research communications
of nadifloxacin with oxalic acid
aDayananda Sagar University, Karnataka, India
*Correspondence e-mail: anand.dcb@gmail.com
The 2:1 H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid] with oxalic acid, C19H21FN2O4·0.5C2H2O4, was prepared by slow evaporation from a chloroform:acetone solvent system. Nadifloxacin belongs to the group of antibacterial drugs. The is stabilized through an intramolecular O—H⋯O bond and intermolecular hydrogen bonds. It was studied by FT–IR spectroscopy, and X-ray diffraction. Hirshfeld surface analysis indicated that the major contribution to the packing is from O⋯H/H⋯O interactions.
of nadifloxacin [systematic name: 9-fluoro-8-(4-hydroxypiperidin-1-yl)-5-methyl-1-oxo-6,7-dihydro-1Keywords: crystal structure; slow evaporation; hydrogen bonding; Hirshfeld surface analysis; antibacterial drug.
CCDC reference: 2194837
1. Chemical context
A π-stacking interactions to name just a few (Stahly 2009; Vishweshwar et al., 2006). The formation of multi-component crystals, i.e. salts and co-crystals through a crystal-engineering approach has been demonstrated to be a versatile tool to improve the physicochemical properties of APIs (active pharmaceutical ingredients) including solubility, dissolution rate, stability, tabletability, etc. (Mannava et al., 2021, 2022). Co-crystals can be synthesized by various methods such as solvent-assisted grinding, sonication and slow evaporation among others. Co-crystals of fluoroquinolone antibiotics with organic acids have been reported to exhibit higher solubility than the parent molecule (Reddy et al., 2011). Nadifloxacin fluoroquinolone (Kido & Hashimoto, 1994) is an antibiotic used for the treatment of commonly formed acne, acting against Staphylococcus aureus, Streptococcus spp., coagulase-negative staphylococci (CNS), Propionibacterium acnes, and Propionibacterium granulosum strains (Nenoff et al., 2004). It also shows antibacterial activity against skin infections (Kumar & Khatak, 2021). Here we report the structure of a formed between nadifloxacin (NAD) and oxalic acid (OA), which is stabilized through intermolecular hydrogen bonds.
is a multi-component molecular complex with a definite stoichiometric ratio of two compounds that can interact through hydrogen bonds, and2. Structural commentary
The title . The is comprised of one NAD molecule in a general position and half of an OA molecule, located about a center of inversion, so the is formulated as a 2:1 NAD:OA adduct. NAD is a non-planar molecule [C7—C6—N2—C5 = 104.0 (3)°]. The adduct forms through O6—H6⋯O4 hydrogen bonds (Table 1) and crystallizes in the triclinic in P. An intramolecular O2—H2⋯O3 hydrogen bond is formed in the NAD molecule with an R11(6) ring motif of (Fig. 1).
is shown in Fig. 13. Supramolecular features
In the crystal, O4—H4⋯O1iii hydrogen bonds (Fig. 2, Table 1) forms chains of NAD molecules [graph-set motif S (6) (Etter et al., 1990)] extending parallel to (10). The chains are linked by inversion-related O6—H6⋯O4 hydrogen bonds between NAD and OA, forming ribbons of the 2:1 adducts parallel to (11) (Fig. 3). The hydroxyl oxygen O4 of NAD is involved in a bifurcated interaction acting as both acceptor (O6—H6⋯O4) and donor (O4—H4⋯O1iii). A larger ring motif is formed with two molecules of nadifloxacin and two molecules of oxalic acid having an R44(32) graph-set motif (Fig. 4).
4. Database survey
A number of related structures have been reported in the literature, including a norfloxacin–oxalate dihydrate adduct with an R54(12) ring motif and ciprofloxacin malonate dihydrate in which an R44(16) ring motif is observed. Both adducts are connected through tetrameric clusters of water molecules (Reddy et al., 2011). In the ofloxacin adduct with diphenic acid, the components are connected by charge-assisted strong bifurcated N—H+⋯O hydrogen bonds, forming R12(4) ring motifs (Suresh et al., 2020). An enrofloxacin–pimelic acid adduct shows an R88(20) ring motif of (Yang et al., 2022), a norfloxacin-pimelic acid adduct an R23(8) ring motif while in the structure of a ciprofloxacin–suberic acid R64(12) and R33(15) ring motifs are observed (O'Malley et al., 2022) and a pefloxacin–oxalic acid salt forms an R12(5) ring motif (Nangia et al., 2018). Several polymorphs of nalidixic acid and co-crystals of it with various hydroxyl compounds show bifurcated hydrogen bonds (Gangavaram et al., 2012), while a nicorandil–fumaric acid features hydrogen bonds with a dimeric R22(1) ring motif (Mannava et al., 2021, 2022). Pharmaceuticals co-crystals (Vishweshwar et al., 2006) pave way for new chemical entities with tuned physicochemical properties.
5. Synthesis and crystallization
NAD was purchased from Swapnroop Drugs and Pharmaceuticals, India, and the remaining chemicals were purchased from Sigma-Aldrich, India. All chemicals and solvents were of analytical grade.
NAD (50 mg, 0.360 mmol) and OA (17 mg, 0.126 mmol) were dissolved in a mixed chloroform–acetone solvent (5 ml:5 ml), heated on a water bath for 15–20 min and then kept undisturbed for slow evaporation. Crystals were obtained at room temperature after 24-48 h. They were characterized by FTIR, DSC, and single crystal XRD.
Infrared spectra of NAD·OA crystals were recorded using FT–IR spectroscopy (Thermo-Nicolet 6700 FTIR–NIR spectrometer) with the samples made in KBr pellets. Omnic software (Thermo Scientific, Waltham, MA) was used to analyze the data. Each sample was scanned in the range 400-4000 cm−1
In the IR spectrum, the C=O stretching frequencies for NAD (carboxylic acid group) and OA were observed at 1716 cm−1 and 1682 cm−1, respectively, while in the the former now appears at 1734 cm−1. Differential Scanning Calorimetric (DSC) analysis indicated the melting points of NAD and OA to be 478.9 K and 387.8 K, respectively, while the melting point of the is 438.8 K.
6. Hirshfeld Surface analysis
Hirshfeld analyses performed using Crystal Explorer17 (Spackman et al., 2009, 2021) are shown in Fig. 5. The surface mapping of this function highlights the donor and acceptor equally and it is therefore a powerful tool for analyzing intermolecular interactions such as hydrogen bonds. Intermolecular interactions within the crystal were mapped by dnorm and were determined for NAD and OA separately, as well as for the adduct of the two [Fig. 5(a)–(c), respectively (Bairagi et al., 2019)]. The interactions generating the crystal packing were investigated from the Hirshfeld analysis using the two-dimensional fingerprint plots (Fig. 6). These show that for NAD, H⋯H contacts make the highest contribution to the interactions (43.4%), while O⋯H/H⋯O contribute 28.7%, C⋯H/H⋯C 9.2% and F⋯H/H—F 7.4%. The smallest contributions are from C⋯O and O⋯O contacts (4.8% and 0.7%, respectively). The two-dimensional fingerprint plots for oxalic acid (Fig. 7) show that O⋯H/H⋯O contacts make the highest contribution (71.7%), with H⋯H at 14.7%, and the smallest interactions being C⋯O (6.7%) and O⋯O (4.7%).
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). C-bound O atoms were freely refined.
details are summarized in Table 2Supporting information
CCDC reference: 2194837
https://doi.org/10.1107/S2056989023002244/mw2196sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023002244/mw2196Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023002244/mw2196Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).C19H21FN2O4·0.5C2H2O4 | Z = 2 |
Mr = 405.39 | F(000) = 426 |
Triclinic, P1 | Dx = 1.404 Mg m−3 |
a = 8.8187 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6963 (4) Å | Cell parameters from 9915 reflections |
c = 12.3804 (6) Å | θ = 3.2–30.5° |
α = 100.099 (2)° | µ = 0.11 mm−1 |
β = 97.556 (2)° | T = 297 K |
γ = 109.858 (2)° | Block, colourless |
V = 959.16 (8) Å3 | 0.23 × 0.18 × 0.05 mm |
Bruker D8 VENTURE diffractometer with PHOTON II detector | 3753 independent reflections |
Radiation source: fine-focus sealed tube | 2936 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
ω and φ scan | θmax = 26.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −10→10 |
Tmin = 0.680, Tmax = 0.960 | k = −11→11 |
40338 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: mixed |
wR(F2) = 0.204 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.1129P)2 + 0.4888P] where P = (Fo2 + 2Fc2)/3 |
3753 reflections | (Δ/σ)max < 0.001 |
274 parameters | Δρmax = 0.82 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7236 (3) | 0.5092 (3) | 0.5094 (2) | 0.0446 (6) | |
H1A | 0.786613 | 0.448224 | 0.487203 | 0.054* | |
H1B | 0.610683 | 0.442369 | 0.503059 | 0.054* | |
C2 | 0.7960 (3) | 0.6000 (3) | 0.6298 (2) | 0.0483 (6) | |
H2A | 0.729953 | 0.657665 | 0.652556 | 0.058* | |
H2B | 0.793775 | 0.531942 | 0.678930 | 0.058* | |
C3 | 0.9705 (3) | 0.7053 (3) | 0.64044 (19) | 0.0409 (5) | |
H3 | 1.036372 | 0.644849 | 0.620463 | 0.049* | |
C4 | 0.9767 (4) | 0.8070 (3) | 0.5603 (2) | 0.0622 (8) | |
H4A | 1.090432 | 0.869057 | 0.563484 | 0.075* | |
H4B | 0.919365 | 0.873448 | 0.582464 | 0.075* | |
C5 | 0.8971 (4) | 0.7143 (3) | 0.4413 (2) | 0.0553 (7) | |
H5A | 0.895998 | 0.781043 | 0.391546 | 0.066* | |
H5B | 0.960975 | 0.655339 | 0.416318 | 0.066* | |
C6 | 0.6212 (3) | 0.5592 (3) | 0.32960 (19) | 0.0373 (5) | |
C7 | 0.5750 (3) | 0.4119 (3) | 0.2639 (2) | 0.0389 (5) | |
C8 | 0.4657 (3) | 0.3567 (3) | 0.16488 (19) | 0.0383 (5) | |
H8 | 0.437499 | 0.257443 | 0.125721 | 0.046* | |
C9 | 0.3953 (3) | 0.4508 (2) | 0.12182 (18) | 0.0341 (5) | |
C10 | 0.4407 (3) | 0.5999 (3) | 0.18365 (19) | 0.0363 (5) | |
C11 | 0.5518 (3) | 0.6541 (3) | 0.2878 (2) | 0.0438 (6) | |
C12 | 0.5871 (5) | 0.8099 (3) | 0.3573 (3) | 0.0769 (11) | |
H12A | 0.686634 | 0.881068 | 0.343893 | 0.092* | |
H12B | 0.603838 | 0.809967 | 0.436303 | 0.092* | |
C13 | 0.4368 (6) | 0.8586 (4) | 0.3244 (3) | 0.0826 (11) | |
H13A | 0.338644 | 0.791540 | 0.342407 | 0.099* | |
H13B | 0.460161 | 0.960507 | 0.366295 | 0.099* | |
C14 | 0.4095 (4) | 0.8514 (3) | 0.2020 (2) | 0.0561 (7) | |
H14 | 0.311979 | 0.876237 | 0.183147 | 0.067* | |
C15 | 0.2626 (3) | 0.6402 (3) | 0.0415 (2) | 0.0434 (6) | |
H15 | 0.218651 | 0.705629 | 0.015085 | 0.052* | |
C16 | 0.2152 (3) | 0.4969 (3) | −0.02349 (19) | 0.0394 (5) | |
C17 | 0.2785 (3) | 0.3925 (3) | 0.01480 (19) | 0.0368 (5) | |
C18 | 0.0973 (3) | 0.4525 (3) | −0.1316 (2) | 0.0477 (6) | |
C19 | 0.5417 (6) | 0.9504 (4) | 0.1580 (4) | 0.0956 (13) | |
H19A | 0.507225 | 0.933707 | 0.078356 | 0.143* | |
H19B | 0.564730 | 1.053863 | 0.192970 | 0.143* | |
H19C | 0.639225 | 0.928141 | 0.173803 | 0.143* | |
N1 | 0.3677 (3) | 0.6916 (2) | 0.14029 (17) | 0.0433 (5) | |
N2 | 0.7286 (3) | 0.6134 (2) | 0.43631 (16) | 0.0421 (5) | |
O1 | 0.0470 (3) | 0.5392 (3) | −0.17064 (18) | 0.0693 (6) | |
O2 | 0.0451 (3) | 0.3099 (2) | −0.18472 (17) | 0.0653 (6) | |
O3 | 0.2365 (3) | 0.2583 (2) | −0.03941 (15) | 0.0532 (5) | |
O4 | 1.0425 (3) | 0.7963 (2) | 0.75214 (15) | 0.0552 (5) | |
F1 | 0.6444 (2) | 0.31952 (17) | 0.30200 (13) | 0.0590 (5) | |
H4 | 1.051 (5) | 0.732 (5) | 0.791 (3) | 0.093 (13)* | |
H2 | 0.103 (6) | 0.276 (5) | −0.142 (4) | 0.112 (16)* | |
C20 | 0.9337 (3) | 1.0187 (3) | 0.9660 (2) | 0.0412 (6) | |
O5 | 0.8664 (3) | 1.0949 (2) | 1.01002 (15) | 0.0561 (5) | |
O6 | 0.8992 (3) | 0.9631 (2) | 0.85737 (15) | 0.0536 (5) | |
H6 | 0.950 (5) | 0.913 (5) | 0.834 (4) | 0.092 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0415 (13) | 0.0485 (13) | 0.0435 (14) | 0.0148 (11) | 0.0034 (10) | 0.0178 (11) |
C2 | 0.0440 (14) | 0.0684 (17) | 0.0382 (13) | 0.0241 (12) | 0.0092 (10) | 0.0195 (12) |
C3 | 0.0438 (13) | 0.0481 (13) | 0.0298 (11) | 0.0211 (11) | 0.0023 (9) | 0.0026 (9) |
C4 | 0.0716 (19) | 0.0521 (16) | 0.0402 (15) | 0.0018 (14) | −0.0051 (13) | 0.0095 (12) |
C5 | 0.0579 (17) | 0.0545 (15) | 0.0343 (13) | 0.0001 (13) | −0.0008 (11) | 0.0119 (11) |
C6 | 0.0375 (12) | 0.0398 (12) | 0.0336 (12) | 0.0151 (10) | 0.0024 (9) | 0.0087 (9) |
C7 | 0.0409 (13) | 0.0393 (12) | 0.0414 (13) | 0.0216 (10) | 0.0055 (10) | 0.0108 (10) |
C8 | 0.0426 (13) | 0.0344 (11) | 0.0389 (12) | 0.0181 (10) | 0.0067 (10) | 0.0048 (9) |
C9 | 0.0355 (11) | 0.0354 (11) | 0.0334 (11) | 0.0143 (9) | 0.0094 (9) | 0.0089 (9) |
C10 | 0.0409 (12) | 0.0362 (11) | 0.0350 (12) | 0.0180 (9) | 0.0061 (9) | 0.0099 (9) |
C11 | 0.0535 (15) | 0.0369 (12) | 0.0385 (13) | 0.0183 (11) | 0.0005 (11) | 0.0063 (10) |
C12 | 0.121 (3) | 0.0481 (16) | 0.0536 (18) | 0.0454 (18) | −0.0242 (18) | −0.0043 (13) |
C13 | 0.114 (3) | 0.065 (2) | 0.067 (2) | 0.051 (2) | −0.004 (2) | −0.0057 (16) |
C14 | 0.0712 (19) | 0.0397 (13) | 0.0593 (17) | 0.0322 (13) | −0.0038 (14) | 0.0053 (12) |
C15 | 0.0500 (14) | 0.0463 (13) | 0.0405 (13) | 0.0241 (11) | 0.0058 (11) | 0.0166 (10) |
C16 | 0.0411 (13) | 0.0466 (13) | 0.0350 (12) | 0.0179 (10) | 0.0100 (10) | 0.0161 (10) |
C17 | 0.0378 (12) | 0.0392 (12) | 0.0337 (11) | 0.0140 (9) | 0.0091 (9) | 0.0090 (9) |
C18 | 0.0507 (15) | 0.0589 (15) | 0.0347 (13) | 0.0191 (12) | 0.0081 (11) | 0.0170 (11) |
C19 | 0.114 (3) | 0.0472 (18) | 0.110 (3) | 0.0189 (19) | 0.006 (3) | 0.0145 (19) |
N1 | 0.0534 (12) | 0.0386 (11) | 0.0415 (11) | 0.0242 (9) | 0.0019 (9) | 0.0099 (8) |
N2 | 0.0453 (11) | 0.0430 (11) | 0.0349 (10) | 0.0148 (9) | 0.0002 (8) | 0.0107 (8) |
O1 | 0.0829 (16) | 0.0725 (14) | 0.0525 (12) | 0.0332 (12) | −0.0100 (11) | 0.0234 (10) |
O2 | 0.0846 (16) | 0.0617 (13) | 0.0379 (11) | 0.0229 (11) | −0.0088 (10) | 0.0073 (9) |
O3 | 0.0690 (13) | 0.0427 (10) | 0.0407 (10) | 0.0210 (9) | −0.0027 (8) | 0.0015 (7) |
O4 | 0.0696 (13) | 0.0608 (12) | 0.0309 (9) | 0.0292 (10) | −0.0026 (8) | −0.0004 (8) |
F1 | 0.0711 (11) | 0.0514 (9) | 0.0583 (10) | 0.0405 (8) | −0.0105 (8) | 0.0040 (7) |
C20 | 0.0503 (14) | 0.0362 (11) | 0.0362 (12) | 0.0201 (10) | −0.0004 (10) | 0.0053 (9) |
O5 | 0.0732 (13) | 0.0612 (12) | 0.0443 (10) | 0.0454 (10) | 0.0012 (9) | 0.0052 (8) |
O6 | 0.0681 (13) | 0.0586 (11) | 0.0337 (9) | 0.0343 (10) | −0.0064 (8) | 0.0006 (8) |
C1—N2 | 1.464 (3) | C11—C12 | 1.508 (4) |
C1—C2 | 1.520 (4) | C12—C13 | 1.580 (5) |
C1—H1A | 0.9700 | C12—H12A | 0.9700 |
C1—H1B | 0.9700 | C12—H12B | 0.9700 |
C2—C3 | 1.504 (4) | C13—C14 | 1.488 (5) |
C2—H2A | 0.9700 | C13—H13A | 0.9700 |
C2—H2B | 0.9700 | C13—H13B | 0.9700 |
C3—O4 | 1.433 (3) | C14—C19 | 1.473 (6) |
C3—C4 | 1.510 (4) | C14—N1 | 1.497 (3) |
C3—H3 | 0.9800 | C14—H14 | 0.9800 |
C4—C5 | 1.519 (4) | C15—N1 | 1.333 (3) |
C4—H4A | 0.9700 | C15—C16 | 1.371 (3) |
C4—H4B | 0.9700 | C15—H15 | 0.9300 |
C5—N2 | 1.461 (3) | C16—C17 | 1.429 (3) |
C5—H5A | 0.9700 | C16—C18 | 1.478 (3) |
C5—H5B | 0.9700 | C17—O3 | 1.258 (3) |
C6—C11 | 1.399 (3) | C18—O1 | 1.216 (3) |
C6—C7 | 1.406 (3) | C18—O2 | 1.313 (3) |
C6—N2 | 1.417 (3) | C19—H19A | 0.9600 |
C7—C8 | 1.351 (3) | C19—H19B | 0.9600 |
C7—F1 | 1.358 (3) | C19—H19C | 0.9600 |
C8—C9 | 1.404 (3) | O2—H2 | 0.87 (5) |
C8—H8 | 0.9300 | O4—H4 | 0.87 (4) |
C9—C10 | 1.405 (3) | C20—O5 | 1.199 (3) |
C9—C17 | 1.456 (3) | C20—O6 | 1.311 (3) |
C10—N1 | 1.400 (3) | C20—C20i | 1.531 (5) |
C10—C11 | 1.407 (3) | O6—H6 | 0.81 (4) |
N2—C1—C2 | 108.9 (2) | C11—C12—C13 | 109.2 (3) |
N2—C1—H1A | 109.9 | C11—C12—H12A | 109.8 |
C2—C1—H1A | 109.9 | C13—C12—H12A | 109.8 |
N2—C1—H1B | 109.9 | C11—C12—H12B | 109.8 |
C2—C1—H1B | 109.9 | C13—C12—H12B | 109.8 |
H1A—C1—H1B | 108.3 | H12A—C12—H12B | 108.3 |
C3—C2—C1 | 110.4 (2) | C14—C13—C12 | 108.7 (3) |
C3—C2—H2A | 109.6 | C14—C13—H13A | 110.0 |
C1—C2—H2A | 109.6 | C12—C13—H13A | 110.0 |
C3—C2—H2B | 109.6 | C14—C13—H13B | 110.0 |
C1—C2—H2B | 109.6 | C12—C13—H13B | 110.0 |
H2A—C2—H2B | 108.1 | H13A—C13—H13B | 108.3 |
O4—C3—C2 | 112.4 (2) | C19—C14—C13 | 118.6 (3) |
O4—C3—C4 | 109.1 (2) | C19—C14—N1 | 108.4 (3) |
C2—C3—C4 | 110.1 (2) | C13—C14—N1 | 108.4 (2) |
O4—C3—H3 | 108.4 | C19—C14—H14 | 107.0 |
C2—C3—H3 | 108.4 | C13—C14—H14 | 107.0 |
C4—C3—H3 | 108.4 | N1—C14—H14 | 107.0 |
C3—C4—C5 | 110.6 (2) | N1—C15—C16 | 124.0 (2) |
C3—C4—H4A | 109.5 | N1—C15—H15 | 118.0 |
C5—C4—H4A | 109.5 | C16—C15—H15 | 118.0 |
C3—C4—H4B | 109.5 | C15—C16—C17 | 119.7 (2) |
C5—C4—H4B | 109.5 | C15—C16—C18 | 119.1 (2) |
H4A—C4—H4B | 108.1 | C17—C16—C18 | 121.2 (2) |
N2—C5—C4 | 110.3 (2) | O3—C17—C16 | 122.8 (2) |
N2—C5—H5A | 109.6 | O3—C17—C9 | 121.5 (2) |
C4—C5—H5A | 109.6 | C16—C17—C9 | 115.8 (2) |
N2—C5—H5B | 109.6 | O1—C18—O2 | 120.3 (2) |
C4—C5—H5B | 109.6 | O1—C18—C16 | 123.6 (3) |
H5A—C5—H5B | 108.1 | O2—C18—C16 | 116.1 (2) |
C11—C6—C7 | 117.4 (2) | C14—C19—H19A | 109.5 |
C11—C6—N2 | 119.0 (2) | C14—C19—H19B | 109.5 |
C7—C6—N2 | 123.6 (2) | H19A—C19—H19B | 109.5 |
C8—C7—F1 | 118.0 (2) | C14—C19—H19C | 109.5 |
C8—C7—C6 | 123.9 (2) | H19A—C19—H19C | 109.5 |
F1—C7—C6 | 118.1 (2) | H19B—C19—H19C | 109.5 |
C7—C8—C9 | 119.3 (2) | C15—N1—C10 | 120.8 (2) |
C7—C8—H8 | 120.4 | C15—N1—C14 | 118.32 (19) |
C9—C8—H8 | 120.4 | C10—N1—C14 | 120.8 (2) |
C8—C9—C10 | 118.7 (2) | C6—N2—C5 | 116.53 (19) |
C8—C9—C17 | 119.6 (2) | C6—N2—C1 | 118.84 (19) |
C10—C9—C17 | 121.7 (2) | C5—N2—C1 | 111.8 (2) |
N1—C10—C9 | 118.0 (2) | C18—O2—H2 | 101 (3) |
N1—C10—C11 | 120.8 (2) | C3—O4—H4 | 104 (3) |
C9—C10—C11 | 121.1 (2) | O5—C20—O6 | 122.4 (2) |
C6—C11—C10 | 119.5 (2) | O5—C20—C20i | 121.6 (3) |
C6—C11—C12 | 120.2 (2) | O6—C20—C20i | 116.1 (3) |
C10—C11—C12 | 120.1 (2) | C20—O6—H6 | 117 (3) |
N2—C1—C2—C3 | −58.9 (3) | N1—C15—C16—C18 | 179.9 (2) |
C1—C2—C3—O4 | 178.4 (2) | C15—C16—C17—O3 | 178.0 (2) |
C1—C2—C3—C4 | 56.6 (3) | C18—C16—C17—O3 | −1.1 (4) |
O4—C3—C4—C5 | −178.5 (2) | C15—C16—C17—C9 | −1.7 (3) |
C2—C3—C4—C5 | −54.7 (3) | C18—C16—C17—C9 | 179.2 (2) |
C3—C4—C5—N2 | 55.8 (4) | C8—C9—C17—O3 | 1.3 (3) |
C11—C6—C7—C8 | −1.5 (4) | C10—C9—C17—O3 | −178.9 (2) |
N2—C6—C7—C8 | 176.2 (2) | C8—C9—C17—C16 | −178.9 (2) |
C11—C6—C7—F1 | 178.4 (2) | C10—C9—C17—C16 | 0.8 (3) |
N2—C6—C7—F1 | −3.8 (4) | C15—C16—C18—O1 | 5.1 (4) |
F1—C7—C8—C9 | −178.3 (2) | C17—C16—C18—O1 | −175.8 (2) |
C6—C7—C8—C9 | 1.6 (4) | C15—C16—C18—O2 | −173.8 (2) |
C7—C8—C9—C10 | −0.2 (3) | C17—C16—C18—O2 | 5.3 (4) |
C7—C8—C9—C17 | 179.5 (2) | C16—C15—N1—C10 | 1.3 (4) |
C8—C9—C10—N1 | −179.2 (2) | C16—C15—N1—C14 | 179.5 (3) |
C17—C9—C10—N1 | 1.1 (3) | C9—C10—N1—C15 | −2.2 (4) |
C8—C9—C10—C11 | −1.3 (3) | C11—C10—N1—C15 | 179.9 (2) |
C17—C9—C10—C11 | 179.0 (2) | C9—C10—N1—C14 | 179.6 (2) |
C7—C6—C11—C10 | 0.0 (4) | C11—C10—N1—C14 | 1.7 (4) |
N2—C6—C11—C10 | −177.9 (2) | C19—C14—N1—C15 | −83.7 (3) |
C7—C6—C11—C12 | 175.9 (3) | C13—C14—N1—C15 | 146.4 (3) |
N2—C6—C11—C12 | −1.9 (4) | C19—C14—N1—C10 | 94.5 (3) |
N1—C10—C11—C6 | 179.2 (2) | C13—C14—N1—C10 | −35.4 (4) |
C9—C10—C11—C6 | 1.4 (4) | C11—C6—N2—C5 | −78.3 (3) |
N1—C10—C11—C12 | 3.3 (4) | C7—C6—N2—C5 | 104.0 (3) |
C9—C10—C11—C12 | −174.6 (3) | C11—C6—N2—C1 | 143.2 (2) |
C6—C11—C12—C13 | −151.7 (3) | C7—C6—N2—C1 | −34.5 (3) |
C10—C11—C12—C13 | 24.2 (4) | C4—C5—N2—C6 | 159.0 (2) |
C11—C12—C13—C14 | −57.1 (4) | C4—C5—N2—C1 | −59.7 (3) |
C12—C13—C14—C19 | −62.3 (4) | C2—C1—N2—C6 | −158.9 (2) |
C12—C13—C14—N1 | 61.7 (4) | C2—C1—N2—C5 | 60.9 (3) |
N1—C15—C16—C17 | 0.7 (4) |
Symmetry code: (i) −x+2, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O5ii | 0.93 | 2.35 | 3.266 (3) | 167 |
C19—H19B···F1iii | 0.96 | 2.50 | 3.456 (4) | 174 |
O4—H4···O1iv | 0.87 (4) | 1.99 (4) | 2.833 (3) | 161 (4) |
O2—H2···O3 | 0.87 (5) | 1.68 (5) | 2.536 (3) | 165 (5) |
O6—H6···O4 | 0.81 (4) | 1.85 (4) | 2.644 (3) | 169 (4) |
Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) x, y+1, z; (iv) x+1, y, z+1. |
Acknowledgements
Support of the SCXRD data collection and structure solution by IIT Madras is duly acknowledged. Authors contribution are as follows. Conceptualization, methodology and supervision, AKS; visualization, validation and project administration, SRA; investigation and writing – original draft, GNK.
References
Bairagi, K. M., Pal, P., Bhandary, S., Venugopala, K. N., Chopra, D. & Nayak, S. K. (2019). Acta Cryst. E75, 1712–1718. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker. (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gangavaram, S., Raghavender, S., Sanphui, P., Pal, S., Manjunatha, S. G., Nambiar, S. & Nangia, A. K. (2012). Cryst. Growth Des. 12, 4963–4971. Web of Science CSD CrossRef CAS Google Scholar
Kido, M. & Hashimoto, K. (1994). Chem. Pharm. Bull. 42, 4, 872–876. Vol. 42 No. 4. DOI: 10.1248/cpb. 42.872 Google Scholar
Kumar, P. & Khatak, S. (2021). Int. Res. J. Pharm. 12, 4, 23–33. DOI: 10.7897/2230-8407.1204130. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mannava, C. M. K., Bommaka, M. K., Dandela, R., Solomon, A. K. & Nangia, A. K. (2022). Chem. Commun. 58, 5582–5585. Web of Science CSD CrossRef CAS Google Scholar
Mannava, C. M. K., Gunnam, A., Lodagekar, A., Shastri, N. R., Nangia, A. K. & Solomon, A. K. (2021). CrystEngComm, 23, 227–237. Web of Science CSD CrossRef CAS Google Scholar
Nangia, A., Gunnam, A. & Kuthuru, S. (2018). Cryst. Growth Des. 18, 5, 2824–2835. Google Scholar
Nenoff, P., Haustein, U. F. & Hittel, N. (2004). Chemotherapy, 50, 196–201. Web of Science CrossRef PubMed CAS Google Scholar
O'Malley, C., McArdle, P. & Erxleben, A. (2022). Cryst. Growth Des. 22, 3060–3071. Web of Science CAS PubMed Google Scholar
Reddy, S. J., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, A. K., Kumar, K. A., Goud, R. N. & Nangia, A. K. (2011). J. Pharm. Sci. 100, 3160–3176. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stahly, G. P. (2009). Cryst. Growth Des. 9, 10, 4212–4229. DOI: 10.1021/cg900873t. Google Scholar
Suresh, A., Gonde, S., Mondal, P. K., Sahoo, J. & Chopra, D. (2020). J. Mol. Struct. 20, 128806. Web of Science CSD CrossRef Google Scholar
Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499–516. Web of Science CrossRef PubMed CAS Google Scholar
Yang, S., Zhao, F., Pang, H., Chen, L., Shi, R. & Fang, B. (2022). J. Mol. Struct. 1265, 133335. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.