research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of the hybrid salt bis­­(2-methyl­imidazo[1,5-a]pyridin-2-ium) tetra­chlorido­manganate(II)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSchool of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 2 March 2023; accepted 23 March 2023; online 28 March 2023)

The 0-D hybrid salt bis­(2-methyl­imidazo[1,5-a]pyridin-2-ium) tetra­chlorido­manganate(II), (C8H9N2)2[MnCl4] or [L]2[MnCl4], consists of discrete L+ cations and tetra­chlorido­manganate(II) anions. The fused heterocyclic rings in the two crystallographically non-equivalent monovalent organic cations are almost coplanar; the bond lengths are as expected. The tetra­hedral MnCl42– dianion is slightly distorted with the Mn—Cl bond lengths varying from 2.3577 (7) to 2.3777 (7) Å and the Cl—Mn—Cl angles falling in the range 105.81 (3)–115.23 (3)°. In the crystal, the compound demonstrates a pseudo-layered arrangement of separate organic and inorganic sheets alternating parallel to the bc plane. In the organic layer, pairs of centrosymmetrically related trans-oriented L+ cations are π-stacked. Neighboring MnCl42– dianions in the inorganic sheet show no connectivity, with the minimal Mn⋯Mn distance exceeding 7 Å. The Hirshfeld surface analysis revealed the prevalence of the non-conventional C—H⋯Cl—Mn hydrogen bonding in the crystal packing.

1. Chemical context

Hybrid metal halides combining organic cations and inorganic anions are the focus of research attention as novel light-emitting materials because their photoluminescence properties are conveniently tunable by engineering their organic and inorganic components (Saparov & Mitzi, 2016[Saparov, B. & Mitzi, D. B. (2016). Chem. Rev. 116, 4558-4596.]). These mat­erials have potential uses in light-emitting diodes (LEDs), solar cells, and photodetectors as well as in laser technology (Li et al., 2021[Li, D., Zhang, D., Lim, K. S., Hu, Y., Rong, Y., Mei, A., Park, N. G. & Han, H. (2021). Adv. Funct. Mater. 31, 2008621.]). The Pb element in this family, however, prevents these materials from being used in commercial settings (Gan et al., 2021[Gan, Z., Cheng, Y., Chen, W., Loh, K. P., Jia, B. & Wen, X. (2021). Adv. Sci. 8, 2001843.]). Therefore, the development of lead-free hybrid metal halides is of particular inter­est. Environmentally safe organic–inorganic manganese(II) halides have been shown to exhibit potent luminescence arising from dd transitions, making them promising for use in X-ray scintillators, sensors, and optical devices (Kumar Das et al., 2022[Kumar Das, D., Bakthavatsalam, R., Anilkumar, V., Mali, B. P., Ahmed, M. S., Raavi, S. S. K., Pallepogu, R. & Kundu, J. (2022). Inorg. Chem. 61, 5363-5372.]).

[Scheme 1]

The title compound [L]2[MnCl4], (I), was synthesized in the course of our study on organic–inorganic hybrid metal halides of transition and main-group metal atoms counterbalanced with imidazo[1,5-a]pyridinium-based cations (Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.], 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.], 2023[Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N. & Sobolev, A. N. (2023). Acta Cryst. E79, 103-106.]). The monovalent 2-methyl-imidazo[1,5-a]pyridinium cation L+ resulted from the oxidative condens­ation–cyclization between formaldehyde, methyl­amine hydro­chloride and 2-pyridine­carbaldehyde. The reaction of the preformed heterocyclic cation and metal halides yielded hybrid compounds [L]n[PbCl3]n (TURJUO; Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]), [L]2[ZnCl4] (GOTHAB01; Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]), [L]2[CdCl4] (GOTJAD01; Vassilyeva et al., 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]), and [L]2[SnCl6] (GIBFAC; Vassilyeva et al., 2023[Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N. & Sobolev, A. N. (2023). Acta Cryst. E79, 103-106.]). The photophysical properties of the organic–inorganic 1-D perovskite [L]n[PbCl3]n and 0-D pseudo-layered hybrid [L]2[ZnCl4] were presumed to originate from the synergistic effects of the electronic structure of the cation and the solid-state architectures. Hybrid compound I, isomorphic with the Zn and Cd analogues GOTHAB01 and GOTJAD01, appeared non-emissive. Herein, the synthesis, structure, IR spectroscopic characterization, and the results of the Hirshfeld surface (HS) analysis of I are reported.

2. Structural commentary

The organic–inorganic hybrid salt I crystallizes in the triclinic space group P[\overline{1}] and is isomorphous with the [L]2[ZnCl4] (GOTHAB; Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]) and [L]2[CdCl4] (GOTJAD; Vassilyeva et al., 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]) analogues as well as the sister mixed-halide ZnII and CdII tetra­halometalates with the L+ cation involving partial substitution of bromide by chloride and chloride by iodide ions (NOTZAA01, NOVSEZ01 and NOVSOJ01; Vassilyeva et al., 2022[Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N. & Skelton, B. W. (2022). Acta Cryst. E78, 359-364.]). Compound I is composed of discrete L+ cations and tetra­hedral MnCl42– anions (Fig. 1[link]). In the asymmetric unit, there are two crystallographically non-equivalent cations (N22, N23A and N12, N13A) with similar structural configurations, which are very close to those of the isomorphous hybrid salts. In the fused cores, the imidazolium rings show C—N/C bond lengths in the range 1.332 (3)–1.405 (3) Å; the pyridinium rings have normal bond distances; the nitro­gen atoms are planar, with a total sum of three angles of 360°. The five- and six-membered rings in the cations are almost coplanar, showing dihedral angles between them of less than 2° [0.61 (N22, N23A) and 1.46° (N12, N13A)].

[Figure 1]
Figure 1
Mol­ecular structure and atom labeling of [L]2[MnCl4] (I), with 50% probability displacement ellipsoids.

The geometry of the slightly distorted tetra­hedral MnCl42– anion with Mn—Cl distances varying from 2.3577 (7) to 2.3777 (7) Å and the bond angles falling in the range 105.81 (3)–115.23 (3)° (Table 1[link]) is typical for this coordinatively rigid anion.

Table 1
Selected geometric parameters (Å, °)

Mn1—Cl3 2.3577 (7) Mn1—Cl1 2.3725 (7)
Mn1—Cl4 2.3674 (7) Mn1—Cl2 2.3777 (7)
       
Cl3—Mn1—Cl4 115.23 (3) Cl3—Mn1—Cl2 110.21 (3)
Cl3—Mn1—Cl1 106.36 (3) Cl4—Mn1—Cl2 107.51 (3)
Cl4—Mn1—Cl1 105.81 (3) Cl1—Mn1—Cl2 111.72 (2)

3. Supra­molecular features

In the crystal of I, there is a pseudo-layered arrangement of the organic and inorganic sheets alternating parallel to the bc plane (Fig. 2[link]). The a-axis length [9.4042 (6) Å] corresponds to the distance between consecutive inorganic planes. Pairs of inversion-related cations in the organic layer are stacked with varying levels of offset, showing the ring-centroid distances of 3.453 (1) (N22, N23A), 3.552 (2) and 4.002 (1) Å (N12, N13A) with the corresponding inter­planar distances being 3.263 (1), 3.526 (1) and 2.401 (1) Å, respectively. In the inorganic layer, the tetra­chlorido­manganate(II) anions are loosely packed with the shortest Mn⋯Mn separations being about 7.098 Å. The closest Cl⋯Cl distance of 4.649 Å is significantly larger than the double value of the Shannon ionic radii of chloride anion [2r(Cl) = 2 × 1.81 = 3.62 Å], making magnetic inter­actions between the metal ions barely possible. Additional structure consolidation is provided by numerous C—H⋯Cl—Mn hydrogen bonds between organic and inorganic sublattices (Fig. 2[link], Table 2[link]) at the H⋯Cl distances below the van der Waals contact limit of 2.85 Å (Mantina et al., 2009[Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806-5812.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl4 0.95 2.76 3.592 (2) 146
C13—H13⋯Cl1i 0.95 2.66 3.422 (2) 138
C14—H14⋯Cl1i 0.95 2.79 3.549 (3) 137
C21—H21⋯Cl3ii 0.95 2.80 3.632 (2) 147
C22—H22C⋯Cl2i 0.98 2.82 3.742 (3) 156
C23—H23⋯Cl1iii 0.95 2.81 3.440 (3) 125
C24—H24⋯Cl3iii 0.95 2.69 3.573 (3) 154
C27—H27⋯Cl4iv 0.95 2.77 3.600 (3) 146
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x-1, y+1, z]; (iii) x, y+1, z; (iv) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Fragment of the crystal packing of I viewed along the c axis with the non-equivalent L1+ and L2+ cations shown in blue and green, [MnCl4]2– anions are presented in a polyhedral form, and C—H⋯Cl—Mn hydrogen bonds are shown in blue.

4. Hirshfeld surface analysis

The Hirshfeld surface mapped over dnorm and fingerprint plots for I were generated using CrystalExplorer (Version 21.5; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The red spots on the Hirshfeld surface indicate close hydrogen-bond donor and acceptor contacts, while the white and blue areas represent van der Waals and longer contacts, respectively. The bright-red spots are found near chlorine atoms involved in C—H⋯Cl hydrogen-bonding inter­actions between organic cations and MnCl42– anions (Fig. 3[link]). In the fingerprint plots (Fig. 4[link]), those are associated with sharp spikes of 54.8% of the surface area. The next highest contributions to the surface contacts come from the H⋯H (31%), H⋯C (6%) and C⋯C (2.5%) inter­actions, whereas other XiXd contacts (X = H, N, C, Mn) cover less than 6% (Fig. 4[link]). These numbers show that non-conventional hydrogen bonding predominates in the crystal packing of I, but that C–H⋯π and ππ inter­actions also make an appreciable contribution.

[Figure 3]
Figure 3
HS mapped over dnorm for the L+ cations in [L]2[MnCl4] (I).
[Figure 4]
Figure 4
Selected two-dimensional fingerprint plots of compound I where di and de represent the distances from the HS to the closest inter­nal and external atoms.

5. Database survey

Compound I is a new member of the family of salts with imidazo[1,5-a]pyridinium-based cations. More than 50 structures of the compounds including such cations are found in the Cambridge Structural Database (CSD, Version 5.42; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with 24 halometalates (M = Mn, Co, Fe, Ni, Cu, Zn, Cd, Pb and Sn) contributed by our research team. Another large group comprises organic salts with substituted L+ cations and inorganic anions such as perchlorate or hexa­fluoro­phosphate. NAKNET (Mishra et al., 2005[Mishra, D., Naskar, S., Adhikary, B., Butcher, R. J. & Chattopadhyay, S. K. (2005). Polyhedron, 24, 201-208.]) and DIWYEP (Kriechbaum et al., 2014[Kriechbaum, M., Otte, D., List, M. & Monkowius, U. (2014). Dalton Trans. 43, 8781-8791.]) with bulky methyl­phenyl and di­methyl­phenyl substituents, respectively, instead of the methyl group in L+ are close analogues. A limited amount of the main-group metal halides with imidazo[1,5-a]pyridinium-based cations are known. The proligand bearing a 6-methyl­pyridin-2-yl substituent in place of the methyl group in L+ (SOHPUC; Samanta et al., 2014[Samanta, T., Dey, L., Dinda, J., Chattopadhyay, S. K. & Seth, S. K. (2014). J. Mol. Struct. 1068, 58-70.]) was reported to stabilize both AuI and AuIII ions, enabling the mixed-valence hybrid salt with [AuCl2] and [AuCl4] anions (SUWVIR; Nandy et al., 2016[Nandy, A., Samanta, T., Mallick, S., Mitra, P., Seth, S. K., Saha, K. D., Al-Deyab, S. S. & Dinda, J. (2016). New J. Chem. 40, 6289-6298.]). In the reaction with mercury(II) acetate, a similar ligand that lacked a methyl group, produced an HgIIN-heterocyclic carbene complex of virtually linear geometry [Ccarbene—Hg—Ccarbene = 176.56 (17)°] around the Hg center (IVOWEW; Samanta et al., 2011[Samanta, T., Kumar Rana, B., Roymahapatra, G., Giri, S., Mitra, P., Pallepogu, R., Kumar Chattaraj, P. & Dinda, J. (2011). Inorg. Chim. Acta, 375, 271-279.]).

The ubiquitous tetra­chloride anion is found in more than 200 structures stored in the CSD. The average Mn—Cl distance of 2.37 Å in I is comparable to those found in the database for other salts containing isolated MnCl42– tetra­hedral anions (the range of average Mn—Cl distances for this anion is 2.27–2.42 Å).

6. Synthesis and crystallization

Synthesis of [L]2[MnCl4], (I). Solid CH3NH2·HCl (0.27 g, 4 mmol) was added to the warm formaldehyde solution prepared by dissolving paraform (0.13 g, 4.5 mmol) in boiling deionized water (10 ml) in a 50 ml conical flask. The solution was stirred vigorously for 1 h at room temperature (r.t.), filtered and left open overnight. On the next day, 2-pyridine­carbaldehyde (0.19 ml, 2 mmol) was added to the flask, followed by Mn(OAc)2·4H2O (0.49 g, 2 mmol) dissolved in 5 ml of water, and the solution was magnetically stirred at r.t. for 30 min, then filtered and allowed to evaporate. Very light-brown needles of I suitable for X-ray crystallography formed within two days in the brown solution. The crystals were filtered off, washed with diethyl ether and dried in air. Yield: 67% (based on Mn). FT–IR (ν, cm−1): 3430br, 3122s, 3094s, 3050s, 3014, 2954, 2914, 2826, 1654, 1566, 1544, 1454, 1374, 1352, 1328, 1258, 1222, 1148s, 1130, 1038, 920, 800s, 764, 742, 624s, 498, 468, 434. Elemental analysis calculated for C16H18N4MnCl4 (463.08): C 41.50; H 3.92; N 12.10%. Found: C 41.62; H 3.93; N 12.04%.

The FT–IR spectrum of I in KBr measured in the 4000–400 cm−1 range (Fig. 5[link]) has a distinctive pattern characteristic of the imidazo[1,5-a]pyridinium-based skeleton (Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.], 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]): the very strong sharp peaks are due to aromatic C—H stretching (3122–3050 cm−1), the medium intensity bands at 1654 and 1544 cm−1 are associated with heterocyclic ring vibrations, an intense absorption at 1148 cm−1 is ascribed to ν(N–CCH3) vibration and there is a prominent set of three peaks in the out-of-plane C—H-bending region (800, 742 and 624 cm−1).

[Figure 5]
Figure 5
FT–IR spectrum of [L]2[MnCl4] (I) in KBr in the 4000–400 cm−1 range.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.98 Å, Uiso(H) = 1.5Ueq(C) for CH3). Anisotropic displacement parameters were employed for the non-hydrogen atoms.

Table 3
Experimental details

Crystal data
Chemical formula (C8H9N2)2[MnCl4]
Mr 463.08
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.4042 (6), 10.7074 (6), 10.7401 (6)
α, β, γ (°) 99.211 (5), 110.852 (6), 91.515 (5)
V3) 993.52 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.21
Crystal size (mm) 0.43 × 0.16 × 0.1
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.706, 0.908
No. of measured, independent and observed [I > 2σ(I)] reflections 11038, 6374, 5151
Rint 0.023
(sin θ/λ)max−1) 0.748
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.03
No. of reflections 6374
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.32, −0.65
Computer programs: CrysAlis PRO (Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2016); cell refinement: CrysAlis PRO (Rigaku OD, 2016); data reduction: CrysAlis PRO (Rigaku OD, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Bis(2-methylimidazo[1,5-a]pyridin-2-ium) tetrachloridomanganate(II) top
Crystal data top
(C8H9N2)2[MnCl4]Z = 2
Mr = 463.08F(000) = 470
Triclinic, P1Dx = 1.548 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4042 (6) ÅCell parameters from 3962 reflections
b = 10.7074 (6) Åθ = 2.1–31.2°
c = 10.7401 (6) ŵ = 1.21 mm1
α = 99.211 (5)°T = 100 K
β = 110.852 (6)°Needle, light brown
γ = 91.515 (5)°0.43 × 0.16 × 0.1 mm
V = 993.52 (11) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
6374 independent reflections
Radiation source: Enhance (Mo) X-ray Source5151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0009 pixels mm-1θmax = 32.1°, θmin = 2.1°
ω scansh = 1313
Absorption correction: analytical
(CrysAlis Pro; Rigaku OD, 2016)
k = 1513
Tmin = 0.706, Tmax = 0.908l = 1115
11038 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.8647P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6374 reflectionsΔρmax = 1.32 e Å3
228 parametersΔρmin = 0.65 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One reflection which was considered to be obscured by the beam stop was omitted from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.7645 (3)0.5468 (2)0.2669 (2)0.0213 (4)
H110.8385970.507280.3306580.026*
N120.7899 (2)0.61515 (18)0.18183 (18)0.0182 (3)
C120.9382 (3)0.6391 (2)0.1700 (3)0.0256 (5)
H12A0.9891640.7198250.2283480.038*
H12B0.9228690.6434920.0756950.038*
H12C1.0016650.5700720.1980030.038*
C130.6572 (2)0.6572 (2)0.1041 (2)0.0204 (4)
H130.6456550.707320.0363150.024*
N13A0.5446 (2)0.6135 (2)0.1425 (2)0.0266 (4)
C140.3856 (3)0.6248 (2)0.1000 (3)0.0253 (5)
H140.3360930.6688560.028430.03*
C150.3062 (3)0.5714 (3)0.1637 (3)0.0315 (6)
H150.1994520.5789850.1369420.038*
C160.3786 (3)0.5039 (3)0.2702 (3)0.0352 (6)
H160.3196860.4686770.3140780.042*
C170.5293 (3)0.4893 (2)0.3098 (3)0.0303 (5)
H170.5767560.4427860.379620.036*
C17A0.6142 (2)0.54440 (19)0.2455 (2)0.0153 (4)
C210.2932 (3)0.8976 (2)0.3195 (2)0.0250 (5)
H210.1969890.8977170.3297020.03*
N220.3271 (3)0.9359 (2)0.2170 (2)0.0267 (4)
C220.2201 (4)0.9879 (3)0.1047 (3)0.0370 (6)
H22A0.2751871.018410.0517360.056*
H22B0.1736741.0585980.141160.056*
H22C0.1398840.9213890.0464350.056*
C230.4729 (3)0.9225 (2)0.2345 (2)0.0260 (5)
H230.5231660.9423180.1765070.031*
N23A0.5364 (2)0.87586 (19)0.3492 (2)0.0232 (4)
C240.6858 (3)0.8453 (2)0.4119 (3)0.0289 (5)
H240.7613350.856740.3740170.035*
C250.7194 (3)0.7991 (3)0.5275 (3)0.0337 (6)
H250.8195930.7758080.5702030.04*
C260.6093 (3)0.7844 (2)0.5870 (3)0.0334 (6)
H260.637870.754350.6703550.04*
C270.4650 (3)0.8124 (2)0.5276 (3)0.0281 (5)
H270.3912590.8009130.5674070.034*
C27A0.4246 (3)0.8592 (2)0.4045 (2)0.0202 (4)
Mn10.84578 (4)0.19104 (3)0.25082 (3)0.02042 (9)
Cl10.57864 (6)0.18756 (6)0.13323 (6)0.02657 (13)
Cl20.98756 (7)0.30020 (6)0.15037 (6)0.02681 (13)
Cl30.90155 (8)0.02287 (6)0.24168 (7)0.03208 (14)
Cl40.89538 (7)0.30780 (6)0.47087 (6)0.03045 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0187 (10)0.0201 (10)0.0247 (10)0.0026 (8)0.0079 (8)0.0028 (8)
N120.0148 (8)0.0185 (8)0.0206 (8)0.0023 (6)0.0062 (7)0.0017 (7)
C120.0172 (10)0.0271 (12)0.0339 (12)0.0024 (8)0.0117 (9)0.0042 (10)
C130.0160 (9)0.0213 (10)0.0218 (10)0.0043 (8)0.0049 (8)0.0026 (8)
N13A0.0225 (10)0.0232 (10)0.0312 (10)0.0030 (8)0.0089 (8)0.0013 (8)
C140.0178 (10)0.0263 (11)0.0294 (12)0.0050 (8)0.0081 (9)0.0011 (9)
C150.0176 (11)0.0306 (13)0.0439 (15)0.0008 (9)0.0141 (10)0.0066 (11)
C160.0377 (15)0.0282 (13)0.0479 (16)0.0028 (11)0.0280 (13)0.0018 (12)
C170.0370 (14)0.0231 (12)0.0355 (13)0.0020 (10)0.0187 (11)0.0067 (10)
C17A0.0139 (9)0.0119 (8)0.0185 (9)0.0009 (7)0.0051 (7)0.0005 (7)
C210.0221 (11)0.0229 (11)0.0291 (12)0.0023 (9)0.0108 (9)0.0015 (9)
N220.0305 (11)0.0218 (10)0.0236 (10)0.0055 (8)0.0063 (8)0.0005 (8)
C220.0420 (16)0.0320 (14)0.0273 (13)0.0125 (12)0.0011 (11)0.0036 (11)
C230.0343 (13)0.0219 (11)0.0236 (11)0.0024 (9)0.0138 (10)0.0018 (9)
N23A0.0243 (10)0.0186 (9)0.0274 (10)0.0005 (7)0.0124 (8)0.0001 (7)
C240.0201 (11)0.0262 (12)0.0385 (13)0.0014 (9)0.0143 (10)0.0069 (10)
C250.0244 (12)0.0270 (13)0.0378 (14)0.0041 (10)0.0012 (10)0.0043 (11)
C260.0438 (16)0.0223 (12)0.0267 (12)0.0001 (11)0.0036 (11)0.0054 (10)
C270.0356 (13)0.0225 (11)0.0275 (12)0.0050 (10)0.0151 (10)0.0010 (9)
C27A0.0196 (10)0.0180 (10)0.0242 (10)0.0008 (8)0.0114 (8)0.0003 (8)
Mn10.01803 (16)0.02251 (18)0.01970 (17)0.00204 (12)0.00538 (13)0.00445 (13)
Cl10.0187 (2)0.0328 (3)0.0268 (3)0.0030 (2)0.0047 (2)0.0100 (2)
Cl20.0266 (3)0.0264 (3)0.0307 (3)0.0014 (2)0.0136 (2)0.0072 (2)
Cl30.0350 (3)0.0268 (3)0.0395 (3)0.0103 (2)0.0161 (3)0.0133 (3)
Cl40.0269 (3)0.0380 (3)0.0222 (3)0.0009 (2)0.0062 (2)0.0003 (2)
Geometric parameters (Å, º) top
C11—N121.337 (3)C21—H210.95
C11—C17A1.347 (3)N22—C231.332 (3)
C11—H110.95N22—C221.468 (3)
N12—C131.366 (3)C22—H22A0.98
N12—C121.464 (3)C22—H22B0.98
C12—H12A0.98C22—H22C0.98
C12—H12B0.98C23—N23A1.346 (3)
C12—H12C0.98C23—H230.95
C13—N13A1.363 (3)N23A—C241.399 (3)
C13—H130.95N23A—C27A1.400 (3)
N13A—C17A1.405 (3)C24—C251.346 (4)
N13A—C141.414 (3)C24—H240.95
C14—C151.350 (4)C25—C261.414 (4)
C14—H140.95C25—H250.95
C15—C161.425 (4)C26—C271.343 (4)
C15—H150.95C26—H260.95
C16—C171.349 (4)C27—C27A1.416 (3)
C16—H160.95C27—H270.95
C17—C17A1.400 (3)Mn1—Cl32.3577 (7)
C17—H170.95Mn1—Cl42.3674 (7)
C21—N221.366 (3)Mn1—Cl12.3725 (7)
C21—C27A1.369 (3)Mn1—Cl22.3777 (7)
N12—C11—C17A107.34 (19)C23—N22—C21110.4 (2)
N12—C11—H11126.3C23—N22—C22124.2 (2)
C17A—C11—H11126.3C21—N22—C22125.3 (2)
C11—N12—C13110.61 (19)N22—C22—H22A109.5
C11—N12—C12125.11 (19)N22—C22—H22B109.5
C13—N12—C12124.3 (2)H22A—C22—H22B109.5
N12—C12—H12A109.5N22—C22—H22C109.5
N12—C12—H12B109.5H22A—C22—H22C109.5
H12A—C12—H12B109.5H22B—C22—H22C109.5
N12—C12—H12C109.5N22—C23—N23A107.7 (2)
H12A—C12—H12C109.5N22—C23—H23126.2
H12B—C12—H12C109.5N23A—C23—H23126.2
N13A—C13—N12106.9 (2)C23—N23A—C24130.2 (2)
N13A—C13—H13126.5C23—N23A—C27A108.6 (2)
N12—C13—H13126.5C24—N23A—C27A121.2 (2)
C13—N13A—C17A106.65 (18)C25—C24—N23A118.0 (2)
C13—N13A—C14133.6 (2)C25—C24—H24121
C17A—N13A—C14119.8 (2)N23A—C24—H24121
C15—C14—N13A118.2 (2)C24—C25—C26121.7 (2)
C15—C14—H14120.9C24—C25—H25119.1
N13A—C14—H14120.9C26—C25—H25119.1
C14—C15—C16121.5 (2)C27—C26—C25121.0 (2)
C14—C15—H15119.2C27—C26—H26119.5
C16—C15—H15119.2C25—C26—H26119.5
C17—C16—C15121.1 (2)C26—C27—C27A118.9 (2)
C17—C16—H16119.5C26—C27—H27120.5
C15—C16—H16119.5C27A—C27—H27120.5
C16—C17—C17A118.4 (2)C21—C27A—N23A106.4 (2)
C16—C17—H17120.8C21—C27A—C27134.5 (2)
C17A—C17—H17120.8N23A—C27A—C27119.0 (2)
C11—C17A—C17130.5 (2)Cl3—Mn1—Cl4115.23 (3)
C11—C17A—N13A108.49 (19)Cl3—Mn1—Cl1106.36 (3)
C17—C17A—N13A121.0 (2)Cl4—Mn1—Cl1105.81 (3)
N22—C21—C27A106.9 (2)Cl3—Mn1—Cl2110.21 (3)
N22—C21—H21126.5Cl4—Mn1—Cl2107.51 (3)
C27A—C21—H21126.5Cl1—Mn1—Cl2111.72 (2)
C17A—C11—N12—C130.3 (3)C27A—C21—N22—C230.2 (3)
C17A—C11—N12—C12178.7 (2)C27A—C21—N22—C22178.2 (2)
C11—N12—C13—N13A0.1 (2)C21—N22—C23—N23A0.3 (3)
C12—N12—C13—N13A178.5 (2)C22—N22—C23—N23A178.2 (2)
N12—C13—N13A—C17A0.1 (2)N22—C23—N23A—C24179.9 (2)
N12—C13—N13A—C14179.8 (2)N22—C23—N23A—C27A0.3 (3)
C13—N13A—C14—C15178.1 (2)C23—N23A—C24—C25179.8 (2)
C17A—N13A—C14—C152.0 (3)C27A—N23A—C24—C250.0 (3)
N13A—C14—C15—C160.7 (4)N23A—C24—C25—C261.6 (4)
C14—C15—C16—C171.1 (4)C24—C25—C26—C272.2 (4)
C15—C16—C17—C17A1.3 (4)C25—C26—C27—C27A1.1 (4)
N12—C11—C17A—C17178.0 (2)N22—C21—C27A—N23A0.0 (2)
N12—C11—C17A—N13A0.4 (2)N22—C21—C27A—C27178.7 (3)
C16—C17—C17A—C11178.4 (2)C23—N23A—C27A—C210.1 (3)
C16—C17—C17A—N13A0.1 (4)C24—N23A—C27A—C21180.0 (2)
C13—N13A—C17A—C110.3 (2)C23—N23A—C27A—C27179.1 (2)
C14—N13A—C17A—C11179.6 (2)C24—N23A—C27A—C271.0 (3)
C13—N13A—C17A—C17178.3 (2)C26—C27—C27A—C21179.1 (3)
C14—N13A—C17A—C171.8 (3)C26—C27—C27A—N23A0.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl40.952.763.592 (2)146
C13—H13···Cl1i0.952.663.422 (2)138
C14—H14···Cl1i0.952.793.549 (3)137
C21—H21···Cl3ii0.952.803.632 (2)147
C22—H22C···Cl2i0.982.823.742 (3)156
C23—H23···Cl1iii0.952.813.440 (3)125
C24—H24···Cl3iii0.952.693.573 (3)154
C27—H27···Cl4iv0.952.773.600 (3)146
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (project 22BP037-13; grant for the perspective development of the scientific direction `Mathematical sciences and natural sciences' at the Taras Shevchenko National University of Kyiv).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGan, Z., Cheng, Y., Chen, W., Loh, K. P., Jia, B. & Wen, X. (2021). Adv. Sci. 8, 2001843.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKriechbaum, M., Otte, D., List, M. & Monkowius, U. (2014). Dalton Trans. 43, 8781–8791.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKumar Das, D., Bakthavatsalam, R., Anilkumar, V., Mali, B. P., Ahmed, M. S., Raavi, S. S. K., Pallepogu, R. & Kundu, J. (2022). Inorg. Chem. 61, 5363–5372.  CSD CrossRef CAS PubMed Google Scholar
First citationLi, D., Zhang, D., Lim, K. S., Hu, Y., Rong, Y., Mei, A., Park, N. G. & Han, H. (2021). Adv. Funct. Mater. 31, 2008621.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMishra, D., Naskar, S., Adhikary, B., Butcher, R. J. & Chattopadhyay, S. K. (2005). Polyhedron, 24, 201–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationNandy, A., Samanta, T., Mallick, S., Mitra, P., Seth, S. K., Saha, K. D., Al-Deyab, S. S. & Dinda, J. (2016). New J. Chem. 40, 6289–6298.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSamanta, T., Dey, L., Dinda, J., Chattopadhyay, S. K. & Seth, S. K. (2014). J. Mol. Struct. 1068, 58–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationSamanta, T., Kumar Rana, B., Roymahapatra, G., Giri, S., Mitra, P., Pallepogu, R., Kumar Chattaraj, P. & Dinda, J. (2011). Inorg. Chim. Acta, 375, 271–279.  CSD CrossRef CAS Google Scholar
First citationSaparov, B. & Mitzi, D. B. (2016). Chem. Rev. 116, 4558–4596.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N. & Skelton, B. W. (2022). Acta Cryst. E78, 359–364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N. & Sobolev, A. N. (2023). Acta Cryst. E79, 103–106.  CSD CrossRef IUCr Journals Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096–5105.  Web of Science CSD CrossRef CAS Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713–7722.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds