research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two new cases of polymorphism in diagonally substituted rubrene derivatives

crossmark logo

a207 Pleasant St SE, Minneapolis, MN, 55455, USA
*Correspondence e-mail: cdouglas@umn.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 3 February 2023; accepted 22 March 2023; online 31 March 2023)

The crystal structures of two rubrene derivatives, 5,11-diphenyl-6,12-bis­[4-(tri­fluoro­meth­yl)phen­yl]tetra­cene, C44H26F6, and 5,11-bis­(4-tert-butyl­phen­yl)-6,12-di­phenyl­tetra­cene, C50H44, are presented. Each are substituted on diagonal (5/11) phenyl rings. Each derivative has one polymorph reported previously. A discussion of the differences between each derivative and its previously reported polymorph is provided. The triclinic packing of the CF3-substituted structure is similar to the packing of the parent rubrene's triclinic polymorph. In the tert-butyl-substituted structure, a planar tetra­cene core formed, which has been hypothesized but never published. Crystallization conditions are provided as they differ from previous reports.

1. Chemical context

Rubrene (5,6,11,12-tetra­phenyl­tetra­cene) has been widely studied in the literature for its excellent electronic properties. Many synthetic attempts have been made to alter the mol­ecular structure in the hope of improving these properties (Uttiya et al., 2014[Uttiya, S., Miozzo, L., Fumagalli, E. M., Bergantin, S., Ruffo, R., Parravicini, M., Papagni, A., Moret, M. & Sassella, A. (2014). J. Mater. Chem. C. 2, 4147-4155.]; Ogden et al., 2017[Ogden, W. A., Ghosh, S., Bruzek, M. J., McGarry, K. A., Balhorn, L., Young, V., Purvis, L. J., Wegwerth, S. E., Zhang, Z., Serratore, N. A., Cramer, C. J., Gagliardi, L. & Douglas, C. J. (2017). Cryst. Growth Des. 17, 643-658.]; Paraskar et al., 2008[Paraskar, A. S., Reddy, A. R., Patra, A., Wijsboom, Y. H., Gidron, O., Shimon, L. J. W., Leitus, G. & Bendikov, M. (2008). Chem. Eur. J. 14, 10639-10647.]). Mol­ecular tuning of these derivatives has led to unpredictable crystal packing. While some derivatives have been reported to form the ideal herringbone crystal structure, others have not, with no reported structures exhibiting polymorphism in different crystal classes similar to the parent rubrene. The rubrene library has grown significantly over the years and now includes over 35 derivatives in a variety of crystalline arrangements (Clapham et al., 2021[Clapham, M. L., Murphy, E. C. & Douglas, C. J. (2021). Synthesis, 53, 461-474.]). This library has provided an enticing database for computational scientists looking to add predictability and reasoning to crystal-packing formation (Sutton et al., 2015[Sutton, C., Marshall, M. S., Sherrill, C. D., Risko, C. & Brédas, J. L. (2015). J. Am. Chem. Soc. 137, 8775-8782.]). We wish to add to this rubrene library two additional structures. They are not polymorphs of each other, but instead polymorphs of previously published compounds.

[Scheme 1]

We report here new crystal packing for each compound, making these some of the first cases of polymorphism in rubrene derivatives. This report serves two purposes: the first as a caution to synthetic chemists that polymorphism can and does exist in these materials, even if it has not been published, as is the case for 5,11-bis­(4-tri­fluoro­methyl­phen­yl)-6,12-bi­phenyl­tetra­cene (compound 1). The second purpose serves as an encouragement to explore more of the rubrene library in future studies. For example, 5,11-bis­(4-tert-butyl­phen­yl)-6,12-bi­phenyl­tetra­cene (compound 2) has been largely overlooked, despite its promising carrier mobility (Haas et al., 2007[Haas, S., Stassen, A. F., Schuck, G., Pernstich, K. P., Gundlach, D. J., Batlogg, B., Berens, U. & Kirner, H. J. (2007). Phys. Rev. B, 76, 115203.]), likely because no crystal structure with the ideal herringbone formation had been reported in the database.

2. Structural commentary

Both rubrene mol­ecules in this report have been reported and synthesized previously (Haas et al., 2007[Haas, S., Stassen, A. F., Schuck, G., Pernstich, K. P., Gundlach, D. J., Batlogg, B., Berens, U. & Kirner, H. J. (2007). Phys. Rev. B, 76, 115203.]; Uttiya et al., 2014[Uttiya, S., Miozzo, L., Fumagalli, E. M., Bergantin, S., Ruffo, R., Parravicini, M., Papagni, A., Moret, M. & Sassella, A. (2014). J. Mater. Chem. C. 2, 4147-4155.]). Each contains substitutions on the 5 and 11 peripheral phenyl rings. Many rubrene derivatives are shown to twist along the tetra­cene core in the solid state, such as the first polymorph of 2. Here, both derivatives display planar tetra­cene backbones (Figs. 1[link] and 2[link]).

[Figure 1]
Figure 1
Crystal structure of 1 with displacement ellipsoids shown at the 50% probability level.
[Figure 2]
Figure 2
Crystal structure of 2 with displacement ellipsoids shown at the 50% probability level.

3. Supra­molecular features

Compound 1 packs in a brick-like arrangement (Fig. 3[link]), similar in structure to triclinic rubrene. This arrangement displays π-stacking inter­actions of the tetra­cene cores. This is contrasted with the herringbone arrangement of 2 (Fig. 4[link]). While there exist sets of π-stacking dimers, alternating layers are rotated, creating the `z' or herringbone arrangement.

[Figure 3]
Figure 3
Crystal projection of 1 displaying brick-like packing.
[Figure 4]
Figure 4
Crystal projection of 2 displaying herringbone packing.

4. Database survey

Previously, only the monoclinic compound 1 had been reported (CSD CIYXUF; Uttiya et al., 2014[Uttiya, S., Miozzo, L., Fumagalli, E. M., Bergantin, S., Ruffo, R., Parravicini, M., Papagni, A., Moret, M. & Sassella, A. (2014). J. Mater. Chem. C. 2, 4147-4155.]). The structure displays a planar tetra­cene core with the desired herringbone packing, similar to rubrene. Additionally, like rubrene, we now report a triclinic form. While the triclinic form retains the planar backbone, it packs in a brick-like arrangement, which has been shown with rubrene to have significantly reduced charge mobility (Matsukawa et al., 2010[Matsukawa, T., Yoshimura, M., Sasai, K., Uchiyama, M., Yamagishi, M., Tominari, Y., Takahashi, Y., Takeya, J., Kitaoka, Y., Mori, Y. & Sasaki, T. (2010). J. Cryst. Growth, 312, 310-313.]). This is a similar case to the NO2-substituted rubrene derivative [5,11-bis­(4-nitro­phen­yl)-6,12-bi­phenyl­tetra­cene] in which the monoclinic form was discovered (Uttiya et al., 2014[Uttiya, S., Miozzo, L., Fumagalli, E. M., Bergantin, S., Ruffo, R., Parravicini, M., Papagni, A., Moret, M. & Sassella, A. (2014). J. Mater. Chem. C. 2, 4147-4155.]), with the triclinic reported later (Moret & Gavezzotti, 2022[Moret, M. & Gavezzotti, A. (2022). New J. Chem. 46, 7626-7637.]).

This instance of polymorphs with differing carrier mobility was also seen for the previously published structure of 2 (Schuck et al., 2007[Schuck, G., Haas, S., Stassen, A. F., Berens, U. & Batlogg, B. (2007). Acta Cryst. E63, o2894.]). Schuck et al. reported two crystalline forms; however, full structural analysis was only able to be carried out on the monoclinic form (CSD PIFHOC). While it was noted that the published monoclinic structure had no carrier mobility, the second morphology had a high measured mobility. As a result of the mobility and d-spacing measurements, it was hypothesized this mol­ecule took on a herringbone arrangement. We have therefore now performed a full structural characterization, and confirmed the herringbone arrangement of 2 as hypothesized.

5. Synthesis and crystallization

The synthesis of 1 was published previously (Uttiya et al., 2014[Uttiya, S., Miozzo, L., Fumagalli, E. M., Bergantin, S., Ruffo, R., Parravicini, M., Papagni, A., Moret, M. & Sassella, A. (2014). J. Mater. Chem. C. 2, 4147-4155.]). The authors reported crystal growth in acetone; however, attempts at crystallization with acetone either by cooling or through evaporation were unsuccessful in growing the monoclinic structure previously reported. Any crystals obtained through this method, other solvent mixtures (ethanol, methanol, DCM:methanol), or physical vapor transport (PVT) all produced the triclinic form reported here, thus necessitating this publication to serve as a cautionary notice.

Synthetic and crystallization procedures of 1 were followed for 2. In contrast to the PVT methods previously reported (Haas et al., 2007[Haas, S., Stassen, A. F., Schuck, G., Pernstich, K. P., Gundlach, D. J., Batlogg, B., Berens, U. & Kirner, H. J. (2007). Phys. Rev. B, 76, 115203.]), we found both polymorphs to be grown by solution methods, with the herringbone polymorph in the minority. Compound 2 was dissolved in a minimal amount of DCM and layered with methanol, in an approximate 1:3 ratio. We observed two different morphologies: the monoclinic structure in thin sheets as previously reported, as well as some dark-red thin plates. Likely due to improved instrumentation in more recent years, we were able to collect full structural data on the thin plates. We also note that the herringbone polymorph has excellent air stability. Whereas the monoclinic polymorph oxidizes when exposed to air, the herringbone polymorph remains stable for many months and retains its dark-red color, making it easily distinguishable from the other polymorph.

6. Refinement

Crystal data, collection and structure refinement details are summarized in Table 1[link] for compound 1 (C44H26F6) along with the previously published polymorph (CIYXUF) and compound 2 (C50H44) with the previously published polymorph (PIFHOC) for comparison.

Table 1
Experimental details

  1 CIYXUF 2 PIFHOC
Crystal data
Chemical formula C44H26F6 C44H26F6 C50H44 C50H44
Mr 668.68 668.68 644.85 644.85
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 125 123 100 292
a, b, c (Å) 7.0808 (3), 8.3978 (4), 13.4212 (5) 15.9782 (6), 7.2762 (2), 13.9814 (6) 17.4565 (15), 7.2014 (6), 13.9356 (12) 23.527 (3), 9.0277 (10), 17.764 (2)
α, β, γ (°) 88.234 (2), 80.559 (1), 81.623 (2) 90, 102.701 (2), 90 90, 92.593 (2), 90 90, 95.928 (4), 90
V3) 778.84 (6) 1585.71 (10) 1750.1 (3) 3752.8 (8)
Z 1 2 2 4
Radiation type Mo Kα Mo Kα Cu Kα Mo Kα
μ (mm−1) 0.11 0.11 0.52 0.06
Crystal size (mm) 0.25 × 0.08 × 0.08 0.35 × 0.28 × 0.10 0.50 × 0.25 × 0.10 0.36 × 0.16 × 0.04
 
Data collection
Diffractometer Bruker Photon-II CMOS Rigaku RAXIS II Bruker Photon-II CMOS Brucker SMART CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Numerical (CrystalClear-SM Expert; Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.])' Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.664, 0.746 0.971, 0.992 0.620, 0.754 0.990, 0.997
No. of measured, independent and observed [I > 2σ(I)] reflections 17779, 4796, 3777 15137, 3643, 3222 34891, 3549, 3431 31129, 6626, 3478
Rint 0.033 0.051 0.034 0.100
(sin θ/λ)max−1) 0.719 0.650 0.626 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.03 0.066, 0.135, 1.11 0.041, 0.105, 1.08 0.098, 0.169, 1.11
No. of reflections 4796 3643 3549 6626
No. of parameters 254 197 229 536
No. of restraints 54 183 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.22 0.37, −0.30 0.23, −0.21 0.29, −0.21
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS2013, SHELXS97, SHELXL97 andSHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 and SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016) for (1), (2); CrystalClear-SM Expert (Rigaku, 2009) for CIYXUF; SMART (Bruker, 2000) for PIFHOC. Cell refinement: SAINT (Bruker, 2016) for (1), (2); CrystalClear-SM Expert (Rigaku, 2009) for CIYXUF; SAINT (Bruker, 2000) for PIFHOC. Data reduction: SAINT (Bruker, 2016) for (1), (2); CrystalClear-SM Expert (Rigaku, 2009) for CIYXUF; SAINT (Bruker, 2000) for PIFHOC. Program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a) for (1), (2); SHELXS2013 (Sheldrick, 2008) for CIYXUF; SHELXS97 (Sheldrick, 2008) for PIFHOC. Program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b) for (1), (2); SHELXL2013 (Sheldrick, 2015b) for CIYXUF; SHELXL97 (Sheldrick, 2008) for PIFHOC. Molecular graphics: ShelXle (Hübschle et al., 2011) for (1), (2); ORTEP-3 for Windows (Farrugia, 2012) for PIFHOC. Software used to prepare material for publication: SHELXTL (Sheldrick, 2008) for (1), (2); WinGX (Farrugia, 2012) for PIFHOC.

5,11-Diphenyl-6,12-bis[4-(trifluoromethyl)phenyl]tetracene (1) top
Crystal data top
C44H26F6Z = 1
Mr = 668.68F(000) = 344
Triclinic, P1Dx = 1.426 Mg m3
a = 7.0808 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3978 (4) ÅCell parameters from 6944 reflections
c = 13.4212 (5) Åθ = 2.5–30.6°
α = 88.234 (2)°µ = 0.11 mm1
β = 80.559 (1)°T = 125 K
γ = 81.623 (2)°Needle, red
V = 778.84 (6) Å30.25 × 0.08 × 0.08 mm
Data collection top
Bruker Photon-II CMOS
diffractometer
3777 reflections with I > 2σ(I)
Radiation source: microRint = 0.033
φ and ω scansθmax = 30.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.664, Tmax = 0.746k = 1212
17779 measured reflectionsl = 1919
4796 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.203P]
where P = (Fo2 + 2Fc2)/3
4796 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.36 e Å3
54 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.01792 (16)0.39026 (13)0.66732 (8)0.0226 (2)
H10.0090950.4448370.7301240.027*
C20.10396 (16)0.28909 (14)0.64654 (9)0.0258 (2)
H20.2152250.2749600.6943020.031*
C30.06545 (17)0.20452 (14)0.55371 (9)0.0256 (2)
H30.1518900.1351590.5391230.031*
C40.09514 (16)0.22274 (13)0.48564 (8)0.0226 (2)
H40.1204430.1634550.4245770.027*
C50.22728 (15)0.32896 (12)0.50350 (8)0.0190 (2)
C60.39655 (15)0.34315 (12)0.43500 (7)0.0182 (2)
C70.52091 (14)0.45501 (12)0.45239 (7)0.0175 (2)
C80.68520 (15)0.48264 (12)0.38051 (7)0.0184 (2)
C90.81357 (15)0.58334 (12)0.40331 (8)0.0188 (2)
C100.44475 (15)0.22325 (12)0.35087 (8)0.0196 (2)
C110.36977 (16)0.24829 (13)0.26079 (8)0.0220 (2)
H110.2904200.3466310.2500570.026*
C120.41022 (17)0.13050 (14)0.18663 (9)0.0261 (2)
H120.3596560.1492700.1253140.031*
C130.52406 (19)0.01412 (14)0.20194 (9)0.0299 (3)
H130.5527520.0939170.1509070.036*
C140.5959 (2)0.04202 (14)0.29183 (10)0.0307 (3)
H140.6727380.1415280.3028080.037*
C150.55537 (17)0.07591 (13)0.36619 (9)0.0252 (2)
H150.6037510.0555840.4280180.030*
C160.72284 (15)0.42311 (13)0.27387 (8)0.0201 (2)
C170.64437 (17)0.51947 (14)0.20039 (8)0.0239 (2)
H170.5608870.6165150.2195790.029*
C180.68658 (18)0.47556 (15)0.09905 (9)0.0281 (2)
H180.6327520.5423180.0493520.034*
C190.80767 (17)0.33375 (16)0.07142 (9)0.0288 (3)
C200.88955 (17)0.23715 (16)0.14335 (9)0.0293 (3)
H200.9729150.1401790.1238470.035*
C210.84900 (16)0.28296 (14)0.24402 (9)0.0246 (2)
H210.9076790.2182960.2930530.030*
C22_10.8462 (2)0.2795 (2)0.03626 (11)0.0428 (3)0.53 (3)
F1_10.7831 (15)0.3834 (12)0.1017 (5)0.0620 (16)0.53 (3)
F2_11.0337 (8)0.2311 (12)0.0710 (7)0.0480 (11)0.53 (3)
F3_10.7692 (17)0.1384 (13)0.0452 (5)0.0641 (17)0.53 (3)
C22_20.8462 (2)0.2795 (2)0.03626 (11)0.0428 (3)0.47 (3)
F1_20.8272 (15)0.4141 (10)0.0981 (6)0.0622 (14)0.47 (3)
F2_21.0216 (12)0.2031 (17)0.0622 (8)0.065 (2)0.47 (3)
F3_20.7142 (14)0.1977 (19)0.0581 (5)0.0660 (18)0.47 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (5)0.0233 (5)0.0225 (5)0.0027 (4)0.0010 (4)0.0039 (4)
C20.0217 (5)0.0269 (5)0.0280 (6)0.0050 (4)0.0003 (4)0.0026 (4)
C30.0247 (5)0.0257 (5)0.0286 (6)0.0089 (4)0.0054 (4)0.0022 (4)
C40.0256 (5)0.0225 (5)0.0215 (5)0.0066 (4)0.0053 (4)0.0025 (4)
C50.0212 (5)0.0184 (4)0.0185 (5)0.0034 (4)0.0056 (4)0.0018 (3)
C60.0205 (5)0.0184 (4)0.0163 (4)0.0025 (4)0.0048 (4)0.0028 (3)
C70.0183 (4)0.0179 (4)0.0165 (4)0.0020 (3)0.0037 (4)0.0027 (3)
C80.0199 (5)0.0190 (4)0.0161 (4)0.0012 (4)0.0030 (4)0.0033 (3)
C90.0195 (5)0.0182 (4)0.0183 (5)0.0015 (4)0.0032 (4)0.0017 (3)
C100.0213 (5)0.0189 (4)0.0191 (5)0.0044 (4)0.0027 (4)0.0041 (3)
C110.0220 (5)0.0236 (5)0.0210 (5)0.0021 (4)0.0056 (4)0.0038 (4)
C120.0279 (5)0.0304 (6)0.0216 (5)0.0057 (4)0.0065 (4)0.0069 (4)
C130.0380 (6)0.0245 (5)0.0275 (6)0.0054 (5)0.0036 (5)0.0110 (4)
C140.0394 (7)0.0195 (5)0.0320 (6)0.0003 (5)0.0056 (5)0.0047 (4)
C150.0327 (6)0.0209 (5)0.0227 (5)0.0018 (4)0.0075 (4)0.0022 (4)
C160.0199 (5)0.0225 (5)0.0182 (5)0.0054 (4)0.0011 (4)0.0049 (4)
C170.0285 (5)0.0235 (5)0.0201 (5)0.0054 (4)0.0029 (4)0.0027 (4)
C180.0340 (6)0.0330 (6)0.0191 (5)0.0113 (5)0.0038 (4)0.0010 (4)
C190.0277 (6)0.0404 (7)0.0194 (5)0.0122 (5)0.0017 (4)0.0107 (4)
C200.0227 (5)0.0348 (6)0.0295 (6)0.0020 (5)0.0001 (4)0.0154 (5)
C210.0220 (5)0.0274 (5)0.0244 (5)0.0014 (4)0.0040 (4)0.0076 (4)
C22_10.0404 (7)0.0649 (10)0.0243 (6)0.0168 (7)0.0028 (5)0.0167 (6)
F1_10.067 (3)0.094 (3)0.0194 (11)0.016 (2)0.0108 (16)0.0163 (16)
F2_10.0384 (15)0.073 (3)0.0275 (15)0.0050 (13)0.0084 (11)0.0142 (15)
F3_10.078 (3)0.082 (3)0.0393 (17)0.041 (3)0.0019 (18)0.0331 (19)
C22_20.0404 (7)0.0649 (10)0.0243 (6)0.0168 (7)0.0028 (5)0.0167 (6)
F1_20.074 (3)0.095 (2)0.0162 (15)0.015 (2)0.0011 (16)0.0060 (15)
F2_20.069 (3)0.080 (4)0.036 (3)0.003 (2)0.0161 (19)0.032 (3)
F3_20.070 (3)0.099 (5)0.0381 (17)0.039 (3)0.0064 (17)0.032 (2)
Geometric parameters (Å, º) top
C1—C21.3608 (16)C13—C141.3849 (18)
C1—C9i1.4369 (15)C13—H130.9500
C1—H10.9500C14—C151.3941 (16)
C2—C31.4205 (16)C14—H140.9500
C2—H20.9500C15—H150.9500
C3—C41.3610 (16)C16—C171.3913 (15)
C3—H30.9500C16—C211.3961 (15)
C4—C51.4348 (14)C17—C181.3931 (15)
C4—H40.9500C17—H170.9500
C5—C61.4033 (14)C18—C191.3843 (18)
C5—C9i1.4375 (14)C18—H180.9500
C6—C71.4263 (14)C19—C201.3873 (19)
C6—C101.4995 (14)C19—C22_21.4985 (17)
C7—C81.4263 (14)C19—C22_11.4985 (17)
C7—C7i1.4703 (19)C20—C211.3887 (16)
C8—C91.4023 (14)C20—H200.9500
C8—C161.4999 (14)C21—H210.9500
C10—C151.3934 (15)C22_1—F1_11.304 (6)
C10—C111.3964 (15)C22_1—F2_11.341 (6)
C11—C121.3913 (15)C22_1—F3_11.391 (5)
C11—H110.9500C22_2—F2_21.310 (7)
C12—C131.3859 (17)C22_2—F3_21.312 (5)
C12—H120.9500C22_2—F1_21.385 (7)
C2—C1—C9i121.68 (10)C13—C14—C15120.01 (11)
C2—C1—H1119.2C13—C14—H14120.0
C9i—C1—H1119.2C15—C14—H14120.0
C1—C2—C3120.25 (10)C10—C15—C14120.75 (10)
C1—C2—H2119.9C10—C15—H15119.6
C3—C2—H2119.9C14—C15—H15119.6
C4—C3—C2120.08 (10)C17—C16—C21118.79 (10)
C4—C3—H3120.0C17—C16—C8118.56 (9)
C2—C3—H3120.0C21—C16—C8122.33 (10)
C3—C4—C5121.85 (10)C16—C17—C18120.88 (11)
C3—C4—H4119.1C16—C17—H17119.6
C5—C4—H4119.1C18—C17—H17119.6
C6—C5—C4121.80 (9)C19—C18—C17119.39 (11)
C6—C5—C9i120.11 (9)C19—C18—H18120.3
C4—C5—C9i118.03 (9)C17—C18—H18120.3
C5—C6—C7120.62 (9)C18—C19—C20120.61 (11)
C5—C6—C10115.56 (9)C18—C19—C22_2120.29 (12)
C7—C6—C10123.53 (9)C20—C19—C22_2119.07 (12)
C6—C7—C8122.23 (9)C18—C19—C22_1120.29 (12)
C6—C7—C7i119.09 (11)C20—C19—C22_1119.07 (12)
C8—C7—C7i118.69 (11)C19—C20—C21119.64 (11)
C9—C8—C7120.80 (9)C19—C20—H20120.2
C9—C8—C16115.15 (9)C21—C20—H20120.2
C7—C8—C16123.75 (9)C20—C21—C16120.64 (11)
C8—C9—C1i121.55 (9)C20—C21—H21119.7
C8—C9—C5i120.27 (9)C16—C21—H21119.7
C1i—C9—C5i118.08 (9)F1_1—C22_1—F2_1106.7 (5)
C15—C10—C11118.58 (10)F1_1—C22_1—F3_1108.0 (3)
C15—C10—C6118.84 (9)F2_1—C22_1—F3_1100.8 (5)
C11—C10—C6122.37 (9)F1_1—C22_1—C19115.9 (4)
C12—C11—C10120.59 (10)F2_1—C22_1—C19113.7 (4)
C12—C11—H11119.7F3_1—C22_1—C19110.6 (3)
C10—C11—H11119.7F2_2—C22_2—F3_2112.2 (6)
C13—C12—C11120.20 (11)F2_2—C22_2—F1_2107.4 (6)
C13—C12—H12119.9F3_2—C22_2—F1_2103.0 (4)
C11—C12—H12119.9F2_2—C22_2—C19112.4 (5)
C14—C13—C12119.84 (10)F3_2—C22_2—C19112.7 (3)
C14—C13—H13120.1F1_2—C22_2—C19108.5 (4)
C12—C13—H13120.1
C9i—C1—C2—C30.79 (17)C6—C10—C15—C14176.95 (11)
C1—C2—C3—C40.87 (18)C13—C14—C15—C100.75 (19)
C2—C3—C4—C51.44 (17)C9—C8—C16—C1785.58 (12)
C3—C4—C5—C6177.58 (10)C7—C8—C16—C1788.13 (13)
C3—C4—C5—C9i0.34 (16)C9—C8—C16—C2187.83 (13)
C4—C5—C6—C7177.15 (9)C7—C8—C16—C2198.47 (13)
C9i—C5—C6—C75.67 (15)C21—C16—C17—C181.56 (17)
C4—C5—C6—C108.83 (14)C8—C16—C17—C18175.21 (10)
C9i—C5—C6—C10168.36 (9)C16—C17—C18—C190.25 (18)
C5—C6—C7—C8174.59 (9)C17—C18—C19—C201.17 (18)
C10—C6—C7—C811.87 (15)C17—C18—C19—C22_2176.56 (11)
C5—C6—C7—C7i5.51 (17)C17—C18—C19—C22_1176.56 (11)
C10—C6—C7—C7i168.03 (11)C18—C19—C20—C210.23 (19)
C6—C7—C8—C9174.68 (9)C22_2—C19—C20—C21177.52 (11)
C7i—C7—C8—C95.21 (17)C22_1—C19—C20—C21177.52 (11)
C6—C7—C8—C1611.95 (15)C19—C20—C21—C161.63 (18)
C7i—C7—C8—C16168.15 (11)C17—C16—C21—C202.51 (17)
C7—C8—C9—C1i178.61 (9)C8—C16—C21—C20175.90 (10)
C16—C8—C9—C1i7.48 (14)C18—C19—C22_1—F1_19.6 (7)
C7—C8—C9—C5i5.19 (15)C20—C19—C22_1—F1_1172.7 (7)
C16—C8—C9—C5i168.72 (9)C18—C19—C22_1—F2_1133.7 (5)
C5—C6—C10—C1588.19 (12)C20—C19—C22_1—F2_148.5 (5)
C7—C6—C10—C1585.65 (13)C18—C19—C22_1—F3_1113.8 (7)
C5—C6—C10—C1186.42 (13)C20—C19—C22_1—F3_164.0 (7)
C7—C6—C10—C1199.74 (13)C18—C19—C22_2—F2_2146.7 (8)
C15—C10—C11—C122.11 (17)C20—C19—C22_2—F2_235.6 (8)
C6—C10—C11—C12176.74 (10)C18—C19—C22_2—F3_285.3 (9)
C10—C11—C12—C130.71 (18)C20—C19—C22_2—F3_292.4 (9)
C11—C12—C13—C140.72 (19)C18—C19—C22_2—F1_228.0 (5)
C12—C13—C14—C150.7 (2)C20—C19—C22_2—F1_2154.2 (5)
C11—C10—C15—C142.13 (18)
Symmetry code: (i) x+1, y+1, z+1.
5,11-Bis(4-tert-butylphenyl)-6,12-diphenyltetracene (2) top
Crystal data top
C50H44F(000) = 688
Mr = 644.85Dx = 1.224 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 17.4565 (15) ÅCell parameters from 9738 reflections
b = 7.2014 (6) Åθ = 6.7–74.6°
c = 13.9356 (12) ŵ = 0.52 mm1
β = 92.593 (2)°T = 100 K
V = 1750.1 (3) Å3Block, red
Z = 20.50 × 0.25 × 0.10 mm
Data collection top
Bruker Photon-II CMOS
diffractometer
3431 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 74.8°, θmin = 5.1°
Tmin = 0.620, Tmax = 0.754h = 2121
34891 measured reflectionsk = 98
3549 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.7175P]
where P = (Fo2 + 2Fc2)/3
3549 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54048 (6)0.20094 (15)0.41691 (7)0.0182 (2)
C20.58134 (6)0.35267 (14)0.45665 (7)0.0181 (2)
C30.54203 (6)0.49972 (14)0.50207 (7)0.0175 (2)
C40.58218 (6)0.64679 (14)0.55162 (7)0.0180 (2)
C50.54196 (6)0.79852 (15)0.58719 (7)0.0181 (2)
C70.54203 (6)1.09596 (15)0.67182 (8)0.0226 (2)
H70.5693971.1965530.7011650.027*
C60.58095 (6)0.95208 (15)0.63386 (7)0.0209 (2)
H60.6354170.9529650.6382640.025*
C90.42127 (6)0.95278 (15)0.62588 (7)0.0208 (2)
H90.3668240.9542380.6249030.025*
C80.46085 (6)1.09637 (16)0.66778 (8)0.0227 (2)
H80.4339191.1972680.6944130.027*
C100.66605 (6)0.63804 (14)0.58043 (8)0.0195 (2)
C110.72187 (6)0.73773 (15)0.53354 (8)0.0230 (2)
H110.7080010.8063900.4771870.028*
C120.79762 (6)0.73705 (17)0.56887 (9)0.0279 (3)
H120.8353100.8041720.5360780.033*
C130.81862 (6)0.63895 (18)0.65175 (9)0.0304 (3)
H130.8704940.6387780.6755220.036*
C140.76359 (7)0.54137 (18)0.69960 (9)0.0291 (3)
H140.7774660.4749310.7566640.035*
C150.68800 (6)0.54111 (16)0.66375 (8)0.0237 (2)
H150.6505390.4735050.6966920.028*
C160.66497 (6)0.36066 (14)0.43696 (8)0.0193 (2)
C170.68730 (6)0.46152 (16)0.35761 (8)0.0232 (2)
H170.6501770.5326060.3217450.028*
C180.76253 (7)0.46026 (17)0.32994 (8)0.0267 (3)
H180.7760430.5309740.2756920.032*
C190.81886 (6)0.35704 (16)0.38025 (9)0.0259 (3)
C200.79632 (6)0.25727 (16)0.46023 (9)0.0263 (3)
H200.8334800.1871960.4965970.032*
C210.72085 (6)0.25820 (15)0.48778 (8)0.0230 (2)
H210.7071990.1878790.5420920.028*
C220.90252 (7)0.36360 (18)0.35078 (11)0.0349 (3)
C230.90723 (8)0.3565 (2)0.24076 (12)0.0470 (4)
H23A0.9610870.3610750.2238490.071*
H23B0.8797170.4628840.2120420.071*
H23C0.8838990.2410310.2163700.071*
C240.94952 (8)0.2022 (2)0.39435 (14)0.0507 (4)
H24A1.0016570.2065930.3711750.076*
H24B0.9253420.0842360.3752070.076*
H24C0.9516060.2124500.4645460.076*
C250.93705 (7)0.5489 (2)0.38635 (12)0.0426 (4)
H25A0.9904490.5573460.3679060.064*
H25B0.9351840.5554630.4564470.064*
H25C0.9075360.6519230.3573810.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (5)0.0192 (5)0.0150 (5)0.0013 (4)0.0023 (4)0.0020 (4)
C20.0189 (5)0.0193 (5)0.0161 (5)0.0008 (4)0.0010 (4)0.0018 (4)
C30.0187 (5)0.0182 (5)0.0157 (5)0.0004 (4)0.0019 (4)0.0019 (4)
C40.0185 (5)0.0193 (5)0.0163 (5)0.0011 (4)0.0025 (4)0.0017 (4)
C50.0205 (5)0.0192 (5)0.0146 (5)0.0014 (4)0.0018 (4)0.0016 (4)
C70.0293 (6)0.0193 (5)0.0190 (5)0.0030 (4)0.0008 (4)0.0021 (4)
C60.0225 (5)0.0218 (5)0.0186 (5)0.0029 (4)0.0018 (4)0.0000 (4)
C90.0224 (5)0.0216 (5)0.0185 (5)0.0032 (4)0.0019 (4)0.0007 (4)
C80.0296 (6)0.0193 (5)0.0194 (5)0.0038 (4)0.0031 (4)0.0011 (4)
C100.0189 (5)0.0186 (5)0.0213 (5)0.0002 (4)0.0019 (4)0.0039 (4)
C110.0225 (5)0.0208 (5)0.0258 (5)0.0011 (4)0.0033 (4)0.0008 (4)
C120.0209 (5)0.0262 (6)0.0370 (6)0.0038 (4)0.0062 (5)0.0039 (5)
C130.0183 (5)0.0352 (7)0.0372 (7)0.0007 (5)0.0032 (5)0.0061 (5)
C140.0253 (6)0.0354 (7)0.0260 (6)0.0042 (5)0.0029 (4)0.0002 (5)
C150.0219 (5)0.0267 (6)0.0225 (5)0.0001 (4)0.0026 (4)0.0006 (4)
C160.0186 (5)0.0185 (5)0.0209 (5)0.0000 (4)0.0024 (4)0.0041 (4)
C170.0229 (5)0.0248 (6)0.0220 (5)0.0008 (4)0.0012 (4)0.0000 (4)
C180.0267 (6)0.0287 (6)0.0251 (6)0.0028 (5)0.0078 (4)0.0005 (5)
C190.0207 (5)0.0240 (6)0.0335 (6)0.0017 (4)0.0069 (4)0.0061 (5)
C200.0202 (5)0.0240 (6)0.0346 (6)0.0026 (4)0.0004 (4)0.0003 (5)
C210.0218 (5)0.0211 (5)0.0260 (5)0.0003 (4)0.0025 (4)0.0015 (4)
C220.0222 (6)0.0322 (7)0.0512 (8)0.0016 (5)0.0119 (5)0.0045 (6)
C230.0356 (7)0.0495 (9)0.0582 (9)0.0060 (6)0.0270 (7)0.0099 (7)
C240.0228 (6)0.0454 (9)0.0853 (12)0.0066 (6)0.0168 (7)0.0058 (8)
C250.0235 (6)0.0416 (8)0.0635 (9)0.0067 (6)0.0108 (6)0.0067 (7)
Geometric parameters (Å, º) top
C1—C21.4049 (15)C14—H140.9500
C1—C9i1.4362 (15)C15—H150.9500
C1—C5i1.4378 (14)C16—C211.3910 (15)
C2—C31.4256 (14)C16—C171.3934 (15)
C2—C161.4986 (14)C17—C181.3854 (15)
C3—C41.4304 (14)C17—H170.9500
C3—C3i1.4659 (19)C18—C191.3959 (17)
C4—C51.4014 (15)C18—H180.9500
C4—C101.5018 (14)C19—C201.3975 (17)
C5—C61.4384 (15)C19—C221.5356 (15)
C7—C61.3592 (16)C20—C211.3888 (15)
C7—C81.4157 (16)C20—H200.9500
C7—H70.9500C21—H210.9500
C6—H60.9500C22—C241.532 (2)
C9—C81.3605 (16)C22—C251.5369 (19)
C9—H90.9500C22—C231.540 (2)
C8—H80.9500C23—H23A0.9800
C10—C151.3935 (16)C23—H23B0.9800
C10—C111.3963 (15)C23—H23C0.9800
C11—C121.3900 (16)C24—H24A0.9800
C11—H110.9500C24—H24B0.9800
C12—C131.3890 (18)C24—H24C0.9800
C12—H120.9500C25—H25A0.9800
C13—C141.3854 (18)C25—H25B0.9800
C13—H130.9500C25—H25C0.9800
C14—C151.3897 (16)
C2—C1—C9i121.73 (9)C10—C15—H15119.3
C2—C1—C5i120.20 (9)C21—C16—C17117.75 (10)
C9i—C1—C5i117.96 (9)C21—C16—C2123.57 (10)
C1—C2—C3120.45 (9)C17—C16—C2118.37 (9)
C1—C2—C16116.05 (9)C18—C17—C16121.35 (10)
C3—C2—C16123.04 (9)C18—C17—H17119.3
C2—C3—C4121.94 (9)C16—C17—H17119.3
C2—C3—C3i119.06 (11)C17—C18—C19121.25 (11)
C4—C3—C3i118.99 (11)C17—C18—H18119.4
C5—C4—C3120.37 (9)C19—C18—H18119.4
C5—C4—C10115.85 (9)C18—C19—C20117.20 (10)
C3—C4—C10123.26 (9)C18—C19—C22120.40 (11)
C4—C5—C1i120.31 (9)C20—C19—C22122.32 (11)
C4—C5—C6121.66 (9)C21—C20—C19121.52 (11)
C1i—C5—C6117.92 (9)C21—C20—H20119.2
C6—C7—C8120.21 (10)C19—C20—H20119.2
C6—C7—H7119.9C20—C21—C16120.93 (10)
C8—C7—H7119.9C20—C21—H21119.5
C7—C6—C5121.83 (10)C16—C21—H21119.5
C7—C6—H6119.1C24—C22—C19111.67 (11)
C5—C6—H6119.1C24—C22—C25109.61 (12)
C8—C9—C1i121.83 (10)C19—C22—C25107.72 (10)
C8—C9—H9119.1C24—C22—C23108.52 (12)
C1i—C9—H9119.1C19—C22—C23111.08 (11)
C9—C8—C7120.23 (10)C25—C22—C23108.18 (12)
C9—C8—H8119.9C22—C23—H23A109.5
C7—C8—H8119.9C22—C23—H23B109.5
C15—C10—C11118.43 (10)H23A—C23—H23B109.5
C15—C10—C4118.15 (9)C22—C23—H23C109.5
C11—C10—C4123.08 (10)H23A—C23—H23C109.5
C12—C11—C10120.35 (11)H23B—C23—H23C109.5
C12—C11—H11119.8C22—C24—H24A109.5
C10—C11—H11119.8C22—C24—H24B109.5
C13—C12—C11120.49 (11)H24A—C24—H24B109.5
C13—C12—H12119.8C22—C24—H24C109.5
C11—C12—H12119.8H24A—C24—H24C109.5
C14—C13—C12119.71 (11)H24B—C24—H24C109.5
C14—C13—H13120.1C22—C25—H25A109.5
C12—C13—H13120.1C22—C25—H25B109.5
C13—C14—C15119.70 (11)H25A—C25—H25B109.5
C13—C14—H14120.1C22—C25—H25C109.5
C15—C14—H14120.1H25A—C25—H25C109.5
C14—C15—C10121.31 (11)H25B—C25—H25C109.5
C14—C15—H15119.3
C9i—C1—C2—C3177.47 (9)C10—C11—C12—C130.69 (17)
C5i—C1—C2—C36.42 (15)C11—C12—C13—C140.11 (18)
C9i—C1—C2—C1610.12 (14)C12—C13—C14—C150.59 (18)
C5i—C1—C2—C16165.98 (9)C13—C14—C15—C100.28 (18)
C1—C2—C3—C4173.65 (9)C11—C10—C15—C140.51 (16)
C16—C2—C3—C414.50 (15)C4—C10—C15—C14174.03 (10)
C1—C2—C3—C3i6.33 (17)C1—C2—C16—C2180.56 (13)
C16—C2—C3—C3i165.53 (11)C3—C2—C16—C21107.25 (12)
C2—C3—C4—C5173.66 (9)C1—C2—C16—C1792.84 (12)
C3i—C3—C4—C56.37 (17)C3—C2—C16—C1779.35 (13)
C2—C3—C4—C1014.88 (15)C21—C16—C17—C180.01 (16)
C3i—C3—C4—C10165.09 (11)C2—C16—C17—C18173.78 (10)
C3—C4—C5—C1i6.43 (15)C16—C17—C18—C190.32 (18)
C10—C4—C5—C1i165.64 (9)C17—C18—C19—C200.80 (17)
C3—C4—C5—C6177.43 (9)C17—C18—C19—C22177.59 (11)
C10—C4—C5—C610.50 (14)C18—C19—C20—C210.98 (17)
C8—C7—C6—C51.16 (16)C22—C19—C20—C21177.71 (11)
C4—C5—C6—C7177.35 (10)C19—C20—C21—C160.68 (18)
C1i—C5—C6—C71.12 (15)C17—C16—C21—C200.16 (16)
C1i—C9—C8—C71.19 (16)C2—C16—C21—C20173.60 (10)
C6—C7—C8—C90.01 (16)C18—C19—C22—C24163.48 (12)
C5—C4—C10—C1590.96 (12)C20—C19—C22—C2419.89 (18)
C3—C4—C10—C1580.85 (13)C18—C19—C22—C2576.12 (15)
C5—C4—C10—C1182.23 (13)C20—C19—C22—C25100.51 (14)
C3—C4—C10—C11105.95 (12)C18—C19—C22—C2342.19 (16)
C15—C10—C11—C120.99 (16)C20—C19—C22—C23141.18 (13)
C4—C10—C11—C12174.17 (10)
Symmetry code: (i) x+1, y+1, z+1.
(CIYXUF) top
Crystal data top
C44H26F6F(000) = 688
Mr = 668.68Mo Kα radiation, λ = 0.71075 Å
Monoclinic, P21/cCell parameters from 8235 reflections
a = 15.9782 (6) Åθ = 1.8–27.5°
b = 7.2762 (2) ŵ = 0.11 mm1
c = 13.9814 (6) ÅT = 123 K
β = 102.701 (2)°Prism, orange
V = 1585.71 (10) Å30.35 × 0.28 × 0.10 mm
Z = 2
Data collection top
Rigaku RAXIS II
diffractometer
3643 independent reflections
Radiation source: fine-focus sealed tube3222 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.051
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 3.0°
profile data from ω–scansh = 2020
Absorption correction: numerical
(CrystalClear-SM Expert; Rigaku, 2009)'
k = 99
Tmin = 0.971, Tmax = 0.992l = 1818
15137 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.066 w = 1/[σ2(Fo2) + (0.0244P)2 + 1.4827P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.37 e Å3
3643 reflectionsΔρmin = 0.30 e Å3
197 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
183 restraintsExtinction coefficient: 0.0048 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 'Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18597 (5)0.14438 (12)0.97899 (6)0.0226 (4)
C20.24601 (6)0.24679 (9)1.04470 (6)0.0284 (5)
H20.22880.31701.09250.034*
C30.33174 (6)0.24421 (11)1.03891 (7)0.0359 (5)
H30.37190.31271.08290.043*
C40.35743 (6)0.13922 (15)0.96741 (7)0.0390 (6)
H40.41480.13750.96350.047*
C50.29740 (7)0.03680 (15)0.90170 (6)0.0361 (5)
H50.31460.03350.85390.043*
C60.21167 (6)0.03938 (14)0.90749 (5)0.0280 (4)
H60.17150.02910.86350.034*
C70.18603 (5)0.12510 (12)1.12563 (6)0.0221 (4)
C80.20497 (6)0.02091 (13)1.21099 (6)0.0260 (4)
H80.16180.04461.23090.031*
C90.28849 (7)0.01456 (14)1.26666 (5)0.0301 (5)
H90.30120.05521.32380.036*
C100.35306 (5)0.11241 (14)1.23697 (6)0.0309 (5)
C110.33412 (6)0.21660 (11)1.15161 (7)0.0304 (5)
H110.37730.28211.13170.036*
C120.25060 (6)0.22295 (8)1.09593 (6)0.0261 (4)
H120.23790.29271.03880.031*
C130.09073 (11)0.1505 (3)0.97772 (14)0.0211 (4)
C140.04716 (11)0.0020 (3)1.01322 (13)0.0200 (4)
C150.09214 (11)0.1403 (3)1.07337 (14)0.0202 (4)
C160.04793 (12)0.2929 (3)1.09877 (14)0.0209 (4)
C170.09151 (13)0.4412 (3)1.15732 (14)0.0240 (4)
H170.15100.43801.17710.029*
C180.04821 (13)0.5857 (3)1.18443 (15)0.0269 (4)
H180.07830.68001.22180.032*
C190.04255 (13)0.5939 (3)1.15618 (15)0.0270 (4)
H190.07170.69451.17390.032*
C200.08696 (13)0.4547 (3)1.10322 (14)0.0246 (4)
H200.14650.46041.08680.029*
C210.04465 (12)0.2987 (3)0.92823 (14)0.0211 (4)
C220.44252 (14)0.1128 (3)1.2993 (2)0.0402 (6)
F10.46000 (10)0.0327 (3)1.35651 (16)0.0779 (7)
F20.50261 (9)0.1150 (3)1.24718 (15)0.0735 (6)
F30.45791 (10)0.2595 (3)1.35632 (16)0.0861 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0224 (9)0.0223 (9)0.0215 (9)0.0004 (7)0.0013 (7)0.0045 (7)
C20.0249 (10)0.0268 (10)0.0307 (11)0.0025 (8)0.0001 (8)0.0005 (8)
C30.0244 (10)0.0347 (11)0.0437 (13)0.0060 (9)0.0031 (9)0.0040 (10)
C40.0217 (10)0.0492 (14)0.0459 (14)0.0021 (10)0.0072 (9)0.0117 (11)
C50.0308 (11)0.0441 (13)0.0352 (12)0.0078 (10)0.0111 (9)0.0052 (10)
C60.0269 (10)0.0318 (11)0.0240 (10)0.0007 (8)0.0032 (8)0.0011 (8)
C70.0208 (9)0.0212 (9)0.0224 (9)0.0011 (7)0.0006 (7)0.0040 (7)
C80.0242 (9)0.0285 (10)0.0240 (10)0.0018 (8)0.0022 (8)0.0001 (8)
C90.0288 (10)0.0325 (11)0.0248 (11)0.0018 (9)0.0031 (8)0.0004 (8)
C100.0222 (9)0.0309 (11)0.0350 (12)0.0010 (8)0.0036 (8)0.0057 (9)
C110.0231 (9)0.0270 (10)0.0404 (12)0.0044 (8)0.0057 (9)0.0028 (9)
C120.0239 (9)0.0252 (10)0.0277 (10)0.0017 (8)0.0027 (8)0.0012 (8)
C130.0210 (9)0.0218 (9)0.0186 (9)0.0003 (7)0.0002 (7)0.0018 (7)
C140.0214 (9)0.0207 (9)0.0172 (9)0.0010 (7)0.0026 (7)0.0019 (7)
C150.0202 (8)0.0212 (9)0.0183 (9)0.0009 (7)0.0024 (7)0.0014 (7)
C160.0240 (9)0.0201 (9)0.0174 (9)0.0019 (7)0.0021 (7)0.0021 (7)
C170.0264 (9)0.0238 (9)0.0210 (9)0.0044 (8)0.0038 (8)0.0006 (8)
C180.0339 (10)0.0225 (9)0.0234 (10)0.0043 (8)0.0040 (8)0.0026 (8)
C190.0344 (10)0.0223 (9)0.0245 (10)0.0032 (8)0.0068 (8)0.0004 (8)
C200.0253 (9)0.0247 (9)0.0226 (10)0.0027 (8)0.0029 (8)0.0003 (8)
C210.0218 (9)0.0220 (9)0.0183 (9)0.0006 (7)0.0019 (7)0.0016 (7)
C220.0262 (11)0.0402 (13)0.0482 (14)0.0014 (9)0.0046 (10)0.0037 (11)
F10.0375 (8)0.0834 (13)0.0952 (15)0.0024 (9)0.0234 (9)0.0399 (11)
F20.0228 (7)0.1234 (17)0.0705 (12)0.0027 (9)0.0016 (7)0.0002 (12)
F30.0403 (9)0.0859 (13)0.1087 (16)0.0159 (9)0.0341 (9)0.0592 (12)
Geometric parameters (Å, º) top
C1—C21.3900C13—C141.432 (3)
C1—C61.3900C14—C151.425 (3)
C1—C131.5186 (19)C14—C14i1.471 (3)
C2—C31.3900C15—C161.403 (3)
C3—C41.3900C16—C171.438 (3)
C4—C51.3900C16—C21i1.445 (3)
C5—C61.3900C17—C181.358 (3)
C7—C81.3900C18—C191.418 (3)
C7—C121.3900C19—C201.359 (3)
C7—C151.5213 (19)C20—C21i1.438 (3)
C8—C91.3900C21—C20i1.438 (3)
C9—C101.3900C21—C16i1.445 (3)
C10—C111.3900C22—F11.320 (3)
C10—C221.501 (2)C22—F31.323 (3)
C11—C121.3900C22—F21.327 (3)
C13—C211.400 (3)
C2—C1—C6120.0C15—C14—C14i119.3 (2)
C2—C1—C13122.43 (9)C13—C14—C14i118.5 (2)
C6—C1—C13117.47 (9)C16—C15—C14120.52 (16)
C1—C2—C3120.0C16—C15—C7115.72 (15)
C4—C3—C2120.0C14—C15—C7123.16 (15)
C5—C4—C3120.0C15—C16—C17122.02 (17)
C4—C5—C6120.0C15—C16—C21i120.05 (17)
C5—C6—C1120.0C17—C16—C21i117.80 (17)
C8—C7—C12120.0C18—C17—C16121.82 (18)
C8—C7—C15117.22 (9)C17—C18—C19120.50 (19)
C12—C7—C15122.53 (9)C20—C19—C18120.00 (19)
C9—C8—C7120.0C19—C20—C21i122.04 (18)
C8—C9—C10120.0C13—C21—C20i121.83 (17)
C11—C10—C9120.0C13—C21—C16i120.23 (17)
C11—C10—C22119.80 (12)C20i—C21—C16i117.80 (17)
C9—C10—C22120.14 (12)F1—C22—F3107.2 (2)
C12—C11—C10120.0F1—C22—F2105.1 (2)
C11—C12—C7120.0F3—C22—F2105.1 (2)
C21—C13—C14120.63 (16)F1—C22—C10113.44 (19)
C21—C13—C1116.43 (15)F3—C22—C10112.24 (18)
C14—C13—C1122.43 (15)F2—C22—C10113.1 (2)
C15—C14—C13122.16 (16)
Symmetry code: (i) x, y, z+2.
5,11-Bis(4-tert-butylphenyl)-6,12-diphenylnaphthacene (PIFHOC) top
Crystal data top
C50H44F(000) = 1376
Mr = 644.85Dx = 1.141 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3136 reflections
a = 23.527 (3) Åθ = 3.0–25.0°
b = 9.0277 (10) ŵ = 0.06 mm1
c = 17.764 (2) ÅT = 292 K
β = 95.928 (4)°Plate, translucent orange
V = 3752.8 (8) Å30.36 × 0.16 × 0.04 mm
Z = 4
Data collection top
Brucker SMART CCD
diffractometer
6626 independent reflections
Radiation source: fine-focus sealed tube3478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
φ and ω scansθmax = 25.0°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2727
Tmin = 0.990, Tmax = 0.997k = 1010
31129 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.098H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0241P)2 + 4.9951P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.004
6626 reflectionsΔρmax = 0.29 e Å3
536 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4082 (2)0.7231 (5)0.3755 (3)0.0571 (13)
C20.43973 (19)0.6785 (5)0.4434 (3)0.0544 (13)
C30.35092 (18)0.7072 (5)0.3654 (2)0.0444 (11)
C40.41355 (18)0.6099 (5)0.4982 (3)0.0481 (12)
C50.32005 (16)0.6423 (4)0.4231 (2)0.0388 (10)
C60.35296 (15)0.5814 (4)0.4884 (2)0.0352 (10)
C70.26002 (16)0.6412 (4)0.4184 (2)0.0378 (10)
C80.32605 (15)0.4935 (4)0.5393 (2)0.0356 (10)
C90.23227 (15)0.5692 (4)0.4762 (2)0.0350 (10)
C100.26556 (15)0.4713 (4)0.5276 (2)0.0357 (10)
C110.17319 (15)0.5862 (4)0.4856 (2)0.0353 (10)
C120.23732 (16)0.3584 (4)0.5653 (2)0.0370 (10)
C130.14684 (15)0.4909 (4)0.5329 (2)0.0360 (10)
C140.17806 (16)0.3674 (4)0.5681 (2)0.0387 (10)
C150.08776 (17)0.5078 (5)0.5463 (2)0.0464 (11)
C160.14702 (19)0.2603 (5)0.6065 (3)0.0512 (12)
C170.0615 (2)0.4075 (6)0.5867 (3)0.0550 (13)
C180.0911 (2)0.2800 (6)0.6153 (3)0.0604 (14)
C200.22674 (17)0.6982 (5)0.3482 (2)0.0483 (11)
C210.2261 (2)0.8465 (6)0.3280 (3)0.0723 (16)
C220.1970 (3)0.8925 (10)0.2595 (5)0.106 (3)
C230.1690 (3)0.7895 (13)0.2123 (4)0.120 (4)
C240.1700 (3)0.6451 (11)0.2308 (3)0.105 (3)
C250.1988 (2)0.5961 (7)0.2987 (3)0.0669 (15)
C300.35873 (15)0.4391 (4)0.6107 (2)0.0375 (10)
C310.40131 (16)0.3323 (5)0.6126 (2)0.0444 (11)
C320.42905 (18)0.2851 (5)0.6807 (3)0.0487 (12)
C330.41595 (18)0.3416 (5)0.7495 (2)0.0488 (11)
C340.3746 (2)0.4500 (5)0.7468 (2)0.0519 (12)
C350.34595 (19)0.4986 (5)0.6788 (2)0.0486 (12)
C360.4456 (2)0.2853 (6)0.8254 (3)0.0669 (14)
C370.4903 (4)0.3883 (8)0.8554 (4)0.202 (5)
H37A0.50540.35710.90520.303*
H37B0.47450.48600.85800.303*
H37C0.52040.38930.82280.303*
C380.4708 (3)0.1331 (7)0.8175 (3)0.146 (3)
H38A0.50470.14070.79200.219*
H38B0.44350.07100.78860.219*
H38C0.48020.09080.86670.219*
C390.4024 (4)0.2652 (12)0.8809 (4)0.218 (6)
H39A0.41840.20460.92220.327*
H39B0.36890.21800.85630.327*
H39C0.39220.36010.89990.327*
C400.14101 (16)0.7183 (4)0.4525 (2)0.0371 (10)
C410.15368 (19)0.8579 (5)0.4817 (2)0.0491 (12)
C420.1243 (2)0.9821 (5)0.4531 (3)0.0579 (13)
C430.08086 (18)0.9718 (5)0.3945 (2)0.0446 (11)
C440.06779 (18)0.8326 (5)0.3667 (2)0.0490 (12)
C450.09662 (17)0.7067 (5)0.3952 (2)0.0437 (11)
C460.0491 (2)1.1098 (5)0.3632 (3)0.0653 (14)
C470.0073 (3)1.1571 (8)0.4184 (4)0.166 (4)
H47A0.02821.19120.46450.249*
H47B0.01611.07430.42920.249*
H47C0.01641.23570.39650.249*
C480.0899 (3)1.2343 (6)0.3525 (4)0.147 (3)
H48A0.10741.26660.40090.220*
H48B0.06951.31540.32730.220*
H48C0.11901.20050.32230.220*
C490.0140 (3)1.0800 (6)0.2874 (3)0.110 (2)
H49A0.00431.16980.26900.165*
H49B0.01451.00630.29410.165*
H49C0.03881.04500.25150.165*
C500.26843 (17)0.2211 (5)0.5919 (3)0.0473 (11)
C510.2768 (2)0.1763 (6)0.6668 (3)0.0656 (15)
C520.3053 (2)0.0437 (8)0.6856 (4)0.089 (2)
C530.3249 (3)0.0439 (7)0.6305 (6)0.103 (3)
C540.3169 (3)0.0008 (7)0.5560 (5)0.092 (2)
C550.2890 (2)0.1303 (5)0.5368 (3)0.0639 (14)
H10.4291 (19)0.759 (5)0.335 (2)0.077*
H20.4827 (19)0.693 (5)0.454 (2)0.077*
H30.3284 (18)0.744 (5)0.317 (2)0.077*
H40.4347 (18)0.574 (5)0.547 (2)0.077*
H150.0685 (18)0.600 (5)0.524 (2)0.077*
H160.1680 (18)0.174 (5)0.630 (2)0.077*
H170.0193 (19)0.428 (5)0.596 (2)0.077*
H180.0713 (19)0.218 (5)0.644 (2)0.077*
H210.245 (2)0.918 (6)0.366 (3)0.096*
H220.197 (2)0.993 (6)0.249 (3)0.096*
H230.148 (2)0.818 (6)0.163 (3)0.096*
H240.152 (2)0.564 (6)0.199 (3)0.096*
H250.201 (2)0.488 (6)0.316 (3)0.096*
H310.4121 (18)0.287 (5)0.565 (2)0.077*
H320.4602 (19)0.215 (5)0.678 (2)0.077*
H340.3639 (18)0.496 (5)0.793 (2)0.077*
H350.3160 (18)0.572 (5)0.681 (2)0.077*
H410.1844 (18)0.866 (5)0.523 (2)0.077*
H420.1385 (18)1.075 (5)0.476 (2)0.077*
H440.0400 (18)0.817 (5)0.325 (2)0.077*
H450.0856 (18)0.607 (5)0.373 (2)0.077*
H510.263 (2)0.241 (6)0.706 (3)0.096*
H520.310 (2)0.018 (6)0.736 (3)0.096*
H530.346 (2)0.140 (6)0.646 (3)0.096*
H540.329 (2)0.069 (6)0.514 (3)0.096*
H550.281 (2)0.163 (5)0.480 (3)0.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (3)0.065 (3)0.061 (3)0.008 (3)0.018 (2)0.010 (3)
C20.034 (3)0.070 (3)0.058 (3)0.011 (3)0.000 (2)0.009 (3)
C30.043 (3)0.045 (3)0.046 (3)0.002 (2)0.009 (2)0.008 (2)
C40.039 (3)0.056 (3)0.048 (3)0.004 (2)0.003 (2)0.004 (2)
C50.039 (2)0.034 (2)0.043 (2)0.002 (2)0.0004 (19)0.0016 (19)
C60.028 (2)0.035 (2)0.042 (2)0.0030 (19)0.0011 (18)0.0019 (19)
C70.038 (2)0.038 (2)0.037 (2)0.003 (2)0.0016 (18)0.0045 (19)
C80.033 (2)0.034 (2)0.039 (2)0.0025 (19)0.0022 (18)0.0026 (19)
C90.032 (2)0.036 (2)0.036 (2)0.0012 (19)0.0014 (18)0.0010 (19)
C100.031 (2)0.040 (2)0.036 (2)0.0034 (19)0.0023 (17)0.0007 (19)
C110.031 (2)0.038 (2)0.035 (2)0.0015 (19)0.0029 (18)0.0006 (19)
C120.035 (2)0.040 (3)0.037 (2)0.004 (2)0.0057 (18)0.0036 (19)
C130.030 (2)0.045 (3)0.032 (2)0.001 (2)0.0005 (17)0.005 (2)
C140.039 (2)0.039 (3)0.039 (2)0.004 (2)0.0082 (19)0.002 (2)
C150.038 (3)0.057 (3)0.045 (3)0.001 (2)0.006 (2)0.001 (2)
C160.043 (3)0.056 (3)0.055 (3)0.005 (2)0.004 (2)0.008 (2)
C170.039 (3)0.068 (3)0.059 (3)0.000 (3)0.013 (2)0.004 (3)
C180.049 (3)0.072 (4)0.063 (3)0.011 (3)0.019 (2)0.011 (3)
C200.041 (3)0.065 (3)0.041 (3)0.010 (2)0.010 (2)0.012 (2)
C210.059 (3)0.081 (4)0.078 (4)0.012 (3)0.010 (3)0.041 (3)
C220.079 (5)0.127 (7)0.115 (6)0.033 (5)0.028 (4)0.076 (6)
C230.094 (6)0.208 (11)0.059 (5)0.061 (7)0.009 (4)0.045 (6)
C240.088 (5)0.168 (8)0.053 (4)0.050 (5)0.019 (3)0.023 (4)
C250.056 (3)0.097 (4)0.046 (3)0.023 (3)0.003 (2)0.010 (3)
C300.027 (2)0.043 (3)0.043 (3)0.001 (2)0.0014 (18)0.004 (2)
C310.031 (2)0.059 (3)0.043 (3)0.009 (2)0.002 (2)0.004 (2)
C320.037 (3)0.056 (3)0.053 (3)0.010 (2)0.004 (2)0.011 (2)
C330.051 (3)0.048 (3)0.047 (3)0.001 (2)0.000 (2)0.013 (2)
C340.065 (3)0.050 (3)0.040 (3)0.008 (3)0.006 (2)0.002 (2)
C350.053 (3)0.046 (3)0.046 (3)0.010 (2)0.002 (2)0.001 (2)
C360.085 (4)0.061 (3)0.051 (3)0.013 (3)0.010 (3)0.016 (3)
C370.268 (10)0.137 (7)0.160 (7)0.100 (7)0.174 (8)0.081 (6)
C380.226 (9)0.095 (5)0.100 (5)0.050 (6)0.066 (5)0.025 (4)
C390.200 (9)0.369 (15)0.095 (6)0.109 (10)0.062 (6)0.141 (8)
C400.032 (2)0.042 (3)0.037 (2)0.003 (2)0.0034 (18)0.005 (2)
C410.051 (3)0.050 (3)0.043 (3)0.005 (2)0.012 (2)0.005 (2)
C420.077 (3)0.038 (3)0.055 (3)0.002 (3)0.015 (3)0.010 (2)
C430.050 (3)0.044 (3)0.040 (2)0.013 (2)0.003 (2)0.001 (2)
C440.043 (3)0.050 (3)0.051 (3)0.005 (2)0.009 (2)0.004 (2)
C450.037 (2)0.040 (3)0.053 (3)0.005 (2)0.003 (2)0.003 (2)
C460.086 (4)0.047 (3)0.060 (3)0.024 (3)0.005 (3)0.005 (2)
C470.227 (9)0.165 (8)0.112 (6)0.157 (7)0.044 (6)0.026 (5)
C480.164 (7)0.055 (4)0.205 (8)0.021 (5)0.060 (6)0.053 (5)
C490.152 (6)0.084 (4)0.085 (4)0.042 (4)0.029 (4)0.026 (4)
C500.034 (2)0.041 (3)0.067 (3)0.002 (2)0.003 (2)0.011 (2)
C510.047 (3)0.067 (4)0.082 (4)0.001 (3)0.005 (3)0.035 (3)
C520.057 (4)0.088 (5)0.118 (6)0.002 (3)0.001 (4)0.062 (5)
C530.075 (5)0.049 (4)0.184 (9)0.016 (3)0.005 (5)0.035 (5)
C540.081 (4)0.046 (4)0.149 (7)0.012 (3)0.003 (4)0.014 (4)
C550.056 (3)0.044 (3)0.091 (4)0.005 (3)0.003 (3)0.008 (3)
Geometric parameters (Å, º) top
C1—C31.348 (6)C33—C361.539 (6)
C1—C21.408 (6)C34—C351.392 (6)
C1—H10.97 (4)C34—H340.98 (4)
C2—C41.355 (6)C35—H350.97 (4)
C2—H21.02 (4)C36—C371.464 (7)
C3—C51.439 (5)C36—C391.498 (8)
C3—H31.02 (4)C36—C381.508 (7)
C4—C61.441 (5)C37—H37A0.9600
C4—H41.01 (4)C37—H37B0.9600
C5—C71.406 (5)C37—H37C0.9600
C5—C61.437 (5)C38—H38A0.9600
C6—C81.402 (5)C38—H38B0.9600
C7—C91.428 (5)C38—H38C0.9600
C7—C201.495 (5)C39—H39A0.9600
C8—C101.431 (5)C39—H39B0.9600
C8—C301.498 (5)C39—H39C0.9600
C9—C111.425 (5)C40—C451.384 (5)
C9—C101.443 (5)C40—C411.384 (5)
C10—C121.422 (5)C41—C421.386 (6)
C11—C131.392 (5)C41—H410.98 (4)
C11—C401.499 (5)C42—C431.385 (6)
C12—C141.402 (5)C42—H420.98 (4)
C12—C501.491 (5)C43—C441.373 (6)
C13—C141.442 (5)C43—C461.528 (6)
C13—C151.442 (5)C44—C451.392 (6)
C14—C161.427 (6)C44—H440.95 (4)
C15—C171.346 (6)C45—H451.00 (4)
C15—H151.01 (4)C46—C481.504 (7)
C16—C181.353 (6)C46—C471.519 (7)
C16—H160.99 (4)C46—C491.528 (7)
C17—C181.412 (7)C47—H47A0.9600
C17—H171.04 (4)C47—H47B0.9600
C18—H180.92 (4)C47—H47C0.9600
C20—C211.385 (6)C48—H48A0.9600
C20—C251.391 (6)C48—H48B0.9600
C21—C221.397 (8)C48—H48C0.9600
C21—H211.00 (5)C49—H49A0.9600
C22—C231.373 (11)C49—H49B0.9600
C22—H220.93 (5)C49—H49C0.9600
C23—C241.344 (11)C50—C511.386 (6)
C23—H231.00 (5)C50—C551.401 (6)
C24—C251.392 (8)C51—C521.395 (8)
C24—H241.00 (5)C51—H511.00 (5)
C25—H251.03 (5)C52—C531.374 (9)
C30—C351.384 (5)C52—H520.92 (5)
C30—C311.388 (5)C53—C541.373 (9)
C31—C321.381 (5)C53—H531.02 (5)
C31—H310.99 (4)C54—C551.379 (7)
C32—C331.387 (6)C54—H541.04 (5)
C32—H320.97 (4)C55—H551.06 (5)
C33—C341.378 (6)
C3—C1—C2121.0 (4)C30—C35—C34120.5 (4)
C3—C1—H1121 (3)C30—C35—H35121 (3)
C2—C1—H1118 (3)C34—C35—H35118 (3)
C4—C2—C1120.5 (4)C37—C36—C39110.3 (7)
C4—C2—H2117 (2)C37—C36—C38109.7 (6)
C1—C2—H2123 (2)C39—C36—C38104.5 (6)
C1—C3—C5121.3 (4)C37—C36—C33110.7 (4)
C1—C3—H3120 (2)C39—C36—C33109.9 (5)
C5—C3—H3118 (2)C38—C36—C33111.5 (4)
C2—C4—C6120.8 (4)C36—C37—H37A109.5
C2—C4—H4123 (2)C36—C37—H37B109.5
C6—C4—H4116 (2)H37A—C37—H37B109.5
C7—C5—C6119.9 (4)C36—C37—H37C109.5
C7—C5—C3122.6 (4)H37A—C37—H37C109.5
C6—C5—C3117.5 (4)H37B—C37—H37C109.5
C8—C6—C5119.7 (3)C36—C38—H38A109.5
C8—C6—C4122.0 (4)C36—C38—H38B109.5
C5—C6—C4118.2 (4)H38A—C38—H38B109.5
C5—C7—C9119.5 (3)C36—C38—H38C109.5
C5—C7—C20118.8 (4)H38A—C38—H38C109.5
C9—C7—C20121.2 (3)H38B—C38—H38C109.5
C6—C8—C10119.6 (3)C36—C39—H39A109.5
C6—C8—C30120.4 (3)C36—C39—H39B109.5
C10—C8—C30119.5 (3)H39A—C39—H39B109.5
C11—C9—C7124.0 (3)C36—C39—H39C109.5
C11—C9—C10117.7 (3)H39A—C39—H39C109.5
C7—C9—C10118.4 (3)H39B—C39—H39C109.5
C12—C10—C8122.6 (3)C45—C40—C41117.5 (4)
C12—C10—C9119.2 (3)C45—C40—C11122.7 (4)
C8—C10—C9118.2 (3)C41—C40—C11119.8 (3)
C13—C11—C9120.3 (3)C40—C41—C42121.3 (4)
C13—C11—C40119.3 (3)C40—C41—H41118 (3)
C9—C11—C40119.9 (3)C42—C41—H41121 (3)
C14—C12—C10119.3 (3)C43—C42—C41121.5 (4)
C14—C12—C50119.6 (4)C43—C42—H42124 (3)
C10—C12—C50120.5 (3)C41—C42—H42114 (3)
C11—C13—C14120.1 (3)C44—C43—C42116.9 (4)
C11—C13—C15122.1 (4)C44—C43—C46122.1 (4)
C14—C13—C15117.8 (4)C42—C43—C46121.0 (4)
C12—C14—C16122.5 (4)C43—C44—C45122.3 (4)
C12—C14—C13119.6 (4)C43—C44—H44122 (3)
C16—C14—C13117.9 (4)C45—C44—H44116 (3)
C17—C15—C13121.4 (4)C40—C45—C44120.5 (4)
C17—C15—H15123 (3)C40—C45—H45120 (3)
C13—C15—H15115 (3)C44—C45—H45120 (3)
C18—C16—C14121.2 (4)C48—C46—C47109.6 (6)
C18—C16—H16120 (3)C48—C46—C49108.3 (5)
C14—C16—H16119 (3)C47—C46—C49107.0 (5)
C15—C17—C18120.2 (4)C48—C46—C43111.1 (4)
C15—C17—H17118 (2)C47—C46—C43108.6 (4)
C18—C17—H17122 (2)C49—C46—C43112.1 (4)
C16—C18—C17121.0 (5)C46—C47—H47A109.5
C16—C18—H18123 (3)C46—C47—H47B109.5
C17—C18—H18116 (3)H47A—C47—H47B109.5
C21—C20—C25119.0 (5)C46—C47—H47C109.5
C21—C20—C7122.6 (4)H47A—C47—H47C109.5
C25—C20—C7118.2 (4)H47B—C47—H47C109.5
C20—C21—C22120.2 (6)C46—C48—H48A109.5
C20—C21—H21117 (3)C46—C48—H48B109.5
C22—C21—H21123 (3)H48A—C48—H48B109.5
C23—C22—C21119.4 (7)C46—C48—H48C109.5
C23—C22—H22123 (4)H48A—C48—H48C109.5
C21—C22—H22118 (4)H48B—C48—H48C109.5
C24—C23—C22120.8 (7)C46—C49—H49A109.5
C24—C23—H23118 (3)C46—C49—H49B109.5
C22—C23—H23122 (3)H49A—C49—H49B109.5
C23—C24—C25120.9 (7)C46—C49—H49C109.5
C23—C24—H24126 (3)H49A—C49—H49C109.5
C25—C24—H24113 (3)H49B—C49—H49C109.5
C20—C25—C24119.5 (6)C51—C50—C55118.4 (5)
C20—C25—H25116 (3)C51—C50—C12124.2 (4)
C24—C25—H25124 (3)C55—C50—C12117.3 (4)
C35—C30—C31118.0 (4)C50—C51—C52119.8 (6)
C35—C30—C8118.3 (3)C50—C51—H51119 (3)
C31—C30—C8123.6 (4)C52—C51—H51121 (3)
C32—C31—C30120.7 (4)C53—C52—C51120.8 (6)
C32—C31—H31118 (3)C53—C52—H52123 (3)
C30—C31—H31121 (3)C51—C52—H52117 (4)
C31—C32—C33122.0 (4)C52—C53—C54120.0 (6)
C31—C32—H32117 (3)C52—C53—H53119 (3)
C33—C32—H32121 (3)C54—C53—H53121 (3)
C34—C33—C32116.9 (4)C53—C54—C55119.8 (6)
C34—C33—C36121.2 (4)C53—C54—H54121 (3)
C32—C33—C36121.9 (4)C55—C54—H54119 (3)
C33—C34—C35122.0 (4)C54—C55—C50121.2 (6)
C33—C34—H34121 (3)C54—C55—H55120 (3)
C35—C34—H34117 (3)C50—C55—H55118 (3)
 

Acknowledgements

XRD experiments were conducted at the X-ray Crystallographic Laboratory at the University of Minnesota with the help of Dr Victor G. Young Jr. Instrumentation was purchased with a grant from the National Science Foundation (CHE-1229400). We also thank the reviewer for their thoughtful comments and suggestions.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1229400).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClapham, M. L., Murphy, E. C. & Douglas, C. J. (2021). Synthesis, 53, 461–474.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaas, S., Stassen, A. F., Schuck, G., Pernstich, K. P., Gundlach, D. J., Batlogg, B., Berens, U. & Kirner, H. J. (2007). Phys. Rev. B, 76, 115203.  CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMatsukawa, T., Yoshimura, M., Sasai, K., Uchiyama, M., Yamagishi, M., Tominari, Y., Takahashi, Y., Takeya, J., Kitaoka, Y., Mori, Y. & Sasaki, T. (2010). J. Cryst. Growth, 312, 310–313.  CrossRef CAS Google Scholar
First citationMoret, M. & Gavezzotti, A. (2022). New J. Chem. 46, 7626–7637.  CrossRef CAS Google Scholar
First citationOgden, W. A., Ghosh, S., Bruzek, M. J., McGarry, K. A., Balhorn, L., Young, V., Purvis, L. J., Wegwerth, S. E., Zhang, Z., Serratore, N. A., Cramer, C. J., Gagliardi, L. & Douglas, C. J. (2017). Cryst. Growth Des. 17, 643–658.  CrossRef CAS Google Scholar
First citationParaskar, A. S., Reddy, A. R., Patra, A., Wijsboom, Y. H., Gidron, O., Shimon, L. J. W., Leitus, G. & Bendikov, M. (2008). Chem. Eur. J. 14, 10639–10647.  CrossRef PubMed CAS Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchuck, G., Haas, S., Stassen, A. F., Berens, U. & Batlogg, B. (2007). Acta Cryst. E63, o2894.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutton, C., Marshall, M. S., Sherrill, C. D., Risko, C. & Brédas, J. L. (2015). J. Am. Chem. Soc. 137, 8775–8782.  CrossRef CAS PubMed Google Scholar
First citationUttiya, S., Miozzo, L., Fumagalli, E. M., Bergantin, S., Ruffo, R., Parravicini, M., Papagni, A., Moret, M. & Sassella, A. (2014). J. Mater. Chem. C. 2, 4147–4155.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds