research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two polymorphs of N,N′-di­phenyl-2-[1-(propyl­amino)­ethyl­­idene]propanedi­amide

crossmark logo

aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de

Edited by S. Parkin, University of Kentucky, USA (Received 22 February 2023; accepted 6 March 2023; online 10 March 2023)

Two polymorphs of the title compound, C20H23N3O2, have been isolated. Polymorph (I) crystallizes in the monoclinic space group P21/n and polymorph (II) in the tetra­gonal space group I41/a. The main difference between the two polymorphs on the mol­ecular level is the orientation of the n-propyl group. This group is anti­periplanar in (I) and synclinal in (II). The core of the mol­ecule consists of two carbamoyl units bound to an enamine unit. The most prominent features are intra­molecular N—H⋯O hydrogen bonds in both polymorphs. Both polymorphs form dimers with graph set R22(12) via inter­molecular N—H⋯O hydrogen bonds. Adjacent dimers of (I) are connected via a weak C—H⋯O inter­action, resulting in a chain parallel to the crystallographic a-axis. The dimers of (II) are connected by weak C—H⋯π inter­actions, forming inter­molecular chains along the c-axis direction.

1. Chemical context

N,N′-Diphenyl-2-[1-(propyl­amino)­ethyl­idene]propanedi­amide is an insertion product from an enamine and phenyl iso­cyanate. This was obtained in our work with different types of silicon–nitro­gen compounds (Herbig et al., 2019a[Herbig, M., Böhme, U. & Kroke, E. (2019a). Z. Anorg. Allg. Chem. 645, 377-387.], 2021[Herbig, M., Scholz, H., Böhme, U., Günther, B., Gevorgyan, L., Gerlach, D., Wagler, J., Schwarzer, S. & Kroke, E. (2021). Main Group Met. Chem. 44, 51-72.], 2022[Herbig, M., Böhme, U. & Kroke, E. (2022). Z. Naturforsch. B, 77, 55-67.]). The Si—N bonds can be subjected to insertion of different heteroallenes such as CO2 and iso­cyanates (Kraushaar et al., 2012[Kraushaar, K., Wiltzsch, C., Wagler, J., Böhme, U., Schwarzer, A., Roewer, G. & Kroke, E. (2012). Organometallics, 31, 4779-4785.], 2014[Kraushaar, K., Schmidt, D., Schwarzer, A. & Kroke, E. (2014). CO2 Chemistry. In Advances in Inorganic Chemistry, edited by M. Aresta & R. van Eldik, ch. 4, pp. 117-162. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-420221-4.00004-4.], 2017[Kraushaar, K., Herbig, M., Schmidt, D., Wagler, J., Böhme, U. & Kroke, E. (2017). Z. Naturforsch. B, 72, 909-921.]; Herbig et al., 2018[Herbig, M., Böhme, U. & Kroke, E. (2018). Inorg. Chim. Acta, 473, 20-28.], 2019b[Herbig, M., Gevorgyan, L., Pflug, M., Wagler, J., Schwarzer, S. & Kroke, E. (2019b). ChemistryOpen 9, 894-902, https://doi. org/10.1002/. 201900269.]). Insertion reactions into silicon-substituted enamines were investigated as a continuation of our research in this area.

[Scheme 1]

2. Structural commentary

Two polymorphs of the title compound were obtained from a single reaction batch. Polymorph (I) crystallizes in the monoclinic space group P21/n, polymorph (II) in the tetra­gonal space group I41/a. The main difference between the polymorphs on the mol­ecular level is the orientation of the n-propyl group. This group is anti­periplanar in (I) and synclinal in (II), as can be seen from the values of the torsion angles C1—C2—C3—N1 (see Tables 1[link], 2[link] and Figs. 1[link], 2[link]). The n-propyl group with C1—C2—C3 is disordered in (II), with site occupancies of 0.794 (7) and 0.206 (7) for parts A and B, respectively.

Table 1
Selected geometric parameters (Å, °) for (I)[link]

N1—C4 1.331 (2) C7—N2 1.364 (2)
C4—C5 1.400 (2) C14—O2 1.254 (2)
C7—O1 1.237 (2) C14—N3 1.360 (2)
       
C1—C2—C3—N1 −169.39 (17)    

Table 2
Selected geometric parameters (Å, °) for (II)[link]

N1—C4 1.331 (3) C7—N2 1.369 (3)
C4—C5 1.394 (3) C14—O2 1.257 (2)
C7—O1 1.234 (2) C14—N3 1.366 (2)
       
C1A—C2A—C3A—N1 65.0 (4) C1B—C2B—C3B—N1 −46 (2)
[Figure 1]
Figure 1
Diagram of polymorph (I) showing the atom-labelling scheme. Atomic displacement parameters are at the 50% probability level.
[Figure 2]
Figure 2
Diagram of polymorph (II) showing the atom-labelling scheme. Atomic displacement parameters are at the 50% probability level.

The double bond between C4 and C5 is slightly elongated [1.400 (2) and 1.394 (3) Å], but not as strongly as in the push–pull alkenes from cyclic ketene-N,N′-acetals, which have values of 1.45 to 1.47 Å (Ye et al., 2010[Ye, G., Chatterjee, S., Li, M., Zhou, A., Song, Y., Barker, B. L., Chen, C., Beard, D. J., Henry, W. P. & Pittman, C. U. (2010). Tetrahedron, 66, 2919-2927.]). The carbamoyl units are characterized by C=O double bonds and shortened C—N bonds (Tables 1[link] and 2[link]), the latter having values between 1.360 (2) to 1.369 (3) Å, whereas the sum of covalent radii of C and N is 1.472 Å (Pauling, 1962[Pauling, L. (1962). Die Natur der chemischen Bindung, p. 213. Weinheim: Verlag Chemie.]).

The core of the mol­ecule consists of two carbamoyl units (N2—C7—O1 and N3—C14—O2) bound to an enamine unit (C5—C4—N1). These planar units span certain dihedral angles between each other. The dihedral angles are listed in Table 3[link]. The dihedral angle between N1—C4—C5 and N3—C14—O2 is small in both polymorphs, with values of 10.1 (4)° in (I) and 8.0 (3)° in (II). The dihedral angles between plane N1—C4—C5 and plane N2—C7—O1 adopt larger values of 49.0 (2)° in (I) and 51.5 (2)° in (II). This means that the carbamoyl unit N2—C7—O1 is rotated further away from the enamine group than the other carbamoyl unit. Small differences between both polymorphs are found in the orientation of the phenyl groups relative to the carbamoyl units (see Table 3[link]).

Table 3
Dihedral angles (°) between selected planes in (I) and (II)

Plane 1 Plane 2 (I) (II)
N1/C4/C5 N3/C14/O2 10.1 (4) 8.0 (3)
N1/C4/C5 N2/C7/O1 49.0 (2) 51.5 (3)
N2/C7/O1 phenyl C8–C13 26.8 (2) 23.6 (2)
N3/C14/O2 phenyl C15–C20 17.1 (3) 10.4 (2)

There are several intra­molecular hydrogen bonds in (I) and (II). The inter­actions N1—H1N⋯O2 and N3—H3N⋯O1 feature H⋯O distances below 2 Å (see Tables 4[link] and 5[link]), which qualifies these as hydrogen bonds of moderate strength (Gilli & Gilli, 2009[Gilli, P. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. Oxford University Press.]). Further intra­molecular inter­actions are present between C6—H6B⋯N2, C13—H13⋯O1, and C20—H20⋯O2 in both polymorphs.

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg2 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.90 (2) 1.87 (2) 2.623 (2) 139 (2)
N3—H3N⋯O1 0.89 (2) 1.92 (2) 2.687 (2) 142.9 (19)
C6—H6B⋯N2 0.98 2.45 2.943 (3) 111
C13—H13⋯O1 0.95 2.37 2.905 (2) 115
C20—H20⋯O2 0.95 2.29 2.854 (2) 117
N2—H2N⋯O2i 0.87 (2) 2.02 (2) 2.843 (2) 158 (2)
C10—H10⋯O1ii 0.95 2.76 3.635 (2) 154
C13—H13⋯Cg2iii 0.95 3.40 4.011 (2) 124
Symmetry codes: (i) [-x, -y+2, -z+1]; (ii) [x-1, y, z]; (iii) x, y, z+1.

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.91 (2) 1.92 (2) 2.638 (2) 135 (2)
N3—H3N⋯O1 0.90 (3) 1.94 (3) 2.712 (2) 144 (2)
C6—H6B⋯N2 0.98 2.46 2.968 (3) 112
C13—H13⋯O1 0.95 2.33 2.879 (3) 116
C20—H20⋯O2 0.95 2.30 2.887 (3) 119
N2—H2N⋯O2i 0.88 (2) 2.08 (2) 2.914 (2) 157 (2)
C9—H9⋯O2i 0.95 2.91 3.622 (3) 133
C13—H13⋯Cg2ii 0.95 3.37 3.960 (3) 122
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [x, y, z-1].

3. Supra­molecular features

The density of (I) is 1.243 and of (II) 1.235 Mg m−3. The mol­ecular arrangement is different in both crystals because of the crystal symmetry. The 21 screw axes running parallel to the b-axis in the monoclinic crystal (I) lead to a parallel arrangement of mol­ecules in the unit cell. In contrast, in the tetra­gonal crystal of (II), the mol­ecules are grouped around the 41 screw axes running parallel to the c-axis. This leads to pairs of mol­ecules that are oriented at an angle of 90° to each other. In (I) and (II), these dimers are formed by the inter­molecular N2—H2N⋯O2 hydrogen bonds, described by graph set R22(12) (see Fig. 3[link]). Adjacent dimers are connected by a weak C10—H10⋯O1 inter­action, resulting in a chain along the crystallographic a-axis direction in (I) (Fig. 4[link]). In (II), these dimers are connected not via this C—H⋯O contact, but by weak C—H⋯π inter­actions, forming inter­molecular chains along the c-axis direction (Fig. 5[link]). The latter are also observed in (I).

[Figure 3]
Figure 3
Inter­molecular N—H⋯O inter­actions leading to dimers in the crystal structure of (I), representative of both polymorphs.
[Figure 4]
Figure 4
Packing diagram of polymorph (I) viewed along the c axis. Inter­molecular N—H⋯O and C—H⋯O inter­actions are shown.
[Figure 5]
Figure 5
Packing diagram of polymorph (II) viewed along the b axis. Inter­molecular N—H⋯O, C—H⋯O and C—H⋯π inter­actions are shown.

4. Database survey

Related structures are 2,2′-[benzyl­idene­methyl­enebis(carbonyl­amino)]di­benzoic acid (Taga et al., 1985[Taga, T., Yamamoto, N., Riku, J., Yoshinaga, J. & Kato, Y. (1985). Acta Cryst. C41, 1235-1237.]), bis­(N,N-diphen­yl)(m-chloro­benzyl­idene)malonyldi­amide (Kerr et al., 1985[Kerr, K. A., Richardson, J. F. & Eddy, D. D. (1985). ACA Abstr. Papers (Winter), 13, 67.]; CSD refode: FACDES) and 1,1-bis­(N-phenyl­carbamo­yl)-2-(p-chloro­phen­yl)ethyl­ene (Kerr & Ashmore, 1973[Kerr, K. A. & Ashmore, J. P. (1973). Stockholm Symp. Biol. Struct. 91.]; CSD refode: PCMETY). Furthermore, several related push–pull alkenes from cyclic ketene-N,N′-acetals have been prepared and structurally characterized (Ye et al., 2010[Ye, G., Chatterjee, S., Li, M., Zhou, A., Song, Y., Barker, B. L., Chen, C., Beard, D. J., Henry, W. P. & Pittman, C. U. (2010). Tetrahedron, 66, 2919-2927.]). Therein, the push–pull effect reduces the double-bond order by intra­molecular charge transfer. This makes such alkenes inter­esting as substrates for second order non-linear optical materials.

5. Synthesis and crystallization

N,N′-Diphenyl-2-[1-(propyl­amino)­ethyl­idene]propanedi­amide was obtained from the reaction of a silylated enamine (N-propyl-N-tri­methyl­silylprop-1-en-2-amine) and phenyl iso­cyanate. As shown in Fig. 6[link], insertion of Ph-NCO into both C—H bonds of the enamine takes place. This reaction is possible due to the lability of the β-hydrogen atoms of the enamine (Ozaki, 1972[Ozaki, S. (1972). Chem. Rev. 72, 457-496.]). Traces of water lead to the cleavage of the Si—N bond from the inter­mediate to yield the title compound.

[Figure 6]
Figure 6
Reaction scheme for the synthesis of the title compounds.

To a solution of 0.46 g (3 mmol) N-propyl-N-tri­methyl­silylprop-1-en-2-amine in 10 mL of n-pentane was added dropwise 0.60 g (5 mmol) of phenyl­iso­cyanate at 273 K. After standing three days at room temperature, some crystals suitable for single-crystal X-ray diffraction were obtained. The polymorphs were recognised by their different crystal shapes: (I) forms small prisms, (II) forms large flat prisms. Both are colourless.

NMR spectroscopy showed that the batch product is a mixture of many components. Further purification of the product mixture was not successful.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Hydrogen atoms bonded to C were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for H(Ph), 0.99 for CH2, and 0.98 Å for CH3. Uiso(H) = xUeq(C), where x = 1.2 for H(Ph) and CH2, and 1.5 for CH3. Hydrogen atoms on nitro­gen were localized from residual electron-density maps and were freely refined.

Table 6
Experimental details

  (I) (II)
Crystal data
Chemical formula C20H23N3O2 C20H23N3O2
Mr 337.41 337.41
Crystal system, space group Monoclinic, P21/n Tetragonal, I41/a
Temperature (K) 193 193
a, b, c (Å) 8.3881 (4), 24.3653 (9), 9.2614 (5) 27.7071 (11), 27.7071 (11), 9.4575 (4)
α, β, γ (°) 90, 107.724 (4), 90 90, 90, 90
V3) 1802.99 (15) 7260.4 (7)
Z 4 16
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.48 × 0.21 × 0.18 0.49 × 0.35 × 0.25
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2T
Absorption correction Integration (X-RED; Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Integration (X-RED; Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.820, 0.980 0.844, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 18377, 3882, 2967 23893, 3884, 2635
Rint 0.054 0.042
(sin θ/λ)max−1) 0.639 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.129, 1.15 0.052, 0.132, 1.07
No. of reflections 3882 3884
No. of parameters 240 269
No. of restraints 0 69
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.23 0.25, −0.19
Computer programs: X-AREA and X-RED (Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe, 2009); cell refinement: X-AREA (Stoe, 2009); data reduction: X-RED (Stoe, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

N,N'-Diphenyl-2-[1-(propylamino)ethylidene]propanediamide (I) top
Crystal data top
C20H23N3O2F(000) = 720
Mr = 337.41Dx = 1.243 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3881 (4) ÅCell parameters from 18377 reflections
b = 24.3653 (9) Åθ = 2.3–27.4°
c = 9.2614 (5) ŵ = 0.08 mm1
β = 107.724 (4)°T = 193 K
V = 1802.99 (15) Å3Prism, colourless
Z = 40.48 × 0.21 × 0.18 mm
Data collection top
Stoe IPDS 2
diffractometer
3882 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2967 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.054
rotation method scansθmax = 27.0°, θmin = 2.5°
Absorption correction: integration
(X-RED; Stoe, 2009)
h = 1010
Tmin = 0.820, Tmax = 0.980k = 3031
18377 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.6249P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
3882 reflectionsΔρmax = 0.14 e Å3
240 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1490 (3)1.22813 (9)0.6450 (3)0.0565 (6)
H1A0.0590511.2344020.6902160.085*
H1B0.1384001.2543510.5623690.085*
H1C0.2575911.2331350.7223920.085*
C20.1367 (3)1.17012 (8)0.5832 (2)0.0457 (5)
H2A0.0345811.1667450.4951470.055*
H2B0.2345871.1625170.5478660.055*
C30.1304 (2)1.12830 (7)0.7020 (2)0.0363 (4)
H3A0.2209021.1358050.7972920.044*
H3B0.0219491.1310480.7233280.044*
N10.15026 (19)1.07318 (6)0.64863 (18)0.0342 (3)
H1N0.187 (3)1.0698 (10)0.567 (3)0.050 (6)*
C40.1460 (2)1.02613 (7)0.72048 (19)0.0311 (4)
C50.1863 (2)0.97588 (7)0.66711 (19)0.0297 (4)
C60.1047 (2)1.03163 (8)0.8671 (2)0.0399 (4)
H6A0.1751441.0601650.9296580.060*
H6B0.1253170.9965850.9215330.060*
H6C0.0134061.0417180.8453750.060*
C70.1491 (2)0.92312 (7)0.72906 (19)0.0311 (4)
O10.24257 (16)0.88268 (6)0.75027 (15)0.0413 (3)
N20.00388 (19)0.92087 (6)0.75185 (18)0.0336 (3)
H2N0.073 (3)0.9468 (10)0.708 (3)0.049 (6)*
C80.0758 (2)0.87725 (7)0.81029 (19)0.0311 (4)
C90.2493 (2)0.87627 (8)0.7747 (2)0.0362 (4)
H90.3143130.9037960.7106460.043*
C100.3278 (2)0.83562 (8)0.8319 (2)0.0416 (4)
H100.4463930.8351270.8064740.050*
C110.2340 (3)0.79569 (8)0.9259 (2)0.0448 (5)
H110.2876480.7678290.9659150.054*
C120.0622 (3)0.79650 (9)0.9612 (2)0.0452 (5)
H120.0023350.7690471.0258720.054*
C130.0176 (2)0.83696 (8)0.9033 (2)0.0390 (4)
H130.1361330.8369580.9276130.047*
C140.25399 (19)0.97405 (7)0.53946 (19)0.0299 (4)
O20.25269 (15)1.01470 (5)0.45613 (14)0.0342 (3)
N30.3185 (2)0.92538 (7)0.51188 (18)0.0359 (4)
H3N0.313 (3)0.8986 (9)0.576 (2)0.041 (6)*
C150.3593 (2)0.90910 (8)0.3819 (2)0.0333 (4)
C160.3682 (2)0.85294 (9)0.3598 (2)0.0425 (5)
H160.3479210.8281830.4315180.051*
C170.4061 (3)0.83256 (10)0.2347 (2)0.0498 (5)
H170.4122000.7940520.2212700.060*
C180.4352 (2)0.86814 (10)0.1293 (2)0.0485 (5)
H180.4599970.8543330.0426420.058*
C190.4277 (2)0.92404 (10)0.1514 (2)0.0465 (5)
H190.4472910.9486030.0789950.056*
C200.3919 (2)0.94502 (8)0.2779 (2)0.0395 (4)
H200.3898360.9835520.2929000.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0671 (15)0.0358 (11)0.0656 (15)0.0032 (10)0.0187 (12)0.0015 (10)
C20.0514 (12)0.0372 (11)0.0476 (11)0.0013 (9)0.0140 (9)0.0014 (9)
C30.0352 (9)0.0313 (9)0.0425 (10)0.0012 (7)0.0122 (8)0.0075 (8)
N10.0357 (8)0.0317 (8)0.0375 (8)0.0006 (6)0.0142 (7)0.0033 (6)
C40.0251 (8)0.0352 (9)0.0332 (9)0.0010 (7)0.0094 (7)0.0017 (7)
C50.0267 (8)0.0323 (9)0.0310 (8)0.0009 (6)0.0103 (7)0.0006 (7)
C60.0433 (10)0.0433 (11)0.0375 (10)0.0001 (8)0.0186 (8)0.0047 (8)
C70.0289 (8)0.0357 (9)0.0298 (8)0.0020 (7)0.0106 (7)0.0011 (7)
O10.0395 (7)0.0422 (8)0.0472 (8)0.0115 (6)0.0210 (6)0.0118 (6)
N20.0292 (7)0.0316 (8)0.0418 (8)0.0020 (6)0.0137 (6)0.0064 (7)
C80.0342 (9)0.0313 (9)0.0304 (8)0.0012 (7)0.0137 (7)0.0011 (7)
C90.0334 (9)0.0385 (10)0.0389 (10)0.0008 (7)0.0143 (8)0.0017 (8)
C100.0353 (10)0.0450 (11)0.0485 (11)0.0043 (8)0.0186 (8)0.0006 (9)
C110.0471 (11)0.0396 (11)0.0529 (12)0.0077 (9)0.0228 (9)0.0053 (9)
C120.0451 (11)0.0403 (11)0.0505 (12)0.0015 (8)0.0150 (9)0.0117 (9)
C130.0329 (9)0.0402 (10)0.0432 (10)0.0001 (8)0.0106 (8)0.0070 (8)
C140.0233 (7)0.0337 (9)0.0326 (9)0.0006 (6)0.0080 (6)0.0011 (7)
O20.0344 (6)0.0347 (7)0.0373 (7)0.0029 (5)0.0165 (5)0.0046 (5)
N30.0414 (8)0.0329 (8)0.0393 (8)0.0073 (7)0.0210 (7)0.0036 (7)
C150.0255 (8)0.0406 (10)0.0352 (9)0.0045 (7)0.0115 (7)0.0016 (7)
C160.0421 (10)0.0425 (11)0.0459 (11)0.0077 (8)0.0180 (9)0.0017 (9)
C170.0481 (12)0.0524 (13)0.0495 (12)0.0083 (9)0.0158 (9)0.0144 (10)
C180.0359 (10)0.0712 (15)0.0390 (10)0.0057 (10)0.0124 (8)0.0138 (10)
C190.0372 (10)0.0668 (14)0.0397 (11)0.0019 (9)0.0181 (8)0.0006 (10)
C200.0354 (10)0.0450 (11)0.0431 (10)0.0026 (8)0.0193 (8)0.0001 (8)
Geometric parameters (Å, º) top
C1—C21.517 (3)C9—C101.381 (3)
C1—H1A0.9800C9—H90.9500
C1—H1B0.9800C10—C111.381 (3)
C1—H1C0.9800C10—H100.9500
C2—C31.512 (3)C11—C121.377 (3)
C2—H2A0.9900C11—H110.9500
C2—H2B0.9900C12—C131.388 (3)
C3—N11.458 (2)C12—H120.9500
C3—H3A0.9900C13—H130.9500
C3—H3B0.9900C14—O21.254 (2)
N1—C41.331 (2)C14—N31.360 (2)
N1—H1N0.90 (2)N3—C151.405 (2)
C4—C51.400 (2)N3—H3N0.89 (2)
C4—C61.506 (2)C15—C201.389 (3)
C5—C141.460 (2)C15—C161.389 (3)
C5—C71.479 (2)C16—C171.384 (3)
C6—H6A0.9800C16—H160.9500
C6—H6B0.9800C17—C181.381 (3)
C6—H6C0.9800C17—H170.9500
C7—O11.237 (2)C18—C191.382 (3)
C7—N21.364 (2)C18—H180.9500
N2—C81.409 (2)C19—C201.392 (3)
N2—H2N0.87 (2)C19—H190.9500
C8—C131.382 (3)C20—H200.9500
C8—C91.391 (2)
C2—C1—H1A109.5C9—C8—N2117.48 (16)
C2—C1—H1B109.5C10—C9—C8120.55 (18)
H1A—C1—H1B109.5C10—C9—H9119.7
C2—C1—H1C109.5C8—C9—H9119.7
H1A—C1—H1C109.5C11—C10—C9120.02 (18)
H1B—C1—H1C109.5C11—C10—H10120.0
C3—C2—C1111.53 (18)C9—C10—H10120.0
C3—C2—H2A109.3C12—C11—C10119.58 (18)
C1—C2—H2A109.3C12—C11—H11120.2
C3—C2—H2B109.3C10—C11—H11120.2
C1—C2—H2B109.3C11—C12—C13120.78 (19)
H2A—C2—H2B108.0C11—C12—H12119.6
N1—C3—C2109.93 (15)C13—C12—H12119.6
N1—C3—H3A109.7C8—C13—C12119.77 (18)
C2—C3—H3A109.7C8—C13—H13120.1
N1—C3—H3B109.7C12—C13—H13120.1
C2—C3—H3B109.7O2—C14—N3120.18 (15)
H3A—C3—H3B108.2O2—C14—C5122.81 (16)
C4—N1—C3126.89 (16)N3—C14—C5117.00 (15)
C4—N1—H1N114.0 (15)C14—N3—C15128.45 (16)
C3—N1—H1N118.2 (15)C14—N3—H3N114.1 (14)
N1—C4—C5122.05 (16)C15—N3—H3N116.0 (14)
N1—C4—C6114.99 (16)C20—C15—C16119.20 (17)
C5—C4—C6122.87 (16)C20—C15—N3124.55 (17)
C4—C5—C14120.53 (15)C16—C15—N3116.25 (17)
C4—C5—C7121.41 (15)C17—C16—C15120.9 (2)
C14—C5—C7117.88 (15)C17—C16—H16119.6
C4—C6—H6A109.5C15—C16—H16119.6
C4—C6—H6B109.5C18—C17—C16120.1 (2)
H6A—C6—H6B109.5C18—C17—H17119.9
C4—C6—H6C109.5C16—C17—H17119.9
H6A—C6—H6C109.5C17—C18—C19119.21 (19)
H6B—C6—H6C109.5C17—C18—H18120.4
O1—C7—N2121.60 (16)C19—C18—H18120.4
O1—C7—C5123.75 (15)C18—C19—C20121.2 (2)
N2—C7—C5114.50 (15)C18—C19—H19119.4
C7—N2—C8128.54 (16)C20—C19—H19119.4
C7—N2—H2N115.0 (15)C15—C20—C19119.38 (19)
C8—N2—H2N115.2 (15)C15—C20—H20120.3
C13—C8—C9119.29 (17)C19—C20—H20120.3
C13—C8—N2123.20 (16)
C1—C2—C3—N1169.39 (17)C10—C11—C12—C130.0 (3)
C2—C3—N1—C4177.75 (17)C9—C8—C13—C120.6 (3)
C3—N1—C4—C5172.23 (16)N2—C8—C13—C12177.48 (18)
C3—N1—C4—C64.4 (3)C11—C12—C13—C80.6 (3)
N1—C4—C5—C147.3 (3)C4—C5—C14—O212.5 (3)
C6—C4—C5—C14169.03 (16)C7—C5—C14—O2162.54 (15)
N1—C4—C5—C7167.58 (16)C4—C5—C14—N3168.22 (15)
C6—C4—C5—C716.1 (2)C7—C5—C14—N316.7 (2)
C4—C5—C7—O1142.19 (18)O2—C14—N3—C1513.5 (3)
C14—C5—C7—O142.8 (2)C5—C14—N3—C15165.78 (17)
C4—C5—C7—N242.2 (2)C14—N3—C15—C2022.0 (3)
C14—C5—C7—N2132.82 (16)C14—N3—C15—C16158.64 (18)
O1—C7—N2—C85.0 (3)C20—C15—C16—C171.1 (3)
C5—C7—N2—C8179.29 (16)N3—C15—C16—C17179.48 (18)
C7—N2—C8—C1324.0 (3)C15—C16—C17—C180.3 (3)
C7—N2—C8—C9157.83 (18)C16—C17—C18—C190.7 (3)
C13—C8—C9—C100.1 (3)C17—C18—C19—C200.2 (3)
N2—C8—C9—C10178.08 (17)C16—C15—C20—C192.0 (3)
C8—C9—C10—C110.4 (3)N3—C15—C20—C19178.67 (17)
C9—C10—C11—C120.5 (3)C18—C19—C20—C151.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.90 (2)1.87 (2)2.623 (2)139 (2)
N3—H3N···O10.89 (2)1.92 (2)2.687 (2)142.9 (19)
C6—H6B···N20.982.452.943 (3)111
C13—H13···O10.952.372.905 (2)115
C20—H20···O20.952.292.854 (2)117
N2—H2N···O2i0.87 (2)2.02 (2)2.843 (2)158 (2)
C10—H10···O1ii0.952.763.635 (2)154
C13—H13···Cg2iii0.953.404.011 (2)124
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x, y, z+1.
N,N'-Diphenyl-2-[1-(propylamino)ethylidene]propanediamide (II) top
Crystal data top
C20H23N3O2Dx = 1.235 Mg m3
Mr = 337.41Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 23893 reflections
a = 27.7071 (11) Åθ = 2.7–27.2°
c = 9.4575 (4) ŵ = 0.08 mm1
V = 7260.4 (7) Å3T = 193 K
Z = 16Prism, colourless
F(000) = 28800.49 × 0.35 × 0.25 mm
Data collection top
Stoe IPDS 2T
diffractometer
3884 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2635 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.042
rotation method scansθmax = 26.9°, θmin = 2.7°
Absorption correction: integration
(X-RED; Stoe, 2009)
h = 3430
Tmin = 0.844, Tmax = 0.980k = 3435
23893 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0409P)2 + 6.4556P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3884 reflectionsΔρmax = 0.25 e Å3
269 parametersΔρmin = 0.18 e Å3
69 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.33034 (19)0.4509 (2)1.0073 (5)0.1009 (15)0.794 (7)
H1A0.3456120.4804951.0424880.151*0.794 (7)
H1B0.3159920.4332441.0865380.151*0.794 (7)
H1C0.3050920.4593560.9390200.151*0.794 (7)
C2A0.36613 (16)0.42112 (13)0.9393 (4)0.0792 (12)0.794 (7)
H2A0.3497290.3925230.8989110.095*0.794 (7)
H2B0.3889150.4094341.0122670.095*0.794 (7)
C3A0.39475 (11)0.44513 (12)0.8236 (4)0.0557 (9)0.794 (7)
H3A0.4161730.4213270.7772130.067*0.794 (7)
H3B0.3727030.4586510.7513830.067*0.794 (7)
C1B0.3142 (5)0.4689 (5)0.9652 (16)0.064 (4)0.206 (7)
H1D0.3353160.4898021.0213940.095*0.206 (7)
H1E0.2948870.4486251.0285870.095*0.206 (7)
H1F0.2926410.4888730.9073980.095*0.206 (7)
C2B0.3429 (5)0.4388 (5)0.8749 (18)0.082 (4)0.206 (7)
H2C0.3347390.4486840.7772080.098*0.206 (7)
H2D0.3299720.4057920.8867900.098*0.206 (7)
C3B0.3960 (4)0.4337 (4)0.8773 (17)0.060 (4)0.206 (7)
H3C0.4064000.4166640.7904960.072*0.206 (7)
H3D0.4052040.4134610.9593050.072*0.206 (7)
N10.42335 (7)0.48356 (7)0.8871 (2)0.0554 (5)
H1N0.4203 (8)0.4899 (8)0.981 (3)0.062 (7)*
C40.45371 (7)0.51141 (7)0.8148 (2)0.0489 (5)
C50.47728 (7)0.55038 (7)0.8774 (2)0.0441 (4)
C60.45777 (9)0.50023 (10)0.6592 (2)0.0673 (6)
H6A0.4749370.4696110.6465120.101*
H6B0.4756210.5261380.6118070.101*
H6C0.4254020.4976860.6180890.101*
C70.51595 (8)0.57654 (7)0.8002 (2)0.0503 (5)
O10.51926 (7)0.62093 (5)0.79818 (17)0.0724 (5)
N20.54997 (6)0.54761 (6)0.73837 (19)0.0496 (4)
H2N0.5496 (8)0.5170 (8)0.764 (2)0.055 (6)*
C80.59020 (8)0.56177 (7)0.6563 (2)0.0486 (5)
C90.62718 (8)0.52880 (9)0.6397 (2)0.0607 (6)
H90.6250360.4979640.6831700.073*
C100.66752 (9)0.54064 (11)0.5594 (3)0.0747 (7)
H100.6929310.5179010.5488430.090*
C110.67088 (10)0.58508 (11)0.4952 (3)0.0752 (7)
H110.6986960.5933380.4417380.090*
C120.63374 (11)0.61724 (9)0.5093 (3)0.0758 (8)
H120.6356940.6476780.4634310.091*
C130.59336 (10)0.60625 (8)0.5892 (3)0.0660 (6)
H130.5679140.6290320.5980670.079*
C140.46565 (7)0.56580 (6)1.0214 (2)0.0409 (4)
O20.43901 (5)0.54185 (4)1.10290 (14)0.0463 (3)
N30.48566 (6)0.60834 (6)1.06502 (18)0.0480 (4)
H3N0.5014 (9)0.6240 (9)0.996 (3)0.069 (7)*
C150.48675 (7)0.62908 (7)1.2011 (2)0.0441 (4)
C160.51880 (8)0.66737 (7)1.2202 (2)0.0539 (5)
H160.5385060.6776471.1437080.065*
C170.52215 (9)0.69048 (8)1.3491 (3)0.0652 (6)
H170.5437930.7167911.3603520.078*
C180.49444 (10)0.67569 (9)1.4611 (3)0.0726 (7)
H180.4969250.6914301.5500030.087*
C190.46305 (10)0.63785 (9)1.4430 (3)0.0714 (7)
H190.4439560.6274851.5207410.086*
C200.45852 (8)0.61441 (8)1.3144 (2)0.0556 (5)
H200.4363090.5885371.3037910.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.092 (3)0.118 (3)0.093 (3)0.055 (2)0.009 (2)0.002 (2)
C2A0.0903 (19)0.0684 (16)0.0790 (18)0.0305 (14)0.0128 (15)0.0055 (13)
C3A0.0578 (14)0.0513 (14)0.0580 (15)0.0049 (11)0.0094 (12)0.0071 (12)
C1B0.060 (4)0.060 (5)0.071 (5)0.001 (3)0.005 (3)0.003 (3)
C2B0.081 (5)0.082 (5)0.084 (5)0.001 (2)0.000 (2)0.004 (2)
C3B0.060 (4)0.061 (4)0.059 (4)0.001 (2)0.002 (2)0.002 (2)
N10.0518 (10)0.0524 (10)0.0620 (12)0.0028 (8)0.0085 (9)0.0123 (9)
C40.0460 (11)0.0499 (11)0.0508 (11)0.0097 (9)0.0066 (9)0.0037 (9)
C50.0471 (11)0.0411 (10)0.0440 (10)0.0058 (8)0.0026 (9)0.0001 (8)
C60.0674 (15)0.0805 (16)0.0539 (13)0.0079 (12)0.0086 (11)0.0185 (12)
C70.0650 (13)0.0431 (11)0.0428 (10)0.0069 (9)0.0047 (10)0.0027 (9)
O10.1109 (14)0.0413 (8)0.0649 (10)0.0050 (8)0.0316 (10)0.0050 (7)
N20.0557 (10)0.0402 (9)0.0528 (10)0.0032 (7)0.0092 (8)0.0039 (8)
C80.0553 (12)0.0474 (11)0.0432 (10)0.0078 (9)0.0026 (9)0.0018 (9)
C90.0566 (13)0.0656 (14)0.0598 (13)0.0030 (11)0.0044 (11)0.0078 (11)
C100.0574 (14)0.094 (2)0.0726 (16)0.0023 (13)0.0121 (13)0.0023 (15)
C110.0698 (17)0.0887 (19)0.0671 (15)0.0283 (15)0.0151 (13)0.0060 (14)
C120.100 (2)0.0582 (14)0.0691 (16)0.0249 (14)0.0257 (15)0.0036 (12)
C130.0837 (17)0.0497 (12)0.0646 (14)0.0042 (11)0.0186 (13)0.0022 (11)
C140.0398 (10)0.0369 (9)0.0459 (10)0.0048 (7)0.0006 (8)0.0017 (8)
O20.0458 (7)0.0411 (7)0.0521 (8)0.0017 (6)0.0064 (6)0.0013 (6)
N30.0581 (10)0.0397 (9)0.0462 (9)0.0063 (7)0.0079 (8)0.0011 (7)
C150.0453 (10)0.0369 (10)0.0501 (11)0.0060 (8)0.0033 (9)0.0027 (8)
C160.0558 (12)0.0415 (11)0.0645 (13)0.0025 (9)0.0075 (10)0.0076 (10)
C170.0664 (15)0.0504 (12)0.0789 (16)0.0022 (11)0.0022 (13)0.0192 (12)
C180.0843 (18)0.0642 (15)0.0694 (16)0.0026 (13)0.0052 (14)0.0263 (13)
C190.0795 (17)0.0749 (16)0.0598 (14)0.0014 (13)0.0221 (13)0.0151 (13)
C200.0565 (12)0.0522 (12)0.0580 (13)0.0043 (9)0.0133 (10)0.0099 (10)
Geometric parameters (Å, º) top
C1A—C2A1.442 (6)C7—N21.369 (3)
C1A—H1A0.9800N2—C81.414 (3)
C1A—H1B0.9800N2—H2N0.88 (2)
C1A—H1C0.9800C8—C91.382 (3)
C2A—C3A1.506 (5)C8—C131.389 (3)
C2A—H2A0.9900C9—C101.390 (3)
C2A—H2B0.9900C9—H90.9500
C3A—N11.457 (3)C10—C111.376 (4)
C3A—H3A0.9900C10—H100.9500
C3A—H3B0.9900C11—C121.368 (4)
C1B—C2B1.435 (14)C11—H110.9500
C1B—H1D0.9800C12—C131.384 (3)
C1B—H1E0.9800C12—H120.9500
C1B—H1F0.9800C13—H130.9500
C2B—C3B1.477 (14)C14—O21.257 (2)
C2B—H2C0.9900C14—N31.366 (2)
C2B—H2D0.9900N3—C151.410 (3)
C3B—N11.580 (12)N3—H3N0.90 (3)
C3B—H3C0.9900C15—C201.387 (3)
C3B—H3D0.9900C15—C161.395 (3)
N1—C41.331 (3)C16—C171.380 (3)
N1—H1N0.91 (2)C16—H160.9500
C4—C51.394 (3)C17—C181.370 (4)
C4—C61.508 (3)C17—H170.9500
C5—C141.463 (3)C18—C191.373 (4)
C5—C71.485 (3)C18—H180.9500
C6—H6A0.9800C19—C201.385 (3)
C6—H6B0.9800C19—H190.9500
C6—H6C0.9800C20—H200.9500
C7—O11.234 (2)
C2A—C1A—H1A109.5H6A—C6—H6C109.5
C2A—C1A—H1B109.5H6B—C6—H6C109.5
H1A—C1A—H1B109.5O1—C7—N2121.7 (2)
C2A—C1A—H1C109.5O1—C7—C5123.24 (19)
H1A—C1A—H1C109.5N2—C7—C5114.91 (17)
H1B—C1A—H1C109.5C7—N2—C8127.97 (18)
C1A—C2A—C3A115.7 (3)C7—N2—H2N115.9 (14)
C1A—C2A—H2A108.4C8—N2—H2N115.3 (14)
C3A—C2A—H2A108.4C9—C8—C13119.2 (2)
C1A—C2A—H2B108.4C9—C8—N2117.63 (18)
C3A—C2A—H2B108.4C13—C8—N2123.1 (2)
H2A—C2A—H2B107.4C8—C9—C10120.2 (2)
N1—C3A—C2A108.1 (3)C8—C9—H9119.9
N1—C3A—H3A110.1C10—C9—H9119.9
C2A—C3A—H3A110.1C11—C10—C9120.4 (3)
N1—C3A—H3B110.1C11—C10—H10119.8
C2A—C3A—H3B110.1C9—C10—H10119.8
H3A—C3A—H3B108.4C12—C11—C10119.3 (2)
C2B—C1B—H1D109.5C12—C11—H11120.4
C2B—C1B—H1E109.5C10—C11—H11120.4
H1D—C1B—H1E109.5C11—C12—C13121.2 (2)
C2B—C1B—H1F109.5C11—C12—H12119.4
H1D—C1B—H1F109.5C13—C12—H12119.4
H1E—C1B—H1F109.5C12—C13—C8119.7 (2)
C1B—C2B—C3B126.9 (13)C12—C13—H13120.1
C1B—C2B—H2C105.6C8—C13—H13120.1
C3B—C2B—H2C105.6O2—C14—N3120.55 (18)
C1B—C2B—H2D105.6O2—C14—C5123.10 (17)
C3B—C2B—H2D105.6N3—C14—C5116.35 (17)
H2C—C2B—H2D106.1C14—N3—C15129.51 (17)
C2B—C3B—N1113.2 (10)C14—N3—H3N113.2 (16)
C2B—C3B—H3C108.9C15—N3—H3N117.2 (16)
N1—C3B—H3C108.9C20—C15—C16118.78 (19)
C2B—C3B—H3D108.9C20—C15—N3125.00 (18)
N1—C3B—H3D108.9C16—C15—N3116.23 (18)
H3C—C3B—H3D107.8C17—C16—C15120.7 (2)
C4—N1—C3A123.8 (2)C17—C16—H16119.7
C4—N1—C3B141.3 (6)C15—C16—H16119.7
C4—N1—H1N116.8 (15)C18—C17—C16120.4 (2)
C3A—N1—H1N119.5 (15)C18—C17—H17119.8
C3B—N1—H1N100.4 (16)C16—C17—H17119.8
N1—C4—C5121.78 (19)C17—C18—C19119.2 (2)
N1—C4—C6115.5 (2)C17—C18—H18120.4
C5—C4—C6122.6 (2)C19—C18—H18120.4
C4—C5—C14121.24 (18)C18—C19—C20121.6 (2)
C4—C5—C7120.47 (18)C18—C19—H19119.2
C14—C5—C7118.27 (17)C20—C19—H19119.2
C4—C6—H6A109.5C19—C20—C15119.3 (2)
C4—C6—H6B109.5C19—C20—H20120.3
H6A—C6—H6B109.5C15—C20—H20120.3
C4—C6—H6C109.5
C1A—C2A—C3A—N165.0 (4)C8—C9—C10—C110.4 (4)
C1B—C2B—C3B—N146 (2)C9—C10—C11—C121.0 (4)
C2A—C3A—N1—C4178.5 (3)C10—C11—C12—C131.3 (4)
C2B—C3B—N1—C4116.6 (12)C11—C12—C13—C80.2 (4)
C3A—N1—C4—C5174.5 (2)C9—C8—C13—C121.3 (4)
C3B—N1—C4—C5166.6 (8)N2—C8—C13—C12179.3 (2)
C3A—N1—C4—C61.1 (3)C4—C5—C14—O29.5 (3)
C3B—N1—C4—C617.9 (9)C7—C5—C14—O2168.94 (17)
N1—C4—C5—C147.0 (3)C4—C5—C14—N3170.85 (17)
C6—C4—C5—C14168.25 (18)C7—C5—C14—N310.7 (2)
N1—C4—C5—C7171.42 (18)O2—C14—N3—C159.3 (3)
C6—C4—C5—C713.4 (3)C5—C14—N3—C15170.35 (18)
C4—C5—C7—O1136.4 (2)C14—N3—C15—C2014.1 (3)
C14—C5—C7—O145.1 (3)C14—N3—C15—C16166.21 (19)
C4—C5—C7—N247.7 (3)C20—C15—C16—C170.4 (3)
C14—C5—C7—N2130.73 (19)N3—C15—C16—C17179.2 (2)
O1—C7—N2—C85.4 (3)C15—C16—C17—C180.9 (4)
C5—C7—N2—C8178.67 (19)C16—C17—C18—C190.5 (4)
C7—N2—C8—C9161.2 (2)C17—C18—C19—C200.3 (4)
C7—N2—C8—C1320.8 (3)C18—C19—C20—C150.7 (4)
C13—C8—C9—C101.6 (3)C16—C15—C20—C190.3 (3)
N2—C8—C9—C10179.6 (2)N3—C15—C20—C19180.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.91 (2)1.92 (2)2.638 (2)135 (2)
N3—H3N···O10.90 (3)1.94 (3)2.712 (2)144 (2)
C6—H6B···N20.982.462.968 (3)112
C13—H13···O10.952.332.879 (3)116
C20—H20···O20.952.302.887 (3)119
N2—H2N···O2i0.88 (2)2.08 (2)2.914 (2)157 (2)
C9—H9···O2i0.952.913.622 (3)133
C13—H13···Cg2ii0.953.373.960 (3)122
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z1.
Dihedral angles (°) between selected planes in (I) and (II) top
Plane 1Plane 2(I)(II)
N1/C4/C5N3/C14/O210.1 (4)8.0 (3)
N1/C4/C5N2/C7/O149.0 (2)51.5 (3)
N2/C7/O1phenyl C8–C1326.8 (2)23.6 (2)
N3/C14/O2phenyl C15–C2017.1 (3)10.4 (2)
 

Acknowledgements

The authors thank Anke Schwarzer for help with the discussion of inter­molecular inter­actions and the TU Bergakademie Freiberg (Freiberg, Germany) for financial support.

Funding information

Funding for this research was provided by: Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilli, P. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. Oxford University Press.  Google Scholar
First citationHerbig, M., Böhme, U. & Kroke, E. (2018). Inorg. Chim. Acta, 473, 20–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerbig, M., Böhme, U. & Kroke, E. (2019a). Z. Anorg. Allg. Chem. 645, 377–387.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerbig, M., Böhme, U. & Kroke, E. (2022). Z. Naturforsch. B, 77, 55–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerbig, M., Gevorgyan, L., Pflug, M., Wagler, J., Schwarzer, S. & Kroke, E. (2019b). ChemistryOpen 9, 894–902, https://doi. org/10.1002/. 201900269.  Google Scholar
First citationHerbig, M., Scholz, H., Böhme, U., Günther, B., Gevorgyan, L., Gerlach, D., Wagler, J., Schwarzer, S. & Kroke, E. (2021). Main Group Met. Chem. 44, 51–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationKerr, K. A. & Ashmore, J. P. (1973). Stockholm Symp. Biol. Struct. 91.  Google Scholar
First citationKerr, K. A., Richardson, J. F. & Eddy, D. D. (1985). ACA Abstr. Papers (Winter), 13, 67.  Google Scholar
First citationKraushaar, K., Herbig, M., Schmidt, D., Wagler, J., Böhme, U. & Kroke, E. (2017). Z. Naturforsch. B, 72, 909–921.  Web of Science CSD CrossRef CAS Google Scholar
First citationKraushaar, K., Schmidt, D., Schwarzer, A. & Kroke, E. (2014). CO2 Chemistry. In Advances in Inorganic Chemistry, edited by M. Aresta & R. van Eldik, ch. 4, pp. 117–162. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-420221-4.00004-4.  Google Scholar
First citationKraushaar, K., Wiltzsch, C., Wagler, J., Böhme, U., Schwarzer, A., Roewer, G. & Kroke, E. (2012). Organometallics, 31, 4779–4785.  Web of Science CSD CrossRef CAS Google Scholar
First citationOzaki, S. (1972). Chem. Rev. 72, 457–496.  CrossRef Web of Science Google Scholar
First citationPauling, L. (1962). Die Natur der chemischen Bindung, p. 213. Weinheim: Verlag Chemie.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaga, T., Yamamoto, N., Riku, J., Yoshinaga, J. & Kato, Y. (1985). Acta Cryst. C41, 1235–1237.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYe, G., Chatterjee, S., Li, M., Zhou, A., Song, Y., Barker, B. L., Chen, C., Beard, D. J., Henry, W. P. & Pittman, C. U. (2010). Tetrahedron, 66, 2919–2927.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds