research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Co-crystal of nadifloxacin with oxalic acid

crossmark logo

aDayananda Sagar University, Karnataka, India
*Correspondence e-mail: anand.dcb@gmail.com

Edited by J. T. Mague, Tulane University, USA (Received 8 February 2023; accepted 8 March 2023; online 10 March 2023)

The 2:1 co-crystal of nadifloxacin [systematic name: 9-fluoro-8-(4-hy­droxy­piperidin-1-yl)-5-methyl-1-oxo-6,7-di­hydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carb­oxy­lic acid] with oxalic acid, C19H21FN2O4·0.5C2H2O4, was prepared by slow evaporation from a chloro­form:acetone solvent system. Nadifloxacin belongs to the group of anti­bacterial drugs. The co-crystal is stabilized through an intra­molecular O—H⋯O bond and inter­molecular hydrogen bonds. It was studied by FT–IR spectroscopy, differential scanning calorimetry and X-ray diffraction. Hirshfeld surface analysis indicated that the major contribution to the packing is from O⋯H/H⋯O inter­actions.

1. Chemical context

A co-crystal is a multi-component mol­ecular complex with a definite stoichiometric ratio of two compounds that can inter­act through hydrogen bonds, van der Waals forces, and π-stacking inter­actions to name just a few (Stahly 2009[Stahly, G. P. (2009). Cryst. Growth Des. 9, 10, 4212-4229. DOI: 10.1021/cg900873t.]; Vishweshwar et al., 2006[Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499-516.]). The formation of multi-component crystals, i.e. salts and co-crystals through a crystal-engineering approach has been demonstrated to be a versatile tool to improve the physicochemical properties of APIs (active pharmaceutical ingredients) including solubility, dissolution rate, stability, tabletability, etc. (Mannava et al., 2021[Mannava, C. M. K., Gunnam, A., Lodagekar, A., Shastri, N. R., Nangia, A. K. & Solomon, A. K. (2021). CrystEngComm, 23, 227-237.], 2022[Mannava, C. M. K., Bommaka, M. K., Dandela, R., Solomon, A. K. & Nangia, A. K. (2022). Chem. Commun. 58, 5582-5585.]). Co-crystals can be synthesized by various methods such as solvent-assisted grinding, sonication and slow evaporation among others. Co-crystals of fluoro­quinolone anti­biotics with organic acids have been reported to exhibit higher solubility than the parent mol­ecule (Reddy et al., 2011[Reddy, S. J., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, A. K., Kumar, K. A., Goud, R. N. & Nangia, A. K. (2011). J. Pharm. Sci. 100, 3160-3176.]). Nadifloxacin fluoro­quinolone (Kido & Hashimoto, 1994[Kido, M. & Hashimoto, K. (1994). Chem. Pharm. Bull. 42, 4, 872-876. Vol. 42 No. 4. DOI: 10.1248/cpb. 42.872]) is an anti­biotic used for the treatment of commonly formed acne, acting against Staphylococcus aureus, Streptococcus spp., coagulase-negative staphylococci (CNS), Propionibacterium acnes, and Propionibacterium granulosum strains (Nenoff et al., 2004[Nenoff, P., Haustein, U. F. & Hittel, N. (2004). Chemotherapy, 50, 196-201.]). It also shows anti­bacterial activity against skin infections (Kumar & Khatak, 2021[Kumar, P. & Khatak, S. (2021). Int. Res. J. Pharm. 12, 4, 23-33. DOI: 10.7897/2230-8407.1204130.]). Here we report the structure of a co-crystal formed between nadifloxacin (NAD) and oxalic acid (OA), which is stabilized through inter­molecular hydrogen bonds.

[Scheme 1]

2. Structural commentary

The title co-crystal is shown in Fig. 1[link]. The asymmetric unit is comprised of one NAD mol­ecule in a general position and half of an OA mol­ecule, located about a center of inversion, so the co-crystal is formulated as a 2:1 NAD:OA adduct. NAD is a non-planar mol­ecule [C7—C6—N2—C5 = 104.0 (3)°]. The adduct forms through O6—H6⋯O4 hydrogen bonds (Table 1[link]) and crystallizes in the triclinic crystal system in space group P[\overline{1}]. An intra­molecular O2—H2⋯O3 hydrogen bond is formed in the NAD mol­ecule with an R11(6) ring motif of (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O5i 0.93 2.35 3.266 (3) 167
C19—H19B⋯F1ii 0.96 2.50 3.456 (4) 174
O4—H4⋯O1iii 0.87 (4) 1.99 (4) 2.833 (3) 161 (4)
O2—H2⋯O3 0.87 (5) 1.68 (5) 2.536 (3) 165 (5)
O6—H6⋯O4 0.81 (4) 1.85 (4) 2.644 (3) 169 (4)
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) x, y+1, z; (iii) x+1, y, z+1.
[Figure 1]
Figure 1
A perspective view of the title compound with labeling scheme and 50% probability ellipsoids. Symmetry code: (i) −x + 2, −y + 2, −z + 2.

3. Supra­molecular features

In the crystal, O4—H4⋯O1iii hydrogen bonds (Fig. 2[link], Table 1[link]) forms chains of NAD mol­ecules [graph-set motif S (6) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.])] extending parallel to (10[\overline{1}]). The chains are linked by inversion-related O6—H6⋯O4 hydrogen bonds between NAD and OA, forming ribbons of the 2:1 adducts parallel to (11[\overline{1}]) (Fig. 3[link]). The hydroxyl oxygen O4 of NAD is involved in a bifurcated inter­action acting as both acceptor (O6—H6⋯O4) and donor (O4—H4⋯O1iii). A larger ring motif is formed with two mol­ecules of nadifloxacin and two mol­ecules of oxalic acid having an R44(32) graph-set motif (Fig. 4[link]).

[Figure 2]
Figure 2
Packing of the title compound with hydrogen bonds depicted by dashed lines.
[Figure 3]
Figure 3
Two ribbons of NAD and OA formed by hydrogen bonds.
[Figure 4]
Figure 4
The ring motif between oxalic acid and nadifloxacin in the co-crystal.

4. Database survey

A number of related structures have been reported in the literature, including a norfloxacin–oxalate dihydrate adduct with an R54(12) ring motif and ciprofloxacin malonate dihydrate in which an R44(16) ring motif is observed. Both adducts are connected through tetra­meric clusters of water mol­ecules (Reddy et al., 2011[Reddy, S. J., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, A. K., Kumar, K. A., Goud, R. N. & Nangia, A. K. (2011). J. Pharm. Sci. 100, 3160-3176.]). In the ofloxacin adduct with diphenic acid, the components are connected by charge-assisted strong bifurcated N—H+⋯O hydrogen bonds, forming R12(4) ring motifs (Suresh et al., 2020[Suresh, A., Gonde, S., Mondal, P. K., Sahoo, J. & Chopra, D. (2020). J. Mol. Struct. 20, 128806.]). An enrofloxacin–pimelic acid adduct shows an R88(20) ring motif of (Yang et al., 2022[Yang, S., Zhao, F., Pang, H., Chen, L., Shi, R. & Fang, B. (2022). J. Mol. Struct. 1265, 133335.]), a norfloxacin-pimelic acid adduct an R23(8) ring motif while in the structure of a ciprofloxacin–suberic acid co-crystal, R64(12) and R33(15) ring motifs are observed (O'Malley et al., 2022[O'Malley, C., McArdle, P. & Erxleben, A. (2022). Cryst. Growth Des. 22, 3060-3071.]) and a pefloxacin–oxalic acid salt forms an R12(5) ring motif (Nangia et al., 2018[Nangia, A., Gunnam, A. & Kuthuru, S. (2018). Cryst. Growth Des. 18, 5, 2824-2835.]). Several polymorphs of nalidixic acid and co-crystals of it with various hydroxyl compounds show bifurcated hydrogen bonds (Gangavaram et al., 2012[Gangavaram, S., Raghavender, S., Sanphui, P., Pal, S., Manjunatha, S. G., Nambiar, S. & Nangia, A. K. (2012). Cryst. Growth Des. 12, 4963-4971.]), while a nicorandil–fumaric acid co-crystal features hydrogen bonds with a dimeric R22(1) ring motif (Mannava et al., 2021[Mannava, C. M. K., Gunnam, A., Lodagekar, A., Shastri, N. R., Nangia, A. K. & Solomon, A. K. (2021). CrystEngComm, 23, 227-237.], 2022[Mannava, C. M. K., Bommaka, M. K., Dandela, R., Solomon, A. K. & Nangia, A. K. (2022). Chem. Commun. 58, 5582-5585.]). Pharmaceuticals co-crystals (Vishweshwar et al., 2006[Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499-516.]) pave way for new chemical entities with tuned physicochemical properties.

5. Synthesis and crystallization

NAD was purchased from Swapnroop Drugs and Pharmaceuticals, India, and the remaining chemicals were purchased from Sigma-Aldrich, India. All chemicals and solvents were of analytical grade.

NAD (50 mg, 0.360 mmol) and OA (17 mg, 0.126 mmol) were dissolved in a mixed chloro­form–acetone solvent (5 ml:5 ml), heated on a water bath for 15–20 min and then kept undisturbed for slow evaporation. Crystals were obtained at room temperature after 24-48 h. They were characterized by FTIR, DSC, and single crystal XRD.

Infrared spectra of NAD·OA crystals were recorded using FT–IR spectroscopy (Thermo-Nicolet 6700 FTIR–NIR spectrometer) with the samples made in KBr pellets. Omnic software (Thermo Scientific, Waltham, MA) was used to analyze the data. Each sample was scanned in the range 400-4000 cm−1

In the IR spectrum, the C=O stretching frequencies for NAD (carb­oxy­lic acid group) and OA were observed at 1716 cm−1 and 1682 cm−1, respectively, while in the co-crystal, the former now appears at 1734 cm−1. Differential Scanning Calorimetric (DSC) analysis indicated the melting points of NAD and OA to be 478.9 K and 387.8 K, respectively, while the melting point of the co-crystal is 438.8 K.

6. Hirshfeld Surface analysis

Hirshfeld analyses performed using Crystal Explorer17 (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.], 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) are shown in Fig. 5[link]. The surface mapping of this function highlights the donor and acceptor equally and it is therefore a powerful tool for analyzing inter­molecular inter­actions such as hydrogen bonds. Inter­molecular inter­actions within the crystal were mapped by dnorm and were determined for NAD and OA separately, as well as for the adduct of the two [Fig. 5[link](a)–(c), respectively (Bairagi et al., 2019[Bairagi, K. M., Pal, P., Bhandary, S., Venugopala, K. N., Chopra, D. & Nayak, S. K. (2019). Acta Cryst. E75, 1712-1718.])]. The inter­actions generating the crystal packing were investigated from the Hirshfeld analysis using the two-dimensional fingerprint plots (Fig. 6[link]). These show that for NAD, H⋯H contacts make the highest contribution to the inter­actions (43.4%), while O⋯H/H⋯O contribute 28.7%, C⋯H/H⋯C 9.2% and F⋯H/H—F 7.4%. The smallest contributions are from C⋯O and O⋯O contacts (4.8% and 0.7%, respectively). The two-dimensional fingerprint plots for oxalic acid (Fig. 7[link]) show that O⋯H/H⋯O contacts make the highest contribution (71.7%), with H⋯H at 14.7%, and the smallest inter­actions being C⋯O (6.7%) and O⋯O (4.7%).

[Figure 5]
Figure 5
Calculated Hirshfeld surfaces mapped over dnorm for (a) NAD, (b) OA and (c) the NAD–OA co-crystal to visualize the inter­molecular inter­actions.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots and relative contribution of various inter­actions to the Hirshfeld surface of the NAD mol­ecule.
[Figure 7]
Figure 7
Two-dimensional fingerprint plots and relative contribution of various inter­actions to the Hirshfeld surface of the OA mol­ecule.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). C-bound O atoms were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C19H21FN2O4·0.5C2H2O4
Mr 405.39
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 297
a, b, c (Å) 8.8187 (4), 9.6963 (4), 12.3804 (6)
α, β, γ (°) 100.099 (2), 97.556 (2), 109.858 (2)
V3) 959.16 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.23 × 0.18 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE with PHOTON II detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker. (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.680, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 40338, 3753, 2936
Rint 0.066
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.204, 1.07
No. of reflections 3753
No. of parameters 274
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.82, −0.37
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker. (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

9-Fluoro-8-(4-hydroxypiperidin-1-yl)-5-methyl-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid–oxalic acid (2/1) top
Crystal data top
C19H21FN2O4·0.5C2H2O4Z = 2
Mr = 405.39F(000) = 426
Triclinic, P1Dx = 1.404 Mg m3
a = 8.8187 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6963 (4) ÅCell parameters from 9915 reflections
c = 12.3804 (6) Åθ = 3.2–30.5°
α = 100.099 (2)°µ = 0.11 mm1
β = 97.556 (2)°T = 297 K
γ = 109.858 (2)°Block, colourless
V = 959.16 (8) Å30.23 × 0.18 × 0.05 mm
Data collection top
Bruker D8 VENTURE
diffractometer with PHOTON II detector
3753 independent reflections
Radiation source: fine-focus sealed tube2936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω and φ scanθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.680, Tmax = 0.960k = 1111
40338 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: mixed
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1129P)2 + 0.4888P]
where P = (Fo2 + 2Fc2)/3
3753 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7236 (3)0.5092 (3)0.5094 (2)0.0446 (6)
H1A0.7866130.4482240.4872030.054*
H1B0.6106830.4423690.5030590.054*
C20.7960 (3)0.6000 (3)0.6298 (2)0.0483 (6)
H2A0.7299530.6576650.6525560.058*
H2B0.7937750.5319420.6789300.058*
C30.9705 (3)0.7053 (3)0.64044 (19)0.0409 (5)
H31.0363720.6448490.6204630.049*
C40.9767 (4)0.8070 (3)0.5603 (2)0.0622 (8)
H4A1.0904320.8690570.5634840.075*
H4B0.9193650.8734480.5824640.075*
C50.8971 (4)0.7143 (3)0.4413 (2)0.0553 (7)
H5A0.8959980.7810430.3915460.066*
H5B0.9609750.6553390.4163180.066*
C60.6212 (3)0.5592 (3)0.32960 (19)0.0373 (5)
C70.5750 (3)0.4119 (3)0.2639 (2)0.0389 (5)
C80.4657 (3)0.3567 (3)0.16488 (19)0.0383 (5)
H80.4374990.2574430.1257210.046*
C90.3953 (3)0.4508 (2)0.12182 (18)0.0341 (5)
C100.4407 (3)0.5999 (3)0.18365 (19)0.0363 (5)
C110.5518 (3)0.6541 (3)0.2878 (2)0.0438 (6)
C120.5871 (5)0.8099 (3)0.3573 (3)0.0769 (11)
H12A0.6866340.8810680.3438930.092*
H12B0.6038380.8099670.4363030.092*
C130.4368 (6)0.8586 (4)0.3244 (3)0.0826 (11)
H13A0.3386440.7915400.3424070.099*
H13B0.4601610.9605070.3662950.099*
C140.4095 (4)0.8514 (3)0.2020 (2)0.0561 (7)
H140.3119790.8762370.1831470.067*
C150.2626 (3)0.6402 (3)0.0415 (2)0.0434 (6)
H150.2186510.7056290.0150850.052*
C160.2152 (3)0.4969 (3)0.02349 (19)0.0394 (5)
C170.2785 (3)0.3925 (3)0.01480 (19)0.0368 (5)
C180.0973 (3)0.4525 (3)0.1316 (2)0.0477 (6)
C190.5417 (6)0.9504 (4)0.1580 (4)0.0956 (13)
H19A0.5072250.9337070.0783560.143*
H19B0.5647301.0538630.1929700.143*
H19C0.6392250.9281410.1738030.143*
N10.3677 (3)0.6916 (2)0.14029 (17)0.0433 (5)
N20.7286 (3)0.6134 (2)0.43631 (16)0.0421 (5)
O10.0470 (3)0.5392 (3)0.17064 (18)0.0693 (6)
O20.0451 (3)0.3099 (2)0.18472 (17)0.0653 (6)
O30.2365 (3)0.2583 (2)0.03941 (15)0.0532 (5)
O41.0425 (3)0.7963 (2)0.75214 (15)0.0552 (5)
F10.6444 (2)0.31952 (17)0.30200 (13)0.0590 (5)
H41.051 (5)0.732 (5)0.791 (3)0.093 (13)*
H20.103 (6)0.276 (5)0.142 (4)0.112 (16)*
C200.9337 (3)1.0187 (3)0.9660 (2)0.0412 (6)
O50.8664 (3)1.0949 (2)1.01002 (15)0.0561 (5)
O60.8992 (3)0.9631 (2)0.85737 (15)0.0536 (5)
H60.950 (5)0.913 (5)0.834 (4)0.092 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (13)0.0485 (13)0.0435 (14)0.0148 (11)0.0034 (10)0.0178 (11)
C20.0440 (14)0.0684 (17)0.0382 (13)0.0241 (12)0.0092 (10)0.0195 (12)
C30.0438 (13)0.0481 (13)0.0298 (11)0.0211 (11)0.0023 (9)0.0026 (9)
C40.0716 (19)0.0521 (16)0.0402 (15)0.0018 (14)0.0051 (13)0.0095 (12)
C50.0579 (17)0.0545 (15)0.0343 (13)0.0001 (13)0.0008 (11)0.0119 (11)
C60.0375 (12)0.0398 (12)0.0336 (12)0.0151 (10)0.0024 (9)0.0087 (9)
C70.0409 (13)0.0393 (12)0.0414 (13)0.0216 (10)0.0055 (10)0.0108 (10)
C80.0426 (13)0.0344 (11)0.0389 (12)0.0181 (10)0.0067 (10)0.0048 (9)
C90.0355 (11)0.0354 (11)0.0334 (11)0.0143 (9)0.0094 (9)0.0089 (9)
C100.0409 (12)0.0362 (11)0.0350 (12)0.0180 (9)0.0061 (9)0.0099 (9)
C110.0535 (15)0.0369 (12)0.0385 (13)0.0183 (11)0.0005 (11)0.0063 (10)
C120.121 (3)0.0481 (16)0.0536 (18)0.0454 (18)0.0242 (18)0.0043 (13)
C130.114 (3)0.065 (2)0.067 (2)0.051 (2)0.004 (2)0.0057 (16)
C140.0712 (19)0.0397 (13)0.0593 (17)0.0322 (13)0.0038 (14)0.0053 (12)
C150.0500 (14)0.0463 (13)0.0405 (13)0.0241 (11)0.0058 (11)0.0166 (10)
C160.0411 (13)0.0466 (13)0.0350 (12)0.0179 (10)0.0100 (10)0.0161 (10)
C170.0378 (12)0.0392 (12)0.0337 (11)0.0140 (9)0.0091 (9)0.0090 (9)
C180.0507 (15)0.0589 (15)0.0347 (13)0.0191 (12)0.0081 (11)0.0170 (11)
C190.114 (3)0.0472 (18)0.110 (3)0.0189 (19)0.006 (3)0.0145 (19)
N10.0534 (12)0.0386 (11)0.0415 (11)0.0242 (9)0.0019 (9)0.0099 (8)
N20.0453 (11)0.0430 (11)0.0349 (10)0.0148 (9)0.0002 (8)0.0107 (8)
O10.0829 (16)0.0725 (14)0.0525 (12)0.0332 (12)0.0100 (11)0.0234 (10)
O20.0846 (16)0.0617 (13)0.0379 (11)0.0229 (11)0.0088 (10)0.0073 (9)
O30.0690 (13)0.0427 (10)0.0407 (10)0.0210 (9)0.0027 (8)0.0015 (7)
O40.0696 (13)0.0608 (12)0.0309 (9)0.0292 (10)0.0026 (8)0.0004 (8)
F10.0711 (11)0.0514 (9)0.0583 (10)0.0405 (8)0.0105 (8)0.0040 (7)
C200.0503 (14)0.0362 (11)0.0362 (12)0.0201 (10)0.0004 (10)0.0053 (9)
O50.0732 (13)0.0612 (12)0.0443 (10)0.0454 (10)0.0012 (9)0.0052 (8)
O60.0681 (13)0.0586 (11)0.0337 (9)0.0343 (10)0.0064 (8)0.0006 (8)
Geometric parameters (Å, º) top
C1—N21.464 (3)C11—C121.508 (4)
C1—C21.520 (4)C12—C131.580 (5)
C1—H1A0.9700C12—H12A0.9700
C1—H1B0.9700C12—H12B0.9700
C2—C31.504 (4)C13—C141.488 (5)
C2—H2A0.9700C13—H13A0.9700
C2—H2B0.9700C13—H13B0.9700
C3—O41.433 (3)C14—C191.473 (6)
C3—C41.510 (4)C14—N11.497 (3)
C3—H30.9800C14—H140.9800
C4—C51.519 (4)C15—N11.333 (3)
C4—H4A0.9700C15—C161.371 (3)
C4—H4B0.9700C15—H150.9300
C5—N21.461 (3)C16—C171.429 (3)
C5—H5A0.9700C16—C181.478 (3)
C5—H5B0.9700C17—O31.258 (3)
C6—C111.399 (3)C18—O11.216 (3)
C6—C71.406 (3)C18—O21.313 (3)
C6—N21.417 (3)C19—H19A0.9600
C7—C81.351 (3)C19—H19B0.9600
C7—F11.358 (3)C19—H19C0.9600
C8—C91.404 (3)O2—H20.87 (5)
C8—H80.9300O4—H40.87 (4)
C9—C101.405 (3)C20—O51.199 (3)
C9—C171.456 (3)C20—O61.311 (3)
C10—N11.400 (3)C20—C20i1.531 (5)
C10—C111.407 (3)O6—H60.81 (4)
N2—C1—C2108.9 (2)C11—C12—C13109.2 (3)
N2—C1—H1A109.9C11—C12—H12A109.8
C2—C1—H1A109.9C13—C12—H12A109.8
N2—C1—H1B109.9C11—C12—H12B109.8
C2—C1—H1B109.9C13—C12—H12B109.8
H1A—C1—H1B108.3H12A—C12—H12B108.3
C3—C2—C1110.4 (2)C14—C13—C12108.7 (3)
C3—C2—H2A109.6C14—C13—H13A110.0
C1—C2—H2A109.6C12—C13—H13A110.0
C3—C2—H2B109.6C14—C13—H13B110.0
C1—C2—H2B109.6C12—C13—H13B110.0
H2A—C2—H2B108.1H13A—C13—H13B108.3
O4—C3—C2112.4 (2)C19—C14—C13118.6 (3)
O4—C3—C4109.1 (2)C19—C14—N1108.4 (3)
C2—C3—C4110.1 (2)C13—C14—N1108.4 (2)
O4—C3—H3108.4C19—C14—H14107.0
C2—C3—H3108.4C13—C14—H14107.0
C4—C3—H3108.4N1—C14—H14107.0
C3—C4—C5110.6 (2)N1—C15—C16124.0 (2)
C3—C4—H4A109.5N1—C15—H15118.0
C5—C4—H4A109.5C16—C15—H15118.0
C3—C4—H4B109.5C15—C16—C17119.7 (2)
C5—C4—H4B109.5C15—C16—C18119.1 (2)
H4A—C4—H4B108.1C17—C16—C18121.2 (2)
N2—C5—C4110.3 (2)O3—C17—C16122.8 (2)
N2—C5—H5A109.6O3—C17—C9121.5 (2)
C4—C5—H5A109.6C16—C17—C9115.8 (2)
N2—C5—H5B109.6O1—C18—O2120.3 (2)
C4—C5—H5B109.6O1—C18—C16123.6 (3)
H5A—C5—H5B108.1O2—C18—C16116.1 (2)
C11—C6—C7117.4 (2)C14—C19—H19A109.5
C11—C6—N2119.0 (2)C14—C19—H19B109.5
C7—C6—N2123.6 (2)H19A—C19—H19B109.5
C8—C7—F1118.0 (2)C14—C19—H19C109.5
C8—C7—C6123.9 (2)H19A—C19—H19C109.5
F1—C7—C6118.1 (2)H19B—C19—H19C109.5
C7—C8—C9119.3 (2)C15—N1—C10120.8 (2)
C7—C8—H8120.4C15—N1—C14118.32 (19)
C9—C8—H8120.4C10—N1—C14120.8 (2)
C8—C9—C10118.7 (2)C6—N2—C5116.53 (19)
C8—C9—C17119.6 (2)C6—N2—C1118.84 (19)
C10—C9—C17121.7 (2)C5—N2—C1111.8 (2)
N1—C10—C9118.0 (2)C18—O2—H2101 (3)
N1—C10—C11120.8 (2)C3—O4—H4104 (3)
C9—C10—C11121.1 (2)O5—C20—O6122.4 (2)
C6—C11—C10119.5 (2)O5—C20—C20i121.6 (3)
C6—C11—C12120.2 (2)O6—C20—C20i116.1 (3)
C10—C11—C12120.1 (2)C20—O6—H6117 (3)
N2—C1—C2—C358.9 (3)N1—C15—C16—C18179.9 (2)
C1—C2—C3—O4178.4 (2)C15—C16—C17—O3178.0 (2)
C1—C2—C3—C456.6 (3)C18—C16—C17—O31.1 (4)
O4—C3—C4—C5178.5 (2)C15—C16—C17—C91.7 (3)
C2—C3—C4—C554.7 (3)C18—C16—C17—C9179.2 (2)
C3—C4—C5—N255.8 (4)C8—C9—C17—O31.3 (3)
C11—C6—C7—C81.5 (4)C10—C9—C17—O3178.9 (2)
N2—C6—C7—C8176.2 (2)C8—C9—C17—C16178.9 (2)
C11—C6—C7—F1178.4 (2)C10—C9—C17—C160.8 (3)
N2—C6—C7—F13.8 (4)C15—C16—C18—O15.1 (4)
F1—C7—C8—C9178.3 (2)C17—C16—C18—O1175.8 (2)
C6—C7—C8—C91.6 (4)C15—C16—C18—O2173.8 (2)
C7—C8—C9—C100.2 (3)C17—C16—C18—O25.3 (4)
C7—C8—C9—C17179.5 (2)C16—C15—N1—C101.3 (4)
C8—C9—C10—N1179.2 (2)C16—C15—N1—C14179.5 (3)
C17—C9—C10—N11.1 (3)C9—C10—N1—C152.2 (4)
C8—C9—C10—C111.3 (3)C11—C10—N1—C15179.9 (2)
C17—C9—C10—C11179.0 (2)C9—C10—N1—C14179.6 (2)
C7—C6—C11—C100.0 (4)C11—C10—N1—C141.7 (4)
N2—C6—C11—C10177.9 (2)C19—C14—N1—C1583.7 (3)
C7—C6—C11—C12175.9 (3)C13—C14—N1—C15146.4 (3)
N2—C6—C11—C121.9 (4)C19—C14—N1—C1094.5 (3)
N1—C10—C11—C6179.2 (2)C13—C14—N1—C1035.4 (4)
C9—C10—C11—C61.4 (4)C11—C6—N2—C578.3 (3)
N1—C10—C11—C123.3 (4)C7—C6—N2—C5104.0 (3)
C9—C10—C11—C12174.6 (3)C11—C6—N2—C1143.2 (2)
C6—C11—C12—C13151.7 (3)C7—C6—N2—C134.5 (3)
C10—C11—C12—C1324.2 (4)C4—C5—N2—C6159.0 (2)
C11—C12—C13—C1457.1 (4)C4—C5—N2—C159.7 (3)
C12—C13—C14—C1962.3 (4)C2—C1—N2—C6158.9 (2)
C12—C13—C14—N161.7 (4)C2—C1—N2—C560.9 (3)
N1—C15—C16—C170.7 (4)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O5ii0.932.353.266 (3)167
C19—H19B···F1iii0.962.503.456 (4)174
O4—H4···O1iv0.87 (4)1.99 (4)2.833 (3)161 (4)
O2—H2···O30.87 (5)1.68 (5)2.536 (3)165 (5)
O6—H6···O40.81 (4)1.85 (4)2.644 (3)169 (4)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y, z+1.
 

Acknowledgements

Support of the SCXRD data collection and structure solution by IIT Madras is duly acknowledged. Authors contribution are as follows. Conceptualization, methodology and supervision, AKS; visualization, validation and project administration, SRA; investigation and writing – original draft, GNK.

References

First citationBairagi, K. M., Pal, P., Bhandary, S., Venugopala, K. N., Chopra, D. & Nayak, S. K. (2019). Acta Cryst. E75, 1712–1718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker. (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGangavaram, S., Raghavender, S., Sanphui, P., Pal, S., Manjunatha, S. G., Nambiar, S. & Nangia, A. K. (2012). Cryst. Growth Des. 12, 4963–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationKido, M. & Hashimoto, K. (1994). Chem. Pharm. Bull. 42, 4, 872–876. Vol. 42 No. 4. DOI: 10.1248/cpb. 42.872  Google Scholar
First citationKumar, P. & Khatak, S. (2021). Int. Res. J. Pharm. 12, 4, 23–33. DOI: 10.7897/2230-8407.1204130.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMannava, C. M. K., Bommaka, M. K., Dandela, R., Solomon, A. K. & Nangia, A. K. (2022). Chem. Commun. 58, 5582–5585.  Web of Science CSD CrossRef CAS Google Scholar
First citationMannava, C. M. K., Gunnam, A., Lodagekar, A., Shastri, N. R., Nangia, A. K. & Solomon, A. K. (2021). CrystEngComm, 23, 227–237.  Web of Science CSD CrossRef CAS Google Scholar
First citationNangia, A., Gunnam, A. & Kuthuru, S. (2018). Cryst. Growth Des. 18, 5, 2824–2835.  Google Scholar
First citationNenoff, P., Haustein, U. F. & Hittel, N. (2004). Chemotherapy, 50, 196–201.  Web of Science CrossRef PubMed CAS Google Scholar
First citationO'Malley, C., McArdle, P. & Erxleben, A. (2022). Cryst. Growth Des. 22, 3060–3071.  Web of Science CAS PubMed Google Scholar
First citationReddy, S. J., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, A. K., Kumar, K. A., Goud, R. N. & Nangia, A. K. (2011). J. Pharm. Sci. 100, 3160–3176.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStahly, G. P. (2009). Cryst. Growth Des. 9, 10, 4212–4229. DOI: 10.1021/cg900873t.  Google Scholar
First citationSuresh, A., Gonde, S., Mondal, P. K., Sahoo, J. & Chopra, D. (2020). J. Mol. Struct. 20, 128806.  Web of Science CSD CrossRef Google Scholar
First citationVishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499–516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, S., Zhao, F., Pang, H., Chen, L., Shi, R. & Fang, B. (2022). J. Mol. Struct. 1265, 133335.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds