = 0.746h = 2020
12993 measured reflectionsk = 89
4945 independent reflectionsl = 2622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: mixed
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0092P)2 + 6.8638P]
where P = (Fo2 + 2Fc2)/3
4945 reflections(Δ/σ)max = 0.001
418 parametersΔρmax = 0.66 e Å3
950 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.56011 (4)1.17446 (9)0.36865 (3)0.02460 (17)
O10.15960 (18)1.0828 (4)0.21878 (14)0.0262 (7)
O20.32476 (19)0.7788 (4)0.39389 (14)0.0234 (6)
H1O20.327 (3)0.705 (7)0.364 (2)0.025 (13)*
N10.2200 (2)0.9892 (5)0.32817 (15)0.0209 (7)
C10.3081 (3)0.9674 (6)0.37048 (19)0.0211 (8)
C20.3651 (3)1.0215 (5)0.31929 (19)0.0215 (8)
C30.3144 (3)1.0722 (5)0.2606 (2)0.0221 (9)
H3A0.3349291.1153730.2217370.027*
C40.2233 (3)1.0520 (5)0.2643 (2)0.0222 (8)
C50.3187 (3)1.0948 (6)0.4330 (2)0.0249 (9)
H5A0.3805111.0957150.4555990.030*
H5B0.2852161.0390710.4652170.030*
C60.2889 (3)1.2999 (6)0.4179 (2)0.0356 (11)
H6A0.3087031.3788290.4582060.053*
H6B0.2254581.3037250.4057950.053*
H6C0.3134001.3488580.3799690.053*
C70.1414 (9)0.960 (4)0.3517 (13)0.0260 (17)0.589 (16)
C80.0759 (10)1.095 (3)0.3342 (10)0.030 (2)0.589 (16)
H8A0.0857281.2069230.3102450.036*0.589 (16)
C90.0036 (9)1.0638 (19)0.3521 (8)0.036 (2)0.589 (16)
H9A0.0480511.1563770.3399710.043*0.589 (16)
C100.0208 (7)0.9016 (19)0.3873 (8)0.0370 (19)0.589 (16)
C110.0469 (9)0.776 (2)0.4080 (11)0.035 (2)0.589 (16)
H11A0.0387550.6699940.4356540.042*0.589 (16)
C120.1271 (9)0.801 (4)0.3891 (14)0.0320 (18)0.589 (16)
H12A0.1718230.7092450.4018150.038*0.589 (16)
C130.1109 (7)0.8565 (17)0.4023 (6)0.046 (2)0.589 (16)
C140.1043 (8)0.753 (2)0.4702 (6)0.067 (3)0.589 (16)
H14A0.1625960.7256770.4780820.101*0.589 (16)
H14B0.0734190.8338910.5068800.101*0.589 (16)
H14C0.0724780.6332910.4690720.101*0.589 (16)
C150.1633 (8)1.0388 (17)0.4038 (8)0.060 (3)0.589 (16)
H15A0.1731231.0993640.3590020.090*0.589 (16)
H15B0.1313011.1263490.4377420.090*0.589 (16)
H15C0.2192601.0078280.4158000.090*0.589 (16)
C160.1578 (13)0.726 (3)0.3446 (8)0.059 (4)0.589 (16)
H16A0.1559960.7851150.3005980.089*0.589 (16)
H16B0.2183110.7093340.3490650.089*0.589 (16)
H16C0.1289160.6020350.3475020.089*0.589 (16)
C7A0.1408 (13)0.953 (5)0.3512 (18)0.027 (2)0.411 (16)
C8A0.0670 (15)1.065 (4)0.3316 (14)0.031 (2)0.411 (16)
H8B0.0700141.1756460.3051310.037*0.411 (16)
C9A0.0109 (13)1.017 (3)0.3500 (11)0.035 (2)0.411 (16)
H9B0.0604831.0941230.3351130.042*0.411 (16)
C10A0.0176 (11)0.857 (3)0.3901 (12)0.037 (2)0.411 (16)
C11A0.0559 (12)0.745 (4)0.4084 (16)0.034 (2)0.411 (16)
H11B0.0518580.6296690.4325500.041*0.411 (16)
C12A0.1357 (13)0.795 (5)0.393 (2)0.030 (2)0.411 (16)
H12B0.1861030.7221000.4097410.036*0.411 (16)
C13A0.1078 (10)0.806 (2)0.4038 (8)0.047 (2)0.411 (16)
C14A0.1049 (11)0.639 (3)0.4527 (9)0.064 (4)0.411 (16)
H14D0.0897340.5218650.4308270.096*0.411 (16)
H14E0.1617910.6229250.4650230.096*0.411 (16)
H14F0.0611650.6632290.4937860.096*0.411 (16)
C15A0.1447 (12)0.976 (3)0.4372 (10)0.060 (4)0.411 (16)
H15D0.1114420.9933690.4834360.090*0.411 (16)
H15E0.2055640.9513930.4388850.090*0.411 (16)
H15F0.1405151.0913880.4105570.090*0.411 (16)
C16A0.1690 (18)0.764 (4)0.3356 (10)0.054 (4)0.411 (16)
H16D0.1494430.6494190.3152220.082*0.411 (16)
H16E0.1685750.8725980.3048200.082*0.411 (16)
H16F0.2280440.7444240.3432920.082*0.411 (16)
C170.4581 (3)0.9933 (5)0.3329 (2)0.0223 (8)
C180.5120 (3)0.9167 (6)0.3926 (2)0.0260 (9)
H18A0.4936510.8859650.4336760.031*
C190.5973 (3)0.8941 (6)0.3805 (2)0.0296 (10)
H19A0.6457370.8457550.4117770.035*
C200.5972 (3)0.9570 (6)0.3133 (2)0.0285 (10)
H20A0.6457960.9571450.2916220.034*
C210.5132 (3)1.0190 (6)0.2841 (2)0.0278 (9)
H21A0.4957211.0694170.2395980.033*
C220.6534 (9)1.379 (2)0.3699 (7)0.032 (3)0.589 (16)
H22A0.7037591.3686640.3505670.038*0.589 (16)
C230.5716 (9)1.446 (2)0.3365 (6)0.032 (3)0.589 (16)
H23A0.5570451.4885130.2907810.038*0.589 (16)
C240.5144 (8)1.439 (2)0.3840 (7)0.030 (3)0.589 (16)
H24A0.4551701.4760060.3754090.036*0.589 (16)
C250.5618 (10)1.366 (3)0.4457 (7)0.033 (3)0.589 (16)
H25A0.5400871.3463450.4861720.039*0.589 (16)
C260.6475 (9)1.329 (3)0.4369 (7)0.030 (3)0.589 (16)
H26A0.6931221.2783960.4704140.036*0.589 (16)
C22A0.6328 (12)1.405 (3)0.3552 (10)0.032 (4)0.411 (16)
H22B0.6701901.4103040.3233930.038*0.411 (16)
C23A0.5445 (12)1.458 (3)0.3431 (9)0.028 (4)0.411 (16)
H23B0.5125551.5073230.3016080.034*0.411 (16)
C24A0.5115 (12)1.425 (3)0.4027 (10)0.028 (4)0.411 (16)
H24B0.4536181.4467020.4081830.034*0.411 (16)
C25A0.5806 (15)1.354 (4)0.4528 (10)0.030 (4)0.411 (16)
H25B0.5772861.3209870.4980910.036*0.411 (16)
C26A0.6554 (13)1.342 (4)0.4233 (11)0.034 (5)0.411 (16)
H26B0.7110891.2994590.4455040.041*0.411 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0254 (3)0.0215 (3)0.0259 (3)0.0029 (3)0.0025 (2)0.0012 (3)
O10.0284 (16)0.0264 (16)0.0220 (14)0.0004 (13)0.0004 (12)0.0042 (12)
O20.0298 (16)0.0207 (15)0.0187 (14)0.0008 (12)0.0021 (12)0.0002 (12)
N10.0201 (17)0.0241 (18)0.0181 (16)0.0013 (14)0.0024 (13)0.0002 (14)
C10.022 (2)0.022 (2)0.0202 (19)0.0008 (16)0.0061 (16)0.0003 (17)
C20.027 (2)0.0162 (19)0.023 (2)0.0048 (16)0.0068 (17)0.0007 (16)
C30.029 (2)0.018 (2)0.0205 (19)0.0003 (17)0.0079 (17)0.0041 (16)
C40.027 (2)0.0181 (19)0.023 (2)0.0002 (16)0.0066 (17)0.0001 (17)
C50.028 (2)0.026 (2)0.021 (2)0.0026 (18)0.0048 (17)0.0021 (17)
C60.043 (3)0.028 (2)0.037 (3)0.004 (2)0.010 (2)0.008 (2)
C70.024 (3)0.034 (4)0.020 (3)0.003 (3)0.006 (3)0.007 (3)
C80.023 (4)0.042 (5)0.024 (3)0.001 (3)0.002 (3)0.006 (4)
C90.027 (3)0.048 (5)0.033 (3)0.002 (3)0.006 (3)0.008 (4)
C100.028 (3)0.055 (5)0.031 (3)0.004 (3)0.011 (3)0.010 (4)
C110.033 (3)0.049 (5)0.026 (3)0.006 (3)0.013 (3)0.001 (4)
C120.032 (3)0.039 (3)0.027 (4)0.004 (3)0.008 (3)0.003 (3)
C130.032 (3)0.068 (5)0.043 (3)0.010 (3)0.017 (3)0.014 (4)
C140.058 (6)0.094 (8)0.057 (5)0.012 (6)0.032 (5)0.002 (5)
C150.033 (5)0.075 (6)0.078 (7)0.011 (4)0.026 (6)0.019 (6)
C160.040 (7)0.083 (8)0.060 (6)0.024 (6)0.021 (5)0.023 (6)
C7A0.025 (4)0.037 (4)0.020 (4)0.003 (3)0.005 (3)0.007 (4)
C8A0.027 (4)0.042 (5)0.025 (4)0.000 (4)0.004 (4)0.006 (4)
C9A0.026 (4)0.048 (6)0.031 (4)0.001 (4)0.004 (3)0.009 (4)
C10A0.029 (3)0.053 (5)0.030 (3)0.006 (3)0.011 (3)0.008 (4)
C11A0.031 (4)0.046 (5)0.028 (4)0.006 (4)0.011 (4)0.005 (4)
C12A0.029 (4)0.041 (4)0.022 (4)0.005 (4)0.008 (4)0.003 (3)
C13A0.032 (4)0.070 (5)0.044 (4)0.010 (4)0.017 (3)0.009 (4)
C14A0.043 (7)0.089 (9)0.066 (8)0.019 (7)0.023 (6)0.010 (7)
C15A0.040 (7)0.083 (8)0.063 (8)0.014 (6)0.026 (6)0.027 (7)
C16A0.040 (7)0.069 (9)0.054 (7)0.006 (7)0.010 (6)0.019 (7)
C170.025 (2)0.0170 (19)0.024 (2)0.0027 (16)0.0038 (17)0.0063 (17)
C180.028 (2)0.022 (2)0.029 (2)0.0047 (18)0.0077 (18)0.0020 (18)
C190.031 (2)0.020 (2)0.036 (2)0.0020 (18)0.003 (2)0.0037 (19)
C200.025 (2)0.031 (2)0.030 (2)0.0003 (18)0.0077 (18)0.008 (2)
C210.030 (2)0.029 (2)0.023 (2)0.0045 (19)0.0033 (18)0.0045 (19)
C220.030 (5)0.030 (6)0.033 (6)0.006 (4)0.000 (4)0.001 (4)
C230.040 (7)0.021 (5)0.032 (4)0.008 (5)0.001 (4)0.002 (4)
C240.032 (5)0.022 (6)0.032 (6)0.005 (4)0.002 (4)0.002 (5)
C250.031 (6)0.033 (7)0.033 (5)0.006 (5)0.001 (4)0.010 (5)
C260.033 (5)0.023 (5)0.031 (5)0.008 (4)0.004 (4)0.002 (5)
C22A0.027 (8)0.032 (8)0.037 (8)0.012 (6)0.004 (6)0.004 (6)
C23A0.033 (8)0.014 (6)0.038 (7)0.004 (6)0.005 (5)0.007 (5)
C24A0.033 (6)0.016 (7)0.035 (8)0.007 (5)0.005 (6)0.006 (6)
C25A0.038 (9)0.022 (7)0.027 (6)0.004 (7)0.003 (5)0.000 (6)
C26A0.030 (6)0.035 (10)0.034 (8)0.004 (6)0.002 (5)0.013 (7)
Geometric parameters (Å, º) top
Fe1—C22A2.03 (2)C16—H16C0.9800
Fe1—C232.030 (14)C7A—C8A1.392 (12)
Fe1—C212.031 (4)C7A—C12A1.395 (12)
Fe1—C242.034 (14)C8A—C9A1.388 (12)
Fe1—C202.039 (4)C8A—H8B0.9500
Fe1—C222.047 (15)C9A—C10A1.396 (12)
Fe1—C252.05 (2)C9A—H9B0.9500
Fe1—C26A2.05 (3)C10A—C11A1.387 (11)
Fe1—C262.050 (19)C10A—C13A1.539 (12)
Fe1—C192.052 (4)C11A—C12A1.399 (12)
Fe1—C182.053 (4)C11A—H11B0.9500
Fe1—C23A2.056 (19)C12A—H12B0.9500
O1—C41.236 (5)C13A—C14A1.525 (12)
O2—C11.411 (5)C13A—C15A1.536 (13)
O2—H1O20.80 (4)C13A—C16A1.541 (13)
N1—C41.366 (5)C14A—H14D0.9800
N1—C71.422 (9)C14A—H14E0.9800
N1—C7A1.433 (12)C14A—H14F0.9800
N1—C11.485 (5)C15A—H15D0.9800
C1—C51.523 (5)C15A—H15E0.9800
C1—C21.537 (5)C15A—H15F0.9800
C2—C31.336 (5)C16A—H16D0.9800
C2—C171.447 (5)C16A—H16E0.9800
C3—C41.455 (6)C16A—H16F0.9800
C3—H3A0.9500C17—C181.431 (6)
C5—C61.525 (6)C17—C211.441 (6)
C5—H5A0.9900C18—C191.417 (6)
C5—H5B0.9900C18—H18A0.9500
C6—H6A0.9800C19—C201.420 (6)
C6—H6B0.9800C19—H19A0.9500
C6—H6C0.9800C20—C211.405 (6)
C7—C121.389 (10)C20—H20A0.9500
C7—C81.390 (10)C21—H21A0.9500
C8—C91.385 (10)C22—C261.411 (10)
C8—H8A0.9500C22—C231.411 (10)
C9—C101.393 (10)C22—H22A0.9500
C9—H9A0.9500C23—C241.433 (10)
C10—C111.384 (9)C23—H23A0.9500
C10—C131.539 (10)C24—C251.411 (10)
C11—C121.397 (10)C24—H24A0.9500
C11—H11A0.9500C25—C261.418 (10)
C12—H12A0.9500C25—H25A0.9500
C13—C151.525 (10)C26—H26A0.9500
C13—C141.530 (11)C22A—C23A1.411 (12)
C13—C161.544 (11)C22A—C26A1.414 (12)
C14—H14A0.9800C22A—H22B0.9500
C14—H14B0.9800C23A—C24A1.413 (12)
C14—H14C0.9800C23A—H23B0.9500
C15—H15A0.9800C24A—C25A1.419 (12)
C15—H15B0.9800C24A—H24B0.9500
C15—H15C0.9800C25A—C26A1.419 (12)
C16—H16A0.9800C25A—H25B0.9500
C16—H16B0.9800C26A—H26B0.9500
C22A—Fe1—C21116.1 (6)C9A—C8A—C7A121.3 (13)
C23—Fe1—C21106.2 (4)C9A—C8A—H8B119.4
C23—Fe1—C2441.3 (4)C7A—C8A—H8B119.4
C21—Fe1—C24122.3 (4)C8A—C9A—C10A121.2 (12)
C22A—Fe1—C20107.2 (5)C8A—C9A—H9B119.4
C23—Fe1—C20118.4 (4)C10A—C9A—H9B119.4
C21—Fe1—C2040.40 (17)C11A—C10A—C9A117.1 (11)
C24—Fe1—C20155.8 (4)C11A—C10A—C13A124.7 (11)
C23—Fe1—C2240.5 (3)C9A—C10A—C13A117.8 (11)
C21—Fe1—C22121.9 (4)C10A—C11A—C12A122.3 (13)
C24—Fe1—C2268.5 (4)C10A—C11A—H11B118.8
C20—Fe1—C22104.5 (4)C12A—C11A—H11B118.8
C23—Fe1—C2568.6 (5)C7A—C12A—C11A119.6 (13)
C21—Fe1—C25159.0 (4)C7A—C12A—H12B120.2
C24—Fe1—C2540.4 (4)C11A—C12A—H12B120.2
C20—Fe1—C25160.3 (4)C14A—C13A—C15A106.5 (12)
C22—Fe1—C2568.1 (5)C14A—C13A—C10A112.4 (11)
C22A—Fe1—C26A40.6 (5)C15A—C13A—C10A109.7 (11)
C21—Fe1—C26A149.9 (6)C14A—C13A—C16A111.2 (13)
C20—Fe1—C26A117.7 (7)C15A—C13A—C16A108.1 (13)
C23—Fe1—C2668.1 (5)C10A—C13A—C16A108.9 (14)
C21—Fe1—C26158.2 (4)C13A—C14A—H14D109.5
C24—Fe1—C2668.2 (5)C13A—C14A—H14E109.5
C20—Fe1—C26122.2 (5)H14D—C14A—H14E109.5
C22—Fe1—C2640.3 (3)C13A—C14A—H14F109.5
C25—Fe1—C2640.5 (4)H14D—C14A—H14F109.5
C22A—Fe1—C19128.6 (6)H14E—C14A—H14F109.5
C23—Fe1—C19153.5 (4)C13A—C15A—H15D109.5
C21—Fe1—C1968.37 (18)C13A—C15A—H15E109.5
C24—Fe1—C19163.2 (4)H15D—C15A—H15E109.5
C20—Fe1—C1940.62 (17)C13A—C15A—H15F109.5
C22—Fe1—C19118.8 (4)H15D—C15A—H15F109.5
C25—Fe1—C19125.5 (5)H15E—C15A—H15F109.5
C26A—Fe1—C19109.0 (7)C13A—C16A—H16D109.5
C26—Fe1—C19106.8 (5)C13A—C16A—H16E109.5
C22A—Fe1—C18167.5 (6)H16D—C16A—H16E109.5
C23—Fe1—C18163.8 (4)C13A—C16A—H16F109.5
C21—Fe1—C1868.44 (17)H16D—C16A—H16F109.5
C24—Fe1—C18127.6 (4)H16E—C16A—H16F109.5
C20—Fe1—C1868.05 (18)C18—C17—C21106.2 (4)
C22—Fe1—C18155.4 (4)C18—C17—C2128.5 (4)
C25—Fe1—C18110.7 (5)C21—C17—C2125.0 (4)
C26A—Fe1—C18130.2 (6)C18—C17—Fe169.3 (2)
C26—Fe1—C18122.5 (4)C21—C17—Fe168.2 (2)
C19—Fe1—C1840.39 (17)C2—C17—Fe1132.0 (3)
C22A—Fe1—C23A40.4 (4)C19—C18—C17109.0 (4)
C21—Fe1—C23A107.7 (5)C19—C18—Fe169.8 (2)
C20—Fe1—C23A128.3 (6)C17—C18—Fe170.0 (2)
C26A—Fe1—C23A67.5 (7)C19—C18—H18A125.5
C19—Fe1—C23A166.7 (6)C17—C18—H18A125.5
C18—Fe1—C23A151.5 (5)Fe1—C18—H18A126.3
C1—O2—H1O2113 (3)C18—C19—C20107.6 (4)
C4—N1—C7123.5 (10)C18—C19—Fe169.8 (2)
C4—N1—C7A123.6 (14)C20—C19—Fe169.2 (2)
C4—N1—C1111.6 (3)C18—C19—H19A126.2
C7—N1—C1124.8 (10)C20—C19—H19A126.2
C7A—N1—C1124.7 (14)Fe1—C19—H19A126.4
O2—C1—N1112.2 (3)C21—C20—C19108.6 (4)
O2—C1—C5107.0 (3)C21—C20—Fe169.5 (2)
N1—C1—C5110.5 (3)C19—C20—Fe170.2 (2)
O2—C1—C2111.1 (3)C21—C20—H20A125.7
N1—C1—C2101.1 (3)C19—C20—H20A125.7
C5—C1—C2115.0 (3)Fe1—C20—H20A126.2
C3—C2—C17127.6 (4)C20—C21—C17108.6 (4)
C3—C2—C1109.3 (4)C20—C21—Fe170.1 (2)
C17—C2—C1122.6 (3)C17—C21—Fe170.6 (2)
C2—C3—C4110.7 (4)C20—C21—H21A125.7
C2—C3—H3A124.6C17—C21—H21A125.7
C4—C3—H3A124.6Fe1—C21—H21A125.2
O1—C4—N1125.2 (4)C26—C22—C23108.2 (9)
O1—C4—C3127.5 (4)C26—C22—Fe170.0 (9)
N1—C4—C3107.3 (3)C23—C22—Fe169.1 (7)
C1—C5—C6114.2 (3)C26—C22—H22A125.9
C1—C5—H5A108.7C23—C22—H22A125.9
C6—C5—H5A108.7Fe1—C22—H22A126.6
C1—C5—H5B108.7C22—C23—C24107.7 (8)
C6—C5—H5B108.7C22—C23—Fe170.4 (7)
H5A—C5—H5B107.6C24—C23—Fe169.5 (6)
C5—C6—H6A109.5C22—C23—H23A126.1
C5—C6—H6B109.5C24—C23—H23A126.1
H6A—C6—H6B109.5Fe1—C23—H23A125.6
C5—C6—H6C109.5C25—C24—C23107.7 (9)
H6A—C6—H6C109.5C25—C24—Fe170.3 (10)
H6B—C6—H6C109.5C23—C24—Fe169.2 (7)
C12—C7—C8119.6 (9)C25—C24—H24A126.1
C12—C7—N1122.5 (14)C23—C24—H24A126.1
C8—C7—N1117.9 (14)Fe1—C24—H24A125.9
C9—C8—C7119.3 (9)C24—C25—C26108.1 (9)
C9—C8—H8A120.3C24—C25—Fe169.3 (9)
C7—C8—H8A120.3C26—C25—Fe169.9 (10)
C8—C9—C10122.3 (9)C24—C25—H25A126.0
C8—C9—H9A118.9C26—C25—H25A126.0
C10—C9—H9A118.9Fe1—C25—H25A126.5
C11—C10—C9117.4 (8)C22—C26—C25108.3 (9)
C11—C10—C13119.7 (9)C22—C26—Fe169.7 (9)
C9—C10—C13122.9 (8)C25—C26—Fe169.6 (10)
C10—C11—C12121.4 (10)C22—C26—H26A125.9
C10—C11—H11A119.3C25—C26—H26A125.9
C12—C11—H11A119.3Fe1—C26—H26A126.3
C7—C12—C11119.9 (10)C23A—C22A—C26A107.6 (11)
C7—C12—H12A120.1C23A—C22A—Fe170.9 (10)
C11—C12—H12A120.1C26A—C22A—Fe170.5 (14)
C15—C13—C14108.8 (9)C23A—C22A—H22B126.2
C15—C13—C10110.7 (8)C26A—C22A—H22B126.2
C14—C13—C10111.4 (8)Fe1—C22A—H22B124.1
C15—C13—C16109.3 (10)C22A—C23A—C24A108.8 (11)
C14—C13—C16109.1 (10)C22A—C23A—Fe168.7 (10)
C10—C13—C16107.4 (9)C24A—C23A—Fe171.2 (10)
C13—C14—H14A109.5C22A—C23A—H23B125.6
C13—C14—H14B109.5C24A—C23A—H23B125.6
H14A—C14—H14B109.5Fe1—C23A—H23B126.1
C13—C14—H14C109.5C23A—C24A—C25A107.5 (11)
H14A—C14—H14C109.5C23A—C24A—Fe168.9 (10)
H14B—C14—H14C109.5C25A—C24A—Fe170.0 (14)
C13—C15—H15A109.5C23A—C24A—H24B126.3
C13—C15—H15B109.5C25A—C24A—H24B126.3
H15A—C15—H15B109.5Fe1—C24A—H24B126.4
C13—C15—H15C109.5C24A—C25A—C26A107.9 (11)
H15A—C15—H15C109.5C24A—C25A—Fe170.2 (13)
H15B—C15—H15C109.5C26A—C25A—Fe168.6 (15)
C13—C16—H16A109.5C24A—C25A—H25B126.0
C13—C16—H16B109.5C26A—C25A—H25B126.0
H16A—C16—H16B109.5Fe1—C25A—H25B126.7
C13—C16—H16C109.5C22A—C26A—C25A108.1 (11)
H16A—C16—H16C109.5C22A—C26A—Fe168.9 (13)
H16B—C16—H16C109.5C25A—C26A—Fe171.2 (15)
C8A—C7A—C12A118.2 (12)C22A—C26A—H26B125.9
C8A—C7A—N1123 (2)C25A—C26A—H26B125.9
C12A—C7A—N1119 (2)Fe1—C26A—H26B125.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.80 (4)1.91 (5)2.699 (4)166 (5)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Funding information

TB gratefully acknowledges a PhD grant from the Deutsche Bundesstiftung Umwelt. The publication was funded by the Open Access Fund of Universität Koblenz.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiletzki, T. & Imhof, W. (2011). Synthesis, 2011, 3979–3990.  Google Scholar
First citationBoger, D. L. & Baldino, C. M. (1991). J. Org. Chem. 56, 6942–6944.  CrossRef CAS Web of Science Google Scholar
First citationDannhardt, G. & Steindl, L. (1985). Arch. Pharm. Pharm. Med. Chem. 318, 661–663.  CrossRef CAS Web of Science Google Scholar
First citationDannhardt, G. & Steindl, L. (1986). Arch. Pharm. Pharm. Med. Chem. 319, 500–505.  CrossRef CAS Web of Science Google Scholar
First citationDönnecke, D. & Imhof, W. (2003). Tetrahedron, 59, 8499–8507.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGillies, G., Dönnecke, D. & Imhof, W. (2007). Monatsh. Chem. 138, 683–686.  Web of Science CrossRef CAS Google Scholar
First citationGonzalez, F., Sanz-Cervera, J. F. & Williams, R. M. (1999). Tetrahedron Lett. 40, 4519–4522.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHildebrandt, A., Lehrich, S. W., Schaarschmidt, D., Jaeschke, R., Schreiter, K., Spange, S. & Lang, H. (2012). Eur. J. Inorg. Chem. 2012, 1114–1121.  Web of Science CSD CrossRef CAS Google Scholar
First citationJha, B. N., Raghuvanshi, A., Joshi, R. K., Mobin, S. M. & Mathur, P. (2017). Appl. Organomet. Chem. 31, e3805.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMachida, M., Takechi, H. & Kanaoka, Y. (1982). Tetrahedron Lett. 23, 4981–4982.  CrossRef CAS Web of Science Google Scholar
First citationMathur, P., Joshi, R. K., Rai, D. K., Jha, B. & Mobin, S. M. (2012). Dalton Trans. 41, 5045–5054.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationProcopiou, P. A. & Highcock, R. M. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 245–247.  CSD CrossRef Web of Science Google Scholar
First citationRaghuvanshi, A., Singh, A. K., Mobin, S. M. & Mathur, P. (2017). Chem. Sel. 2, 9245–9248.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakechi, H., Machida, M. & Kanaoka, Y. (1988). Chem. Pharm. Bull. 36, 2853–2863.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds