research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Consistent zincophosphite 4-ring `ladder' chain structural motif with isomeric ligands

crossmark logo

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, United Kingdom, and bSchool of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland, United Kingdom
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by S. Parkin, University of Kentucky, USA (Received 27 February 2023; accepted 3 March 2023; online 10 March 2023)

The syntheses and crystal structures of four hydro­thermally prepared organo–zinc phosphites, viz. poly[[(2-amino-3-methyl­pyridine)-μ3-phospho­nato-zinc] hemihydrate], {[Zn(HPO3)(C6H8N2)]·0.5H2O}n, (I), poly[(2-amino-4-methyl­pyridine)-μ3-phospho­nato-zinc], [Zn(HPO3)(C6H8N2)]n, (II), poly[(2-amino-5-methyl­pyridine)-μ3-phospho­nato-zinc], [Zn(HPO3)(C6H8N2)]n, (III), and poly[bis­(2-amino-4-methyl­pyridinium) [tetra-μ3-phospho­nato-trizinc] monohydrate], {(C6H9N2)2[Zn3(HPO3)4]·H2O}n, (IV), are described. Compounds (I)–(III) are constructed from vertex-sharing ZnO3N tetra­hedra (the organic mol­ecule acting as a ligand) and HPO3 pseudo pyramids in a 1:1 ratio to generate the same motif of infinite 4-ring `ladder' chains propagating in the [010], [101] and [100] directions, respectively, whereas (IV) consists of (010) layers of vertex-sharing ZnO4 and HPO3 units in a 3:4 ratio with the protonated organic mol­ecule acting as a template. When an excess of HCl is used in the synthesis, the simple hydrated mol­ecular salt, bis­(2-amino-3-methyl­pyridinium) tetra­chloro­zincate monohydrate, (C6H8N2)2[ZnCl4]·H2O, (V), arises. Com­pounds (I)–(V) feature extensive networks of hydrogen bonds, both classical (N—H⋯O, N—H⋯Cl, O—H⋯O) and non-classical (C—H⋯O, C—H⋯Cl) in nature, which help to consolidate the extended structures.

1. Chemical context

Since the first report (Harrison et al., 2001[Harrison, W. T. A., Phillips, M. L. F., Stanchfield, J. & Nenoff, T. M. (2001). Inorg. Chem. 40, 895-899.]) of zincophosphite (ZnPO) networks built up from vertex-sharing ZnO4 or ZnO3N and HPO3 building units templated or ligated by organic species, this family has grown to include well over 200 structures in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Recent papers have described a ZnPO templated by a chiral amino acid, which displays non-linear optical behaviour (Mao et al., 2021[Mao, Y. M., Dong, X. H., Deng, Y. D., Li, J., Huang, L., Zeng, H. M., Zou, G. H. & Lin, Z. E. (2021). Dalton Trans. 50, 5442-5445.]) and a mixed-ligand ZnPO with promising gas sorption properties (Chen et al., 2022[Chen, J. Y., Chen, S. Y., Chen, W. T., Yin, M. C. & Wang, C. M. (2022). Chem. Eur. J. 28 article e202200732.]). As well as their potential applications, ZnPOs are of ongoing academic inter­est in terms of the challenge of designing rational and reproducible syntheses and the elucidation of the systematics of their crystal chemistry, for example, the effect of the Zn:P ratio, different polyhedral connectivities, hydrogen bonding and the `dual role' (bonded ligand or protonated guest) of the organic template on the structure (Holmes et al., 2018[Holmes, W., Cordes, D. B., Slawin, A. M. Z. & Harrison, W. T. A. (2018). Acta Cryst. E74, 1411-1416.]).

In a continuation of our ongoing studies of these systems (Katinaitė & Harrison, 2017[Katinaitė, J. & Harrison, W. T. A. (2017). Acta Cryst. E73, 759-762.]; Holmes et al., 2018[Holmes, W., Cordes, D. B., Slawin, A. M. Z. & Harrison, W. T. A. (2018). Acta Cryst. E74, 1411-1416.]), we now describe the hydro­thermal syntheses and crystal structures of four organo–zinc phosphites featuring isomeric ligands, viz.: poly[[(2-amino-3-methyl­pyridine)-μ3-phospho­nato-zinc] hemihydrate], {[Zn(HPO3)(C6H8N2)]·0.5H2O}n, (I)[link], poly[(2-amino-4-methyl­pyridine)-μ3-phospho­nato-zinc], [Zn(HPO3)(C6H8N2)]n, (II)[link], poly[(2-amino-5-methyl­pyridine)-μ3-phos­pho­nato-zinc], [Zn(HPO3)(C6H8N2)]n, (III)[link], and poly[bis­(2-amino-4-methyl­pyridinium) [tetra-μ3-phospho­nato-trizinc] monohydrate], {(C6H9N2)2[Zn3(HPO3)4]·H2O}n, (IV)[link]. The simple mol­ecular salt bis­(2-amino-3-methyl­pyridinium) tetra­chloro­zincate monohydrate, (C6H8N2)2·ZnCl4·H2O (V)[link], is also described.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] (Fig. 1[link]), which crystallizes in the monoclinic space group C2/c, consists of a Zn2+ ion, a [HPO3]2– hydrogen phosphite anion, a C6H7N2 2-amino-3-methyl­pyridine mol­ecule and a water mol­ecule, the O atom of the last species lying on a crystallographic twofold axis. The zinc coordination polyhedron is a ZnO3N tetra­hedron, i.e., the organic species is acting as a ligand bonding to the metal ion from its pyridine nitro­gen atom and the Zn—O bonds (mean = 1.940 Å) are notably shorter than the Zn1—N1 [2.0262 (14) Å] link, as previously observed for related compounds (Holmes et al., 2018[Holmes, W., Cordes, D. B., Slawin, A. M. Z. & Harrison, W. T. A. (2018). Acta Cryst. E74, 1411-1416.]). The spread of bond angles about the metal ion [minimum = 104.23 (5) for O2—Zn1—N1, maximum = 113.89 (6)° for O1—Zn1—N1] indicates a slight degree of distortion with τ4′ = 0.974 (Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]). The [HPO3]2– group adopts its usual tetra­hedral (including the H atom) or pseudo-pyramidal (excluding H) geometry and the mean P—O separation is 1.522 Å with the O—P—O bond angles tightly clustered in the range 111.98 (7)–113.57 (7)°; the P atom is displaced by 0.4227 (8) Å from the plane of its attached O atoms. Each O atom is bonded to one Zn and one P atom [mean Zn—O—P = 130.2°], thus there are no `dangling' (Holmes et al., 2018[Holmes, W., Cordes, D. B., Slawin, A. M. Z. & Harrison, W. T. A. (2018). Acta Cryst. E74, 1411-1416.]) Zn—OH2, P=O or P—OH bonds in this structure. The extended structure of (I)[link] is discussed below.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] expanded to show the complete zinc-atom coordination sphere showing 50% displacement ellipsoids. Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, y + 1, z.

The asymmetric unit of (II)[link] (Fig. 2[link]), which also crystallizes in C2/c, consists of two Zn2+ ions, two [HPO3]2– hydrogen phosphite anions, and two C6H7N2 2-amino-4-methyl­pyridine mol­ecules acting as ligands, i.e., Z′ = 2. Unlike (I)[link], (II)[link] does not contain any water mol­ecules of crystallization. The building units – vertex sharing ZnO3N tetra­hedra and [HPO3]2– dianions – and the major structural features of (II)[link] are broadly similar to those of (I)[link]: mean Zn1—O = 1.942 Å; spread of O—Zn1—O/O—Zn1—N bond angles = 104.06 (5)–114.29 (5)°, τ4′ = 0.97; comparable data for Zn2 = 1.940 Å, 100.10 (5)–121.28 (5)° and 0.91, respectively; mean P1—O = 1.525 Å; spread of O—P1—O bond angles = 110.64 (6)–113.78 (6)°; P1 displacement from its attached O atoms = 0.4278 (7) Å; comparable data for P2 = 1.520 Å, 111.44 (6)–113.14 (7)° and −0.4269 (8) Å, respectively. All six O atoms are bridging between Zn and P atoms with a mean bond angle of 131.3° [range = 123.26 (6)–144.09 (8)°]. The extended structure of (II)[link] is discussed below.

[Figure 2]
Figure 2
The asymmetric unit of (II)[link] expanded to show the complete zinc-atom coordination spheres showing 50% displacement ellipsoids. Symmetry codes: (i) [{1\over 2}] − x, [{1\over 2}] − y, 1 − z; (ii) 1 − x, y, [{3\over 2}] − z.

Compound (III)[link] crystallizes in the ortho­rhom­bic space group P212121 with a well-defined absolute structure and its asymmetric unit (Fig. 3[link]) consists of a Zn2+ ion, a [HPO3]2– hydrogen phosphite anion and a C6H7N2 2-amino-5-methyl­pyridine mol­ecule bonded to the metal ion from its pyridine N atom. Once again, the constituent polyhedra are ZnO3N tetra­hedra [mean Zn—O = 1.941 Å, minimum and maximum bond angles = 105.19 (9) and 115.09 (8)°, respectively, τ4′ = 0.96] and [HPO3]2– units [mean P—O = 1.522 Å, minimum and maximum O—P—O = 110.43 (11) and 113.86 (12)°, respectively, deviation of P1 from O1/O2/O3 = 0.4237 (14) Å]. The three O atoms bridge adjacent zinc and phospho­rus atoms with a mean Zn—O—P bond angle of 126.7°. For the extended structure of (III)[link], see below.

[Figure 3]
Figure 3
The asymmetric unit of (III)[link] expanded to show the complete zinc-atom coordination sphere showing 50% displacement ellipsoids. Symmetry codes: (i) [{1\over 2}] + x, [{3\over 2}] − y, −z; (ii) 1 + x, y, z.

In (IV)[link], which crystallizes in the triclinic space group P[\overline{1}], the expanded asymmetric unit (Fig. 4[link]) reveals different constit­uent polyhedra of three distinct ZnO4 tetra­hedra and four [HPO32–] pseudo pyramids as well as two protonated 2-amino-4-methyl­pyridinium cations, which therefore act as templates rather than ligands; a water mol­ecule of crystallization (O13) completes the structure. Geometrical data for the zinc polyhedra are as follows: mean Zn1—O = 1.941 Å, spread of bond angles = 100.42 (8)–122.18 (9)°, τ4' = 0.90; equivalent data for Zn2: 1.936 Å, 98.33 (8)–115.30 (9)° and 0.98, respectively; equivalent data for Zn3: 1.945 Å, 99.70 (8)–117.10 (8)° and 0.96, respectively. The four [HPO3]2– anions adopt their normal geometries: mean P1—O = 1.519 Å, minimum and maximum O—P1—O = 111.00 (11) and 112.70 (11)°, respectively, deviation of P1 from its attached O atoms = 0.4498 (13) Å; equivalent data for P2: 1.522 Å, 110.08 (10)°, 115.33 (11)° and −0.4122 (12) Å, respectively; equivalent data for P3: 1.516 Å, 110.19 (11)°, 114.49 (12)° and −0.4123 (13) Å, respectively; equivalent data for P4: 1.516 Å, 112.68 (12)°, 114.13 (12)° and 0.3903 (13) Å, respectively. The twelve unique O atoms all bridge Zn and P atoms (mean bond angle = 134.9, minimum = 125.40 (11), maximum = 146.90 (13), spread = 21.5°). For the extended structure of (IV)[link], see below.

[Figure 4]
Figure 4
The asymmetric unit of (IV)[link] expanded to show the complete zinc-atom coordination sphere showing 50% displacement ellipsoids. Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) x − 1, y, z; (iii) −x, 1 − y, −z; (iv) 1 − x, 1 − y, −z.

Compound (V)[link] is a simple mol­ecular salt (Fig. 5[link]), which crystallizes in the triclinic space group P[\overline{1}]: its asymmetric unit consists of two 2-amino-3-methyl­pyridinium C6H8N2+ cations protonated at their pyridine N atoms, a [ZnCl4]2– anion and a water mol­ecule of crystallisation. The tetra­chloro­zincate ion has a mean Zn—Cl separation of 2.2704 Å [range = 2.2536 (13)–2.2867 (13) Å] and smallest and largest Cl—Zn—Cl bond angles of 104.48 (5) and 113.75 (5)°, respectively. The synthetic intent here was to lower the pH with HCl and establish if a di­hydrogen phosphite (H2PO3) anion containing a terminal P—OH moiety could be incorporated into the structure (Lin et al., 2003[Lin, Z.-E., Zhang, J., Zheng, S.-T., Wei, Q.-H. & Yang, G.-Y. (2003). Solid State Sci. 5, 1435-1438.]) but the presence of excess chloride ions has led to a completely different and unwanted mol­ecular salt containing the tetra­chloro­zincate complex ion, which has been reported many times before, with over 1000 matches in the CSD.

[Figure 5]
Figure 5
The asymmetric unit of (V)[link] showing 50% displacement ellipsoids. Hydrogen bonds are indicated by double-dashed lines.

3. Supra­molecular features

In the extended structure of (I)[link], the constituent ZnO3N and HPO3 polyhedra are linked by Zn—O—P bonds into [010] polyhedral 4-ring (two Zn and two P nodes) `ladder' chains in which the zinc and phospho­rus nodes strictly alternate (Fig. 6[link]): the chains are built up by inversion symmetry at the centres of every 4-ring, as well as, of course, translation symmetry in the b-axis direction. Given that the Zn atom forms three bonds (via O atoms) to adjacent P atoms (and a fourth bond to the organic species) and that the P atom forms three links to zinc atoms (and a fourth P—H vertex), the 1:1 Zn:P stoichiometry is to be expected and hence no charge compensating, protonated template is needed. In (II)[link], ladder chains similar to those seen in (I)[link] arise in the extended structure (Fig. 6[link]) although they are more contorted: because Z′ = 2, every other 4-ring is generated by inversion symmetry and translation in the [101] direction leads to the extended array. In (III)[link], the 4-ring ladder motif is again apparent (Fig. 6[link]), although in this case, the combination of a 21 screw-axis parallel to the chain and a-translation symmetry generates the infinite [100] chains. In each structure, the organic mol­ecules are pendant to the chains (Fig. 6[link]).

[Figure 6]
Figure 6
Comparison of the zincophosphite 4-ring ladder chains in the extended structures of (I)[link] (left), (II)[link] (centre) and (III)[link] (right).

The extended structure of (IV)[link] (Fig. 7[link]) is quite different to those of (I)–(III) and features (010) sheets of ZnO4 and HPO3 polyhedra sharing corners. One way to visualize this rather complex arrangement (although this does not necessarily imply that the synthesis proceeds in such a step-by-step fashion) is in terms of contorted chains of 4-rings featuring atoms Zn1, Zn2, Zn3, P2, P3 and P4 as the nodes propagating in the [001] direction. One out of every three 4-rings in a chain is generated by inversion symmetry. These chains are cross-linked in the a-axis direction by the P1-centred hydrogen phosphite groups to form the (010) layers, which encapsulate 8-ring voids built up from four Zn and four P nodes although there is no suggestion of `zeolitic' porosity. So far as stoichiometry is concerned, in this case the zinc nodes forming four bonds (via all their O atoms) to nearby phospho­rus atoms and the P nodes forming three bonds to Zn atoms leads to the 3:4 ratio of zinc and phospho­rus, which is the proportion most commonly seen in this family of phases (e.g., Phillips et al., 2002[Phillips, M. L. F., Nenoff, T. M., Thompson, C. T. & Harrison, W. T. A. (2002). J. Solid State Chem. 167, 337-343.]; Lin et al., 2009[Lin, Z., Nayek, H. & Dehnen, S. (2009). Z. Anorg. Allg. Chem. 635, 2391-2395.]). In this case, the inorganic component bears a charge of −2 per [Zn3(HPO3)4] unit, hence the two protonated template mol­ecules. The template cations and water mol­ecules of crystallisation occupy the inter-layer regions.

[Figure 7]
Figure 7
Part of an infinite (010) layer of vertex sharing ZnO4 and HPO3 moieties in the extended structure of (IV)[link] viewed down [010].

Various classical (N—H⋯O, N—H⋯Cl and O—H⋯O) and non-classical (C—H⋯O and C—H⋯Cl) hydrogen bonds occur in these structures. As is normal, the hydrogen phosphite P—H unit does not participate in hydrogen bonding (Katinaitė & Harrison, 2017[Katinaitė, J. & Harrison, W. T. A. (2017). Acta Cryst. E73, 759-762.]). In (I)[link], the water mol­ecule of crystallization, which lies on a crystallographic twofold axis, appears to play an important role in consolidating the extended structure by accepting two N—H⋯O hydrogen bonds (Table 1[link]) and donating two O—H⋯O hydrogen bonds to cross-link the [001] chains into (100) layers (Fig. 8[link]). The other hydrogen bond arising from the amine group is an intra-chain N—H⋯O link. There are no aromatic ππ stacking inter­actions in (I)[link], the shortest centroid–centroid separation being some 5.04 Å.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O4i 0.78 (2) 2.19 (2) 2.919 (2) 157 (2)
N2—H2N⋯O2ii 0.84 (2) 2.54 (2) 3.098 (2) 124.8 (18)
O4—H1O⋯O2 0.79 (2) 2.199 (19) 2.9165 (15) 152 (2)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 8]
Figure 8
The unit-cell packing in (I)[link] viewed down [001]. Hydrogen bonds are shown as dashed lines.

In (II)[link], the N—H⋯O hydrogen bonds arising from the amine groups are a mix of intra- (via H2N and H4N) and inter-chain (via H1N and H3N) links, with the latter serving to cross-link the [101] chains into a three-dimensional network (Table 2[link]; Fig. 9[link]). The aromatic rings are inter­digitated and this is reflected in the shortest centroid–centroid separation of 3.8234 (17) Å. In the extended structure of (III)[link] (Fig. 10[link]), the single N1—H2B⋯O2 bond (Table 3[link]) cross-links the [100] chains into (001) sheets. The other hydrogen atom (H2A) of the amine grouping does not participate in a hydrogen bond, the closest acceptor O atom being some 2.77 Å distant. There are no significant ππ stacking inter­actions in (III)[link] [shortest centroid–centroid separation = 5.149 (2) Å].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O3i 0.79 (2) 2.35 (2) 2.9056 (19) 128 (2)
N2—H2N⋯O6ii 0.82 (2) 2.13 (2) 2.900 (2) 155 (2)
N4—H3N⋯O1iii 0.88 (2) 2.18 (2) 3.0310 (18) 163.7 (18)
N4—H4N⋯O5iv 0.83 (2) 2.39 (2) 3.1555 (19) 154.3 (18)
C5—H5⋯O2 0.95 2.57 3.315 (2) 136
C8—H8⋯O1iii 0.95 2.65 3.405 (2) 137
C11—H11⋯O4 0.95 2.51 3.105 (2) 120
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y, -z+{\script{3\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2i 0.79 (4) 2.35 (4) 3.111 (3) 162 (3)
C2—H2⋯O1ii 0.95 2.55 3.212 (3) 127
Symmetry codes: (i) [x+1, y-1, z]; (ii) [x, y-1, z].
[Figure 9]
Figure 9
The unit-cell packing in (II)[link] viewed down [101]. Hydrogen bonds are shown as dashed lines.
[Figure 10]
Figure 10
The unit-cell packing in (III)[link] viewed down [100]. Hydrogen bonds are shown as dashed lines.

In (IV)[link], numerous hydrogen bonds are observed (Table 4[link], Fig. 11[link]). The water mol­ecule cross-links adjacent (010) layers via two O—H⋯O hydrogen bonds. The N—H⋯O hydrogen bonds originating from the protonated pyridine N atoms and the –NH2 groups of the organic species all link to the same sheet for each template cation, i.e., there are no inter-sheet hydrogen bonds associated with the templates. Significant aromatic ππ stacking inter­actions occur between centrosymmetric pairs of each template cation, as indicated by the centroid–centroid separation of 3.6167 (15) Å (slippage = 1.196 Å) for the C1 species and 3.4695 (17) Å (0.146 Å) for the C7 cation.

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.88 1.97 2.833 (3) 166
N2—H2N⋯O3 0.85 (4) 2.05 (4) 2.853 (3) 157 (3)
N2—H3N⋯O10 0.85 (4) 2.16 (4) 2.961 (3) 156 (3)
N3—H4N⋯O1 0.83 (4) 2.07 (4) 2.873 (3) 163 (4)
N4—H5N⋯O13ii 0.93 (4) 1.95 (4) 2.871 (4) 177 (4)
N4—H6N⋯O2 0.88 (4) 2.05 (4) 2.918 (3) 167 (4)
O13—H1O⋯O12iii 0.98 2.05 3.028 (3) 175
O13—H2O⋯O4iv 0.96 2.05 2.952 (3) 157
C5—H5⋯O4i 0.95 2.64 3.370 (3) 134
C8—H8⋯O8v 0.95 2.48 3.350 (4) 152
C11—H11⋯O7 0.95 2.47 3.199 (4) 133
C11—H11⋯O13iv 0.95 2.59 3.281 (4) 130
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [-x, -y, -z]; (iii) [-x+1, -y+1, -z]; (iv) [-x+1, -y, -z]; (v) [-x, -y, -z+1].
[Figure 11]
Figure 11
The unit-cell packing in (IV)[link] viewed down [100]. Hydrogen bonds are shown as dashed lines.

In the extended structure of (V)[link], the hydrogen-bond scheme is completely different (Table 5[link]) and the component cations, anions and water mol­ecules are linked by N—H⋯Cl, N—H⋯Ow (w = water) and O—H⋯Cl inter­actions to generate [001] chains; within these chains, centrosymmetric assemblages of two C6H8N2+ cations, two [ZnCl4]2– anions and two water mol­ecules are apparent (Fig. 12[link]).

Table 5
Hydrogen-bond geometry (Å, °) for (V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl4 0.88 2.35 3.134 (5) 148
N2—H2A⋯Cl1 0.88 2.54 3.375 (4) 158
N2—H2B⋯O1 0.88 2.03 2.838 (5) 152
N3—H3A⋯Cl4 0.88 2.66 3.306 (4) 132
N4—H4A⋯Cl3 0.88 2.40 3.268 (4) 170
N4—H4B⋯Cl2i 0.88 2.51 3.333 (5) 155
O1—H1O⋯Cl3ii 0.88 2.95 3.669 (4) 141
O1—H1O⋯Cl4ii 0.88 2.98 3.675 (4) 138
O1—H2O⋯Cl1iii 0.88 2.45 3.302 (4) 162
C10—H10⋯Cl3iv 0.95 2.92 3.696 (5) 140
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [x, y-1, z].
[Figure 12]
Figure 12
The unit-cell packing in (V)[link] viewed approximately down [10[\overline{1}]]. Hydrogen bonds are shown as dashed lines.

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to February 2023) revealed 213 crystal structures containing zinc cations and hydrogenphosphite anions (Zn—O—P—H fragment) of which 53 contain a ligated organic mol­ecule (Zn—N bond). The only phase that bears a close chemical similarity to the structures described here is [C5H6N2·Zn(HPO3)]n, catena-[(μ3-hydrogenphosphito)(2-amino­pyridine)­zinc] (CSD refcode LUZYOU) (Liang et al., 2003[Liang, J., Wang, Y., Yu, J., Li, Y. & Xu, R. (2003). Chem. Commun. pp. 882-883.]), in which the ZnO3N and HPO3 polyhedra assemble into (100) layers of 4- and 8-rings.

The fact that the N-bonded zinc ions and HPO3 units in (I)[link], (II)[link] and (III)[link] self assemble to form the same 4-ring ladder chain with different isomeric pyridine-based ligands suggests that it is a reasonably robust structural feature. However, it is not a particularly common motif in the wider ZnPO phase space: two other examples with very different ligating mol­ecules to those in (I)–(III) are [C4H8N2O3·Zn(HPO3)]n (C4H8N2O3 = L-asparagine) (Gordon & Harrison, 2004[Gordon, L. & Harrison, W. T. A. (2004). Inorg. Chem. 43, 1808-1809.]) and [C3H7NO2·Zn(HPO3)]n (C3H7NO2 = racemic DL-alanine) (Mao et al., 2021[Mao, Y. M., Dong, X. H., Deng, Y. D., Li, J., Huang, L., Zeng, H. M., Zou, G. H. & Lin, Z. E. (2021). Dalton Trans. 50, 5442-5445.]); it is notable that these amino acids both bond to the zinc atom via one of their carboxyl­ate O atoms rather than the pyridine N atoms in (I)–(III).

Compound (II)[link], in which the C6H8N2 organic mol­ecule acts as a ligand (a Zn—N bond and a 1:1 Zn:P ratio) and (IV)[link], in which the same organic species acts as a protonated C6H9N2+ template (N—H⋯O hydrogen bonds and a 3:4 Zn:P ratio) arose from similar syntheses, with the only difference being the source of zinc ions (zinc oxide and zinc acetate, respectively). Assuming that hydro­thermal synthesis is not just an impenetrable `black box' (Ursu et al., 2022[Ursu, D., Casut, C. & Miclau, M. (2022). Materials 15, article 7792.]), we may speculate that the acetate synthesis occurred at a lower pH, perhaps with some buffering action between acetic acid formed in situ and acetate ions, to allow for the protonation of the template.

5. Synthesis and crystallization

Compound (I)[link] was prepared by mixing 0.77 g of ZnO, 0.76 g of H3PO3 and 1.14 g of 2-amino-3-methyl­pyridine (Zn:P:template ratio ≃ 1:1:1), which were placed in a 50 ml polypropyl­ene bottle with 20 ml of water and shaken well to result in a white slurry. The bottle was placed in an 353 K oven for 24 h and then removed and allowed to cool to room temperature. The solids were recovered by vacuum filtration to result in a mass of needle-like transparent crystals. IR: 2383 cm−1 (P—H stretch). Increasing the heating time to one week led to the same product, with a slight improvement in crystallinity, as indicated by sharper peaks in its IR spectrum and X-ray powder diffraction pattern.

Compound (II)[link] was prepared from 0.75 g of ZnO, 0.81 g of H3PO3 and 1.10 g of 2-amino-4-methyl­pyridine (Zn:P:template ratio ≃ 1:1:1); otherwise following the same procedure as for (I)[link]. A mass of blocky transparent crystals was recovered. IR: 2394, 2382 cm−1 (P—H stretch). Two peaks may arise because of the two different P—H groups in the asymmetric unit (Ma et al., 2007[Ma, Y., Li, N., Xiang, S. & Guan, N. (2007). J. Phys. Chem. C, 111, 18361-18366.]).

To prepare compound (III)[link], 2.20 g of Zn(OAc)2, 0.86 g of H3PO3 and 1.09 g of 2-amino-5-methyl­pyridine (Zn:P:template ratio ≃ 1:1:1) and 20 ml of water were placed in a 50 ml polypropyl­ene bottle and heated to 353 K for three days. Upon cooling, the product consisted of a mass of colourless blocks. IR: 2406 cm−1 (P—H stretch).

Compound (IV)[link] started from a mixture of 2.02 g Zn(OAc)2, 0.77 g of H3PO3 and 1.03 g of 2-amino-4-methyl­pyridine (Zn:P:template ratio ≃ 1:1:1) and 20 ml of water. These components were placed in a 50-ml polypropyl­ene bottle and heated to 353 K for 24 h. Upon cooling, the product consisted of a mass of colourless blocks. IR: 3000–3600 (broad) (O—H stretch), 2391, 2381 cm−1 (P—H stretch). The same product arises if the mixture is heated for one week.

Compound (V)[link] was prepared from the same reagents as (I)[link] and the same synthesis procedure but with the addition of 10 ml of 1 M HCl.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Most of the O- and N-bound H atoms were located in difference maps and their positions were freely refined with Uiso(H) = 1.2Ueq(N or O). The phosphite H atoms were geometrically placed (P—H = 1.32 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(P). All the C-bound H atoms were located geometrically (C—H = 0.95–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density. Two peaks greater than 1 e Å−3 were found in the final difference map for (IV)[link] in the vicinity of the C7 cation but they did not correspond to a plausible chemical feature. The data quality for (V)[link] was notably poorer than for the other four crystals.

Table 6
Experimental details

  (I) (II) (III) (IV) (V)
Crystal data
Chemical formula [Zn(HPO3)(C6H8N2)]·0.5H2O [Zn(HPO3)(C6H8N2)] [Zn(HPO3)(C6H8N2)] (C6H9N2)2[Zn3(HPO3)4]·H2O (C6H8N2)2[ZnCl4]·H2O
Mr 525.00 253.49 253.49 752.34 443.49
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c Orthorhombic, P212121 Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 93 93 93 93 173
a, b, c (Å) 23.282 (6), 5.1926 (1), 17.738 (5) 22.873 (6), 12.307 (3), 16.633 (4) 5.1487 (9), 8.5316 (19), 20.371 (5) 9.03805 (13), 9.36837 (13), 15.0207 (2) 6.9541 (8), 8.7092 (9), 16.293 (3)
α, β, γ (°) 90, 117.974 (4), 90 90, 128.954 (5), 90 90, 90, 90 81.0313 (1), 88.0646 (1), 80.0782 (1) 83.239 (11), 80.167 (10), 72.049 (9)
V3) 1893.9 (7) 3641.1 (16) 894.8 (3) 1237.46 (3) 922.7 (2)
Z 4 16 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα Cu Kα Mo Kα
μ (mm−1) 2.75 2.85 2.90 6.49 1.92
Crystal size (mm) 0.20 × 0.02 × 0.02 0.10 × 0.03 × 0.03 0.15 × 0.05 × 0.03 0.10 × 0.10 × 0.10 0.15 × 0.05 × 0.05
 
Data collection
Diffractometer Rigaku Pilatus 200K CCD Rigaku Pilatus 200K CCD Rigaku Pilatus 200K CCD Rigaku Pilatus 200K CCD AFC10: Fixed Chi 2 circle CCD
Absorption correction Multi-scan CrystalClear (Rigaku, 2015[Rigaku (2015). CrystalClear, Rigaku Corporation, Tokyo, Japan.]) Multi-scan CrystalClear (Rigaku, 2015[Rigaku (2015). CrystalClear, Rigaku Corporation, Tokyo, Japan.]) Multi-scan CrystalClear (Rigaku, 2015[Rigaku (2015). CrystalClear, Rigaku Corporation, Tokyo, Japan.]) Multi-scan CrystalClear (Rigaku, 2015[Rigaku (2015). CrystalClear, Rigaku Corporation, Tokyo, Japan.]) Multi-scan
Tmin, Tmax 0.535, 1.000 0.783, 1.000 0.505, 1.000 0.744, 1.000 0.851, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22221, 1729, 1644 50824, 3308, 3177 13254, 1630, 1599 11869, 4842, 4831 28291, 3383, 3172
Rint 0.045 0.033 0.067 0.012 0.039
(sin θ/λ)max−1) 0.602 0.602 0.602 0.628 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.048, 1.04 0.017, 0.049, 1.05 0.021, 0.051, 1.01 0.031, 0.085, 1.10 0.047, 0.111, 1.08
No. of reflections 1729 3308 1630 4842 3383
No. of parameters 133 249 125 343 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.31 0.30, −0.40 0.59, −0.42 1.25, −0.67 1.10, −1.02
Absolute structure Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]
Absolute structure parameter 0.011 (6)
Computer programs: CrystalClear (Rigaku, 2015[Rigaku (2015). CrystalClear, Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrystalClear (Rigaku, 2015); cell refinement: CrystalClear (Rigaku, 2015); data reduction: CrystalClear (Rigaku, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015) for (I), (II), (III), (IV); SHELXL-2018/3 (Sheldrick, 2015) for (V). For all structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[(2-amino-3-methylpyridine)-µ3-phosphonato-zinc] hemihydrate] (I) top
Crystal data top
[Zn(HPO3)(C6H8N2)]·0.5H2OF(000) = 1064
Mr = 525.00Dx = 1.841 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.282 (6) ÅCell parameters from 2870 reflections
b = 5.1926 (1) Åθ = 2.6–27.4°
c = 17.738 (5) ŵ = 2.75 mm1
β = 117.974 (4)°T = 93 K
V = 1893.9 (7) Å3Plate, colourless
Z = 40.20 × 0.02 × 0.02 mm
Data collection top
Rigaku Pilatus 200K CCD
diffractometer
1644 reflections with I > 2σ(I)
ω scansRint = 0.045
Absorption correction: multi-scan
CrystalClear (Rigaku, 2015)
θmax = 25.3°, θmin = 2.0°
Tmin = 0.535, Tmax = 1.000h = 2828
22221 measured reflectionsk = 66
1729 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.023P)2 + 2.3217P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1729 reflectionsΔρmax = 0.27 e Å3
133 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.57140 (2)0.80209 (4)0.58868 (2)0.01314 (8)
P10.57761 (2)0.29299 (8)0.49128 (3)0.01281 (11)
H10.6237520.2525500.4693330.015*
O10.57635 (6)0.5813 (2)0.50423 (8)0.0230 (3)
O20.51441 (6)0.1968 (2)0.41659 (7)0.0201 (3)
O30.59745 (6)0.1434 (2)0.57337 (7)0.0202 (3)
C10.62119 (8)0.5143 (3)0.75510 (10)0.0155 (3)
C20.66659 (8)0.4595 (3)0.84181 (10)0.0178 (4)
C30.72325 (8)0.6005 (4)0.87796 (10)0.0210 (4)
H30.7546710.5670060.9353250.025*
C40.73559 (8)0.7932 (4)0.83177 (11)0.0198 (4)
H40.7747800.8900020.8569940.024*
C50.68950 (8)0.8368 (3)0.74957 (11)0.0167 (3)
H50.6971860.9677930.7179920.020*
C60.65085 (10)0.2538 (4)0.88920 (12)0.0232 (4)
H6A0.6096980.2955720.8889120.035*
H6B0.6857070.2450000.9482550.035*
H6C0.6469120.0871460.8612660.035*
N10.63290 (7)0.7007 (3)0.71073 (9)0.0146 (3)
N20.56459 (7)0.3842 (3)0.71611 (10)0.0198 (3)
H1N0.5571 (10)0.268 (4)0.7377 (14)0.024*
H2N0.5404 (10)0.394 (4)0.6633 (13)0.024*
O40.5000000.0486 (4)0.2500000.0216 (4)
H1O0.5071 (11)0.136 (4)0.2897 (12)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01503 (12)0.01152 (13)0.01196 (12)0.00098 (7)0.00558 (9)0.00153 (7)
P10.0145 (2)0.0111 (2)0.0136 (2)0.00076 (16)0.00731 (18)0.00110 (15)
O10.0414 (8)0.0122 (7)0.0254 (6)0.0024 (6)0.0239 (6)0.0024 (5)
O20.0155 (6)0.0297 (8)0.0135 (6)0.0022 (5)0.0056 (5)0.0024 (5)
O30.0264 (7)0.0123 (6)0.0157 (6)0.0028 (5)0.0047 (5)0.0016 (5)
C10.0194 (8)0.0134 (8)0.0171 (8)0.0051 (7)0.0112 (7)0.0015 (7)
C20.0227 (8)0.0166 (9)0.0168 (8)0.0083 (7)0.0116 (7)0.0041 (7)
C30.0200 (9)0.0248 (10)0.0147 (8)0.0086 (8)0.0053 (7)0.0037 (7)
C40.0149 (8)0.0211 (10)0.0216 (9)0.0014 (7)0.0072 (7)0.0008 (7)
C50.0162 (8)0.0160 (9)0.0196 (8)0.0016 (7)0.0100 (7)0.0018 (7)
C60.0305 (10)0.0227 (10)0.0192 (9)0.0071 (8)0.0141 (8)0.0073 (7)
N10.0149 (7)0.0145 (8)0.0142 (7)0.0019 (5)0.0067 (6)0.0023 (5)
N20.0213 (8)0.0189 (8)0.0189 (7)0.0026 (7)0.0093 (6)0.0067 (7)
O40.0314 (10)0.0168 (10)0.0210 (9)0.0000.0161 (8)0.000
Geometric parameters (Å, º) top
Zn1—O11.9324 (12)C3—C41.405 (3)
Zn1—O3i1.9333 (13)C3—H30.9500
Zn1—O2ii1.9557 (13)C4—C51.364 (2)
Zn1—N12.0262 (14)C4—H40.9500
P1—O11.5167 (13)C5—N11.363 (2)
P1—O31.5183 (12)C5—H50.9500
P1—O21.5301 (13)C6—H6A0.9800
P1—H11.3200C6—H6B0.9800
C1—N21.348 (2)C6—H6C0.9800
C1—N11.353 (2)N2—H1N0.78 (2)
C1—C21.428 (2)N2—H2N0.84 (2)
C2—C31.376 (3)O4—H1O0.79 (2)
C2—C61.507 (2)O4—H1Oiii0.79 (2)
O1—Zn1—O3i107.36 (5)C2—C3—H3119.3
O1—Zn1—O2ii113.32 (5)C4—C3—H3119.3
O3i—Zn1—O2ii111.79 (5)C5—C4—C3117.90 (16)
O1—Zn1—N1113.89 (6)C5—C4—H4121.1
O3i—Zn1—N1106.10 (5)C3—C4—H4121.1
O2ii—Zn1—N1104.23 (5)N1—C5—C4122.92 (16)
O1—P1—O3112.24 (7)N1—C5—H5118.5
O1—P1—O2111.98 (7)C4—C5—H5118.5
O3—P1—O2113.57 (7)C2—C6—H6A109.5
O1—P1—H1106.1C2—C6—H6B109.5
O3—P1—H1106.1H6A—C6—H6B109.5
O2—P1—H1106.1C2—C6—H6C109.5
P1—O1—Zn1135.67 (7)H6A—C6—H6C109.5
P1—O2—Zn1ii125.89 (7)H6B—C6—H6C109.5
P1—O3—Zn1iv129.00 (7)C1—N1—C5119.16 (14)
N2—C1—N1118.38 (15)C1—N1—Zn1124.96 (11)
N2—C1—C2120.29 (15)C5—N1—Zn1115.87 (11)
N1—C1—C2121.32 (15)C1—N2—H1N121.9 (16)
C3—C2—C1117.33 (15)C1—N2—H2N121.7 (14)
C3—C2—C6123.23 (15)H1N—N2—H2N114 (2)
C1—C2—C6119.44 (16)H1O—O4—H1Oiii109 (3)
C2—C3—C4121.36 (15)
O3—P1—O1—Zn119.79 (15)C1—C2—C3—C40.8 (3)
O2—P1—O1—Zn1109.32 (12)C6—C2—C3—C4179.11 (16)
O1—P1—O2—Zn1ii65.88 (11)C2—C3—C4—C50.0 (3)
O3—P1—O2—Zn1ii62.53 (11)C3—C4—C5—N10.6 (3)
O1—P1—O3—Zn1iv148.87 (9)N2—C1—N1—C5179.08 (15)
O2—P1—O3—Zn1iv20.58 (12)C2—C1—N1—C50.6 (2)
N2—C1—C2—C3179.58 (16)N2—C1—N1—Zn10.1 (2)
N1—C1—C2—C31.1 (2)C2—C1—N1—Zn1178.42 (11)
N2—C1—C2—C60.3 (2)C4—C5—N1—C10.3 (2)
N1—C1—C2—C6178.77 (15)C4—C5—N1—Zn1179.41 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1/2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O4v0.78 (2)2.19 (2)2.919 (2)157 (2)
N2—H2N···O2ii0.84 (2)2.54 (2)3.098 (2)124.8 (18)
O4—H1O···O20.79 (2)2.199 (19)2.9165 (15)152 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (v) x+1, y, z+1.
Poly[(2-amino-4-methylpyridine)-µ3-phosphonato-zinc] (II) top
Crystal data top
[Zn(HPO3)(C6H8N2)]F(000) = 2048
Mr = 253.49Dx = 1.850 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.873 (6) ÅCell parameters from 5932 reflections
b = 12.307 (3) Åθ = 2.0–27.4°
c = 16.633 (4) ŵ = 2.85 mm1
β = 128.954 (5)°T = 93 K
V = 3641.1 (16) Å3Rod, colourless
Z = 160.10 × 0.03 × 0.03 mm
Data collection top
Rigaku Pilatus 200K CCD
diffractometer
3177 reflections with I > 2σ(I)
ω scansRint = 0.033
Absorption correction: multi-scan
CrystalClear (Rigaku, 2015)
θmax = 25.3°, θmin = 2.0°
Tmin = 0.783, Tmax = 1.000h = 2727
50824 measured reflectionsk = 1414
3308 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0301P)2 + 3.9697P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3308 reflectionsΔρmax = 0.30 e Å3
249 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.13481 (2)0.28075 (2)0.46631 (2)0.01035 (6)
Zn20.38505 (2)0.50195 (2)0.68663 (2)0.01038 (7)
P10.30317 (2)0.28259 (3)0.65170 (3)0.01005 (9)
H10.3427710.2811060.7530470.012*
P20.46680 (2)0.44040 (3)0.59502 (3)0.01048 (9)
H20.4432100.4629530.5012550.013*
O10.22394 (6)0.24425 (9)0.60565 (8)0.0126 (2)
O20.30176 (6)0.40043 (9)0.62249 (8)0.0142 (2)
O30.34276 (6)0.20612 (9)0.62797 (8)0.0133 (2)
O40.42559 (6)0.51766 (9)0.61527 (9)0.0151 (2)
O50.55137 (6)0.45868 (9)0.66790 (8)0.0141 (2)
O60.44751 (6)0.32169 (9)0.59323 (9)0.0192 (3)
C10.02104 (9)0.45553 (13)0.39669 (12)0.0139 (3)
C20.00238 (9)0.56244 (13)0.39473 (12)0.0159 (3)
H2A0.0518580.5851250.3385160.019*
C30.04591 (9)0.63392 (13)0.47361 (12)0.0145 (3)
C40.11895 (9)0.59656 (13)0.55592 (12)0.0144 (3)
H40.1532960.6424150.6132120.017*
C50.13951 (9)0.49351 (12)0.55196 (12)0.0127 (3)
H50.1891160.4700220.6069400.015*
C60.02238 (10)0.74823 (14)0.47273 (14)0.0213 (4)
H6A0.0633270.7854280.5363480.032*
H6B0.0223600.7466600.4684220.032*
H6C0.0108140.7871410.4128320.032*
N10.09243 (7)0.42276 (10)0.47310 (10)0.0120 (3)
N20.02674 (9)0.38312 (13)0.32253 (12)0.0209 (3)
H1N0.0668 (13)0.4006 (18)0.2726 (17)0.025*
H2N0.0154 (12)0.318 (2)0.3279 (16)0.025*
C70.32300 (8)0.68978 (13)0.72502 (11)0.0113 (3)
C80.29315 (9)0.79476 (12)0.70867 (12)0.0127 (3)
H80.2724790.8160010.7410650.015*
C90.29372 (8)0.86715 (13)0.64575 (12)0.0133 (3)
C100.32631 (9)0.83349 (13)0.60142 (13)0.0168 (3)
H100.3295890.8819460.5599300.020*
C110.35344 (10)0.72937 (13)0.61886 (13)0.0160 (3)
H110.3747070.7069600.5875500.019*
C120.26058 (10)0.97887 (14)0.62570 (14)0.0187 (3)
H12A0.2742591.0229460.5906880.028*
H12B0.2801481.0131330.6915120.028*
H12C0.2057140.9733790.5818160.028*
N30.35144 (7)0.65672 (10)0.67863 (10)0.0118 (3)
N40.32235 (8)0.61703 (11)0.78641 (11)0.0151 (3)
H3N0.3081 (11)0.6407 (16)0.8213 (15)0.018*
H4N0.3543 (12)0.5680 (17)0.8129 (15)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01047 (10)0.00892 (10)0.01329 (11)0.00061 (6)0.00826 (9)0.00141 (6)
Zn20.01062 (11)0.00830 (11)0.01323 (11)0.00089 (6)0.00799 (9)0.00035 (6)
P10.01020 (19)0.0102 (2)0.01011 (19)0.00065 (14)0.00655 (16)0.00054 (14)
P20.01040 (19)0.01063 (19)0.01165 (19)0.00079 (14)0.00753 (16)0.00177 (14)
O10.0124 (5)0.0130 (5)0.0136 (5)0.0002 (4)0.0087 (5)0.0015 (4)
O20.0123 (5)0.0115 (5)0.0169 (5)0.0004 (4)0.0082 (5)0.0003 (4)
O30.0137 (5)0.0138 (5)0.0145 (5)0.0029 (4)0.0099 (5)0.0022 (4)
O40.0182 (6)0.0132 (5)0.0200 (6)0.0030 (5)0.0150 (5)0.0016 (4)
O50.0129 (5)0.0150 (6)0.0149 (5)0.0029 (4)0.0089 (5)0.0027 (4)
O60.0164 (6)0.0125 (6)0.0312 (7)0.0044 (5)0.0163 (5)0.0061 (5)
C10.0135 (7)0.0160 (8)0.0144 (7)0.0000 (6)0.0098 (7)0.0005 (6)
C20.0134 (8)0.0175 (8)0.0161 (8)0.0046 (6)0.0090 (7)0.0034 (6)
C30.0186 (8)0.0139 (8)0.0184 (8)0.0023 (6)0.0152 (7)0.0018 (6)
C40.0161 (8)0.0139 (8)0.0151 (8)0.0029 (6)0.0107 (7)0.0036 (6)
C50.0099 (7)0.0149 (8)0.0126 (8)0.0004 (6)0.0067 (7)0.0004 (6)
C60.0254 (9)0.0146 (8)0.0282 (10)0.0050 (7)0.0189 (8)0.0013 (7)
N10.0117 (6)0.0112 (6)0.0142 (6)0.0001 (5)0.0087 (6)0.0011 (5)
N20.0125 (7)0.0188 (8)0.0192 (8)0.0004 (6)0.0042 (6)0.0051 (6)
C70.0090 (7)0.0122 (7)0.0106 (7)0.0013 (6)0.0052 (6)0.0011 (6)
C80.0128 (7)0.0120 (7)0.0146 (8)0.0004 (6)0.0093 (7)0.0015 (6)
C90.0125 (7)0.0106 (7)0.0145 (8)0.0010 (6)0.0074 (6)0.0012 (6)
C100.0232 (8)0.0124 (8)0.0208 (8)0.0018 (7)0.0167 (7)0.0037 (6)
C110.0213 (8)0.0144 (8)0.0200 (8)0.0016 (6)0.0167 (7)0.0016 (6)
C120.0234 (9)0.0121 (8)0.0235 (9)0.0043 (7)0.0161 (8)0.0023 (7)
N30.0130 (6)0.0098 (6)0.0139 (6)0.0008 (5)0.0092 (5)0.0004 (5)
N40.0216 (7)0.0120 (7)0.0185 (7)0.0043 (6)0.0159 (6)0.0037 (6)
Geometric parameters (Å, º) top
Zn1—O3i1.9391 (12)C4—H40.9500
Zn1—O6i1.9419 (12)C5—N11.365 (2)
Zn1—O11.9463 (11)C5—H50.9500
Zn1—N12.0358 (13)C6—H6A0.9800
Zn2—O41.9210 (12)C6—H6B0.9800
Zn2—O21.9423 (11)C6—H6C0.9800
Zn2—O5ii1.9567 (12)N2—H1N0.79 (2)
Zn2—N32.0269 (14)N2—H2N0.82 (2)
P1—O31.5202 (11)C7—N31.347 (2)
P1—O21.5234 (12)C7—N41.365 (2)
P1—O11.5324 (12)C7—C81.406 (2)
P1—H11.3200C8—C91.381 (2)
P2—O41.5182 (12)C8—H80.9500
P2—O61.5209 (12)C9—C101.401 (2)
P2—O51.5211 (12)C9—C121.503 (2)
P2—H21.3200C10—C111.373 (2)
C1—N21.347 (2)C10—H100.9500
C1—N11.355 (2)C11—N31.359 (2)
C1—C21.413 (2)C11—H110.9500
C2—C31.376 (2)C12—H12A0.9800
C2—H2A0.9500C12—H12B0.9800
C3—C41.415 (2)C12—H12C0.9800
C3—C61.503 (2)N4—H3N0.88 (2)
C4—C51.368 (2)N4—H4N0.83 (2)
O3i—Zn1—O6i107.84 (5)N1—C5—C4123.38 (15)
O3i—Zn1—O1111.75 (5)N1—C5—H5118.3
O6i—Zn1—O1114.29 (5)C4—C5—H5118.3
O3i—Zn1—N1110.52 (5)C3—C6—H6A109.5
O6i—Zn1—N1104.06 (5)C3—C6—H6B109.5
O1—Zn1—N1108.11 (5)H6A—C6—H6B109.5
O4—Zn2—O2114.40 (5)C3—C6—H6C109.5
O4—Zn2—O5ii121.28 (5)H6A—C6—H6C109.5
O2—Zn2—O5ii102.36 (5)H6B—C6—H6C109.5
O4—Zn2—N3100.10 (5)C1—N1—C5117.98 (13)
O2—Zn2—N3111.58 (5)C1—N1—Zn1122.59 (11)
O5ii—Zn2—N3107.05 (5)C5—N1—Zn1119.05 (10)
O3—P1—O2113.78 (6)C1—N2—H1N121.4 (16)
O3—P1—O1112.94 (7)C1—N2—H2N121.4 (15)
O2—P1—O1110.64 (6)H1N—N2—H2N117 (2)
O3—P1—H1106.3N3—C7—N4117.81 (14)
O2—P1—H1106.3N3—C7—C8121.16 (14)
O1—P1—H1106.3N4—C7—C8121.02 (14)
O4—P2—O6113.14 (7)C9—C8—C7120.32 (14)
O4—P2—O5112.73 (7)C9—C8—H8119.8
O6—P2—O5111.44 (6)C7—C8—H8119.8
O4—P2—H2106.3C8—C9—C10118.03 (14)
O6—P2—H2106.3C8—C9—C12120.98 (14)
O5—P2—H2106.3C10—C9—C12120.99 (14)
P1—O1—Zn1123.26 (6)C11—C10—C9118.96 (15)
P1—O2—Zn2128.34 (7)C11—C10—H10120.5
P1—O3—Zn1i131.45 (7)C9—C10—H10120.5
P2—O4—Zn2133.02 (7)N3—C11—C10123.37 (15)
P2—O5—Zn2ii127.58 (7)N3—C11—H11118.3
P2—O6—Zn1i144.09 (8)C10—C11—H11118.3
N2—C1—N1117.88 (15)C9—C12—H12A109.5
N2—C1—C2121.14 (15)C9—C12—H12B109.5
N1—C1—C2120.97 (14)H12A—C12—H12B109.5
C3—C2—C1120.52 (15)C9—C12—H12C109.5
C3—C2—H2A119.7H12A—C12—H12C109.5
C1—C2—H2A119.7H12B—C12—H12C109.5
C2—C3—C4117.82 (15)C7—N3—C11118.08 (14)
C2—C3—C6121.41 (15)C7—N3—Zn2123.09 (10)
C4—C3—C6120.77 (15)C11—N3—Zn2118.72 (11)
C5—C4—C3119.16 (14)C7—N4—H3N117.5 (13)
C5—C4—H4120.4C7—N4—H4N117.1 (14)
C3—C4—H4120.4H3N—N4—H4N117.4 (19)
O3—P1—O1—Zn187.69 (9)N2—C1—N1—C5175.71 (14)
O2—P1—O1—Zn141.16 (9)C2—C1—N1—C54.6 (2)
O3—P1—O2—Zn269.80 (10)N2—C1—N1—Zn111.4 (2)
O1—P1—O2—Zn2161.80 (7)C2—C1—N1—Zn1168.38 (11)
O2—P1—O3—Zn1i20.85 (11)C4—C5—N1—C12.1 (2)
O1—P1—O3—Zn1i106.36 (9)C4—C5—N1—Zn1171.05 (12)
O6—P2—O4—Zn226.92 (12)N3—C7—C8—C91.2 (2)
O5—P2—O4—Zn2100.68 (10)N4—C7—C8—C9179.53 (15)
O4—P2—O5—Zn2ii35.10 (11)C7—C8—C9—C101.5 (2)
O6—P2—O5—Zn2ii93.38 (9)C7—C8—C9—C12178.71 (14)
O4—P2—O6—Zn1i51.37 (15)C8—C9—C10—C112.5 (2)
O5—P2—O6—Zn1i179.64 (11)C12—C9—C10—C11177.66 (15)
N2—C1—C2—C3176.82 (15)C9—C10—C11—N31.0 (3)
N1—C1—C2—C33.5 (2)N4—C7—N3—C11178.87 (14)
C1—C2—C3—C40.2 (2)C8—C7—N3—C112.8 (2)
C1—C2—C3—C6179.55 (15)N4—C7—N3—Zn25.08 (19)
C2—C3—C4—C52.6 (2)C8—C7—N3—Zn2173.28 (11)
C6—C3—C4—C5177.19 (15)C10—C11—N3—C71.7 (2)
C3—C4—C5—N11.5 (2)C10—C11—N3—Zn2174.54 (13)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O3iii0.79 (2)2.35 (2)2.9056 (19)128 (2)
N2—H2N···O6i0.82 (2)2.13 (2)2.900 (2)155 (2)
N4—H3N···O1iv0.88 (2)2.18 (2)3.0310 (18)163.7 (18)
N4—H4N···O5ii0.83 (2)2.39 (2)3.1555 (19)154.3 (18)
C5—H5···O20.952.573.315 (2)136
C8—H8···O1iv0.952.653.405 (2)137
C11—H11···O40.952.513.105 (2)120
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+3/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+3/2.
Poly[(2-amino-5-methylpyridine)-µ3-phosphonato-zinc] (III) top
Crystal data top
[Zn(HPO3)(C6H8N2)]Dx = 1.882 Mg m3
Mr = 253.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3214 reflections
a = 5.1487 (9) Åθ = 2.6–27.5°
b = 8.5316 (19) ŵ = 2.90 mm1
c = 20.371 (5) ÅT = 93 K
V = 894.8 (3) Å3Prism, colourless
Z = 40.15 × 0.05 × 0.03 mm
F(000) = 512
Data collection top
Rigaku Pilatus 200K CCD
diffractometer
1599 reflections with I > 2σ(I)
ω scansRint = 0.067
Absorption correction: multi-scan
CrystalClear (Rigaku, 2015)
θmax = 25.3°, θmin = 2.6°
Tmin = 0.505, Tmax = 1.000h = 66
13254 measured reflectionsk = 1010
1630 independent reflectionsl = 2324
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.0724P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.59 e Å3
1630 reflectionsΔρmin = 0.41 e Å3
125 parametersAbsolute structure: Parsons et al., 2013
0 restraintsAbsolute structure parameter: 0.011 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.72989 (7)0.60753 (3)0.06019 (2)0.01077 (13)
P10.23596 (17)0.80347 (7)0.08606 (3)0.01135 (19)
H10.1433140.8602900.1415980.014*
O10.5244 (4)0.7749 (2)0.09764 (10)0.0133 (5)
O20.1793 (4)0.9268 (2)0.03353 (10)0.0133 (4)
O30.0960 (4)0.6496 (2)0.07460 (10)0.0163 (5)
C10.7698 (7)0.2687 (3)0.09670 (13)0.0125 (6)
C20.6882 (6)0.1306 (3)0.12868 (15)0.0159 (7)
H20.7625940.0322840.1174230.019*
C30.5011 (7)0.1398 (3)0.17599 (15)0.0152 (6)
H30.4470080.0469990.1978750.018*
C40.3865 (6)0.2842 (3)0.19301 (14)0.0141 (6)
C50.4702 (6)0.4120 (3)0.15785 (14)0.0136 (6)
H50.3933760.5106600.1673550.016*
C60.1796 (6)0.2972 (3)0.24478 (15)0.0181 (7)
H6A0.0401120.2223800.2353560.027*
H6B0.1088710.4038970.2448600.027*
H6C0.2548150.2740000.2878870.027*
N10.6561 (5)0.4067 (3)0.11026 (11)0.0116 (5)
N20.9566 (5)0.2636 (3)0.04934 (13)0.0168 (6)
H2A1.056 (7)0.350 (4)0.0429 (17)0.020*
H2B1.045 (7)0.189 (5)0.0452 (17)0.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01207 (19)0.0079 (2)0.0123 (2)0.00022 (13)0.00027 (14)0.00120 (10)
P10.0124 (4)0.0098 (3)0.0119 (4)0.0014 (3)0.0003 (3)0.0005 (3)
O10.0133 (11)0.0114 (9)0.0152 (11)0.0001 (9)0.0013 (9)0.0003 (8)
O20.0180 (11)0.0108 (9)0.0111 (10)0.0021 (8)0.0004 (9)0.0009 (8)
O30.0123 (11)0.0137 (10)0.0228 (11)0.0010 (8)0.0035 (10)0.0024 (8)
C10.0160 (16)0.0131 (12)0.0085 (14)0.0009 (13)0.0046 (14)0.0004 (10)
C20.0206 (17)0.0096 (13)0.0175 (16)0.0003 (12)0.0030 (14)0.0005 (11)
C30.0218 (15)0.0101 (13)0.0139 (15)0.0035 (12)0.0042 (13)0.0033 (11)
C40.0159 (15)0.0137 (14)0.0128 (16)0.0024 (12)0.0036 (14)0.0018 (11)
C50.0149 (15)0.0108 (13)0.0152 (16)0.0008 (13)0.0022 (12)0.0020 (12)
C60.0184 (16)0.0204 (15)0.0156 (17)0.0026 (13)0.0016 (13)0.0014 (12)
N10.0151 (13)0.0097 (10)0.0101 (12)0.0003 (10)0.0004 (10)0.0006 (9)
N20.0190 (15)0.0110 (13)0.0205 (15)0.0040 (11)0.0026 (12)0.0010 (11)
Geometric parameters (Å, º) top
Zn1—O11.9343 (19)C2—H20.9500
Zn1—O3i1.941 (2)C3—C41.409 (4)
Zn1—O2ii1.949 (2)C3—H30.9500
Zn1—N12.030 (2)C4—C51.374 (4)
P1—O31.515 (2)C4—C61.503 (4)
P1—O11.523 (2)C5—N11.363 (4)
P1—O21.529 (2)C5—H50.9500
P1—H11.3200C6—H6A0.9800
C1—N11.344 (3)C6—H6B0.9800
C1—N21.363 (4)C6—H6C0.9800
C1—C21.411 (4)N2—H2A0.90 (4)
C2—C31.365 (5)N2—H2B0.79 (4)
O1—Zn1—O3i109.56 (9)C2—C3—C4121.3 (3)
O1—Zn1—O2ii115.09 (8)C2—C3—H3119.4
O3i—Zn1—O2ii107.80 (9)C4—C3—H3119.4
O1—Zn1—N1108.82 (9)C5—C4—C3115.8 (3)
O3i—Zn1—N1105.19 (9)C5—C4—C6121.9 (3)
O2ii—Zn1—N1109.90 (8)C3—C4—C6122.3 (3)
O3—P1—O1110.43 (11)N1—C5—C4124.4 (3)
O3—P1—O2113.41 (12)N1—C5—H5117.8
O1—P1—O2113.86 (12)C4—C5—H5117.8
O3—P1—H1106.2C4—C6—H6A109.5
O1—P1—H1106.2C4—C6—H6B109.5
O2—P1—H1106.2H6A—C6—H6B109.5
P1—O1—Zn1126.17 (12)C4—C6—H6C109.5
P1—O2—Zn1iii123.84 (11)H6A—C6—H6C109.5
P1—O3—Zn1iv130.19 (13)H6B—C6—H6C109.5
N1—C1—N2118.8 (2)C1—N1—C5118.8 (2)
N1—C1—C2120.5 (3)C1—N1—Zn1123.69 (19)
N2—C1—C2120.7 (2)C5—N1—Zn1117.45 (18)
C3—C2—C1119.2 (3)C1—N2—H2A118 (2)
C3—C2—H2120.4C1—N2—H2B121 (3)
C1—C2—H2120.4H2A—N2—H2B108 (3)
O3—P1—O1—Zn131.32 (19)C2—C3—C4—C6179.8 (3)
O2—P1—O1—Zn197.61 (15)C3—C4—C5—N11.6 (4)
O3—P1—O2—Zn1iii54.86 (18)C6—C4—C5—N1179.7 (3)
O1—P1—O2—Zn1iii72.54 (16)N2—C1—N1—C5179.7 (3)
O1—P1—O3—Zn1iv177.67 (14)C2—C1—N1—C53.4 (4)
O2—P1—O3—Zn1iv53.2 (2)N2—C1—N1—Zn14.0 (4)
N1—C1—C2—C33.3 (5)C2—C1—N1—Zn1172.9 (2)
N2—C1—C2—C3179.9 (3)C4—C5—N1—C10.9 (4)
C1—C2—C3—C40.6 (5)C4—C5—N1—Zn1175.6 (2)
C2—C3—C4—C51.7 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z; (iii) x1/2, y+3/2, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2v0.79 (4)2.35 (4)3.111 (3)162 (3)
C2—H2···O1vi0.952.553.212 (3)127
Symmetry codes: (v) x+1, y1, z; (vi) x, y1, z.
Poly[bis(2-amino-4-methylpyridinium) [tetra-µ3-phosphonato-trizinc] monohydrate] (IV) top
Crystal data top
(C6H9N2)2[Zn3(HPO3)4]·H2OZ = 2
Mr = 752.34F(000) = 756
Triclinic, P1Dx = 2.019 Mg m3
a = 9.03805 (13) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.36837 (13) ÅCell parameters from 10623 reflections
c = 15.0207 (2) Åθ = 5.7–75.3°
α = 81.0313 (1)°µ = 6.49 mm1
β = 88.0646 (1)°T = 93 K
γ = 80.0782 (1)°Prism, colourless
V = 1237.46 (3) Å30.10 × 0.10 × 0.10 mm
Data collection top
Rigaku Pilatus 200K CCD
diffractometer
4842 independent reflections
Radiation source: fine-focus sealed X-ray tube4831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 75.4°, θmin = 3.0°
Absorption correction: multi-scan
CrystalClear (Rigaku, 2015)
h = 1111
Tmin = 0.744, Tmax = 1.000k = 1111
11869 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0455P)2 + 2.3807P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.10Δρmax = 1.25 e Å3
4842 reflectionsΔρmin = 0.67 e Å3
343 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0053 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.24743 (4)0.40103 (4)0.26283 (2)0.01319 (11)
Zn20.39686 (4)0.53650 (4)0.37317 (2)0.01450 (11)
Zn30.36057 (4)0.44962 (4)0.08606 (2)0.01489 (11)
P10.11180 (7)0.49421 (7)0.23815 (4)0.01223 (14)
H10.0852080.6185720.2599060.015*
O10.0349 (2)0.3858 (2)0.24886 (13)0.0181 (4)
O20.2305 (2)0.4425 (2)0.30286 (13)0.0194 (4)
O30.1634 (2)0.5258 (2)0.14074 (12)0.0198 (4)
P20.43840 (7)0.28650 (7)0.10450 (4)0.01276 (14)
H20.4898580.1570070.0808880.015*
O40.3711 (2)0.2551 (2)0.19875 (12)0.0175 (4)
O50.3142 (2)0.3593 (2)0.03697 (12)0.0172 (4)
O60.5709 (2)0.3653 (2)0.09860 (13)0.0196 (4)
P30.39182 (7)0.30396 (7)0.46061 (4)0.01410 (15)
H30.4312250.1600240.4768420.017*
O70.2721 (2)0.3341 (2)0.38856 (12)0.0223 (4)
O80.3247 (2)0.3488 (2)0.54810 (12)0.0219 (4)
O90.5344 (2)0.3632 (2)0.43166 (14)0.0248 (4)
P40.38437 (7)0.69938 (7)0.20856 (4)0.01361 (15)
H40.3038420.8324300.1985570.016*
O100.2702 (2)0.5969 (2)0.20914 (14)0.0220 (4)
O110.4872 (2)0.6985 (2)0.12705 (13)0.0237 (4)
O120.4649 (2)0.6836 (2)0.29693 (13)0.0240 (4)
C10.0589 (3)0.7635 (3)0.01704 (17)0.0150 (5)
C20.1635 (3)0.8612 (3)0.03501 (17)0.0162 (5)
H2A0.2516030.8455080.0004130.019*
C30.1385 (3)0.9781 (3)0.10321 (18)0.0171 (5)
C40.0059 (3)0.9998 (3)0.15470 (18)0.0205 (5)
H4A0.0145961.0811280.2015350.025*
C50.0916 (3)0.9041 (3)0.13684 (18)0.0199 (5)
H50.1795180.9174990.1722170.024*
C60.2478 (3)1.0834 (3)0.1230 (2)0.0228 (6)
H6A0.1930541.1842350.1296610.034*
H6B0.3025131.0671400.1789910.034*
H6C0.3191661.0673670.0732830.034*
N10.0650 (2)0.7888 (2)0.06862 (15)0.0170 (4)
H1A0.1306650.7287960.0578780.020*
N20.0770 (3)0.6485 (3)0.04803 (16)0.0198 (5)
H2N0.008 (4)0.598 (4)0.063 (2)0.024*
H3N0.152 (4)0.637 (4)0.083 (3)0.024*
C70.1126 (4)0.0499 (3)0.3638 (2)0.0293 (6)
C80.0951 (4)0.1046 (3)0.3921 (2)0.0298 (7)
H80.1782250.1539710.3910190.036*
C90.0422 (4)0.1811 (3)0.4206 (2)0.0269 (6)
C100.1682 (4)0.1098 (4)0.4158 (2)0.0312 (7)
H100.2640690.1627120.4347840.037*
C110.1501 (4)0.0345 (4)0.3839 (2)0.0357 (7)
H110.2353790.0820430.3767660.043*
C120.0592 (4)0.3416 (3)0.4520 (2)0.0320 (7)
H12A0.0940690.3632810.5145480.048*
H12B0.1326330.3936450.4137110.048*
H12C0.0378680.3735200.4486050.048*
N30.0130 (3)0.1129 (3)0.3619 (2)0.0287 (6)
H4N0.011 (5)0.199 (5)0.338 (3)0.034*
N40.2409 (3)0.1292 (3)0.3372 (2)0.0290 (6)
H5N0.321 (5)0.081 (5)0.333 (3)0.035*
H6N0.249 (5)0.225 (5)0.321 (3)0.035*
O130.4957 (3)0.0103 (2)0.32132 (16)0.0327 (5)
H1O0.5117970.1097110.3172110.039*
H2O0.5524970.0563890.2750110.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01172 (17)0.01579 (18)0.01205 (17)0.00462 (13)0.00061 (12)0.00056 (12)
Zn20.01256 (18)0.01957 (19)0.01204 (17)0.00494 (13)0.00048 (12)0.00209 (13)
Zn30.01393 (18)0.01878 (19)0.01254 (17)0.00717 (13)0.00082 (12)0.00086 (13)
P10.0117 (3)0.0135 (3)0.0114 (3)0.0041 (2)0.0004 (2)0.0008 (2)
O10.0112 (8)0.0185 (9)0.0246 (9)0.0046 (7)0.0014 (7)0.0009 (7)
O20.0194 (9)0.0190 (9)0.0189 (9)0.0047 (7)0.0076 (7)0.0003 (7)
O30.0169 (9)0.0286 (10)0.0140 (9)0.0101 (8)0.0033 (7)0.0039 (7)
P20.0117 (3)0.0135 (3)0.0128 (3)0.0031 (2)0.0008 (2)0.0003 (2)
O40.0191 (9)0.0186 (9)0.0130 (8)0.0021 (7)0.0018 (7)0.0016 (7)
O50.0139 (8)0.0230 (9)0.0137 (8)0.0048 (7)0.0006 (7)0.0018 (7)
O60.0141 (9)0.0189 (9)0.0264 (10)0.0062 (7)0.0004 (7)0.0012 (7)
P30.0157 (3)0.0147 (3)0.0121 (3)0.0053 (2)0.0006 (2)0.0002 (2)
O70.0250 (10)0.0290 (10)0.0132 (9)0.0081 (8)0.0028 (7)0.0005 (7)
O80.0223 (10)0.0330 (11)0.0144 (9)0.0137 (8)0.0026 (7)0.0065 (8)
O90.0196 (10)0.0237 (10)0.0314 (11)0.0089 (8)0.0077 (8)0.0005 (8)
P40.0127 (3)0.0129 (3)0.0149 (3)0.0027 (2)0.0015 (2)0.0002 (2)
O100.0180 (9)0.0197 (10)0.0285 (10)0.0089 (8)0.0042 (8)0.0031 (8)
O110.0281 (10)0.0206 (10)0.0220 (10)0.0060 (8)0.0082 (8)0.0013 (8)
O120.0259 (10)0.0257 (10)0.0202 (10)0.0003 (8)0.0084 (8)0.0062 (8)
C10.0140 (11)0.0154 (12)0.0148 (11)0.0006 (9)0.0019 (9)0.0026 (9)
C20.0130 (11)0.0180 (12)0.0177 (12)0.0025 (10)0.0006 (9)0.0031 (10)
C30.0159 (12)0.0154 (12)0.0200 (12)0.0032 (10)0.0049 (10)0.0034 (10)
C40.0234 (14)0.0173 (13)0.0189 (12)0.0024 (11)0.0004 (10)0.0021 (10)
C50.0186 (13)0.0200 (13)0.0201 (13)0.0027 (10)0.0053 (10)0.0002 (10)
C60.0184 (13)0.0176 (13)0.0320 (15)0.0065 (11)0.0049 (11)0.0002 (11)
N10.0153 (10)0.0165 (11)0.0196 (11)0.0053 (8)0.0007 (8)0.0007 (8)
N20.0174 (11)0.0223 (12)0.0190 (11)0.0069 (9)0.0011 (9)0.0038 (9)
C70.0239 (15)0.0257 (15)0.0362 (17)0.0043 (12)0.0044 (12)0.0008 (12)
C80.0315 (16)0.0264 (15)0.0319 (16)0.0093 (13)0.0069 (13)0.0021 (12)
C90.0274 (15)0.0214 (14)0.0311 (15)0.0061 (12)0.0042 (12)0.0005 (11)
C100.0245 (15)0.0275 (16)0.0416 (18)0.0047 (12)0.0027 (13)0.0046 (13)
C110.0346 (18)0.0373 (18)0.0385 (18)0.0144 (15)0.0015 (14)0.0074 (14)
C120.0360 (17)0.0199 (15)0.0385 (17)0.0029 (13)0.0012 (14)0.0008 (12)
N30.0274 (13)0.0162 (12)0.0421 (15)0.0099 (10)0.0027 (11)0.0031 (11)
N40.0247 (13)0.0191 (13)0.0415 (15)0.0042 (10)0.0023 (11)0.0010 (11)
O130.0342 (12)0.0281 (11)0.0355 (12)0.0088 (10)0.0085 (10)0.0016 (9)
Geometric parameters (Å, º) top
Zn1—O71.9028 (19)C2—H2A0.9500
Zn1—O101.9283 (19)C3—C41.416 (4)
Zn1—O41.9637 (19)C3—C61.504 (4)
Zn1—O11.9710 (18)C4—C51.354 (4)
Zn2—O9i1.913 (2)C4—H4A0.9500
Zn2—O8ii1.9154 (19)C5—N11.363 (3)
Zn2—O12i1.945 (2)C5—H50.9500
Zn2—O21.9690 (19)C6—H6A0.9800
Zn3—O6iii1.9202 (19)C6—H6B0.9800
Zn3—O11iii1.936 (2)C6—H6C0.9800
Zn3—O3iv1.9499 (18)N1—H1A0.8800
Zn3—O51.9720 (18)N2—H2N0.85 (4)
P1—O21.5142 (18)N2—H3N0.85 (4)
P1—O31.5196 (18)C7—N41.304 (4)
P1—O11.5217 (19)C7—N31.364 (4)
P1—H11.3200C7—C81.426 (4)
P2—O61.5043 (19)C8—C91.368 (5)
P2—O41.5279 (18)C8—H80.9500
P2—O51.5333 (18)C9—C101.411 (4)
P2—H21.3200C9—C121.486 (4)
P3—O91.514 (2)C10—C111.346 (5)
P3—O71.517 (2)C10—H100.9500
P3—O81.5172 (19)C11—N31.350 (4)
P3—H31.3200C11—H110.9500
P4—O121.5103 (19)C12—H12A0.9800
P4—O111.512 (2)C12—H12B0.9800
P4—O101.5247 (19)C12—H12C0.9800
P4—H41.3200N3—H4N0.83 (4)
C1—N21.329 (3)N4—H5N0.93 (4)
C1—N11.349 (3)N4—H6N0.88 (4)
C1—C21.417 (4)O13—H1O0.9780
C2—C31.372 (4)O13—H2O0.9570
O7—Zn1—O10122.18 (9)N2—C1—C2123.2 (2)
O7—Zn1—O4107.57 (8)N1—C1—C2118.3 (2)
O10—Zn1—O4110.71 (8)C3—C2—C1120.4 (2)
O7—Zn1—O1100.42 (8)C3—C2—H2A119.8
O10—Zn1—O1106.69 (8)C1—C2—H2A119.8
O4—Zn1—O1108.12 (8)C2—C3—C4118.8 (2)
O9i—Zn2—O8ii115.30 (9)C2—C3—C6121.2 (2)
O9i—Zn2—O12i118.93 (9)C4—C3—C6120.0 (2)
O8ii—Zn2—O12i102.04 (9)C5—C4—C3119.7 (2)
O9i—Zn2—O298.33 (8)C5—C4—H4A120.2
O8ii—Zn2—O2110.78 (8)C3—C4—H4A120.2
O12i—Zn2—O2111.74 (8)C4—C5—N1120.7 (2)
O6iii—Zn3—O11iii110.85 (8)C4—C5—H5119.7
O6iii—Zn3—O3iv110.21 (8)N1—C5—H5119.7
O11iii—Zn3—O3iv115.57 (9)C3—C6—H6A109.5
O6iii—Zn3—O5117.10 (8)C3—C6—H6B109.5
O11iii—Zn3—O5103.07 (8)H6A—C6—H6B109.5
O3iv—Zn3—O599.70 (8)C3—C6—H6C109.5
O2—P1—O3112.70 (11)H6A—C6—H6C109.5
O2—P1—O1111.00 (11)H6B—C6—H6C109.5
O3—P1—O1111.15 (11)C1—N1—C5122.1 (2)
O2—P1—H1107.2C1—N1—H1A118.9
O3—P1—H1107.2C5—N1—H1A118.9
O1—P1—H1107.2C1—N2—H2N122 (2)
P1—O1—Zn1135.03 (12)C1—N2—H3N118 (2)
P1—O2—Zn2135.93 (12)H2N—N2—H3N119 (3)
P1—O3—Zn3iv132.51 (12)N4—C7—N3120.2 (3)
O6—P2—O4115.33 (11)N4—C7—C8122.4 (3)
O6—P2—O5113.41 (11)N3—C7—C8117.3 (3)
O4—P2—O5110.08 (10)C9—C8—C7119.6 (3)
O6—P2—H2105.7C9—C8—H8120.2
O4—P2—H2105.7C7—C8—H8120.2
O5—P2—H2105.7C8—C9—C10120.2 (3)
P2—O4—Zn1125.40 (11)C8—C9—C12119.5 (3)
P2—O5—Zn3121.78 (11)C10—C9—C12120.2 (3)
P2—O6—Zn3iii146.90 (13)C11—C10—C9118.8 (3)
O9—P3—O7114.49 (12)C11—C10—H10120.6
O9—P3—O8113.97 (12)C9—C10—H10120.6
O7—P3—O8110.19 (11)C10—C11—N3121.3 (3)
O9—P3—H3105.8C10—C11—H11119.4
O7—P3—H3105.8N3—C11—H11119.4
O8—P3—H3105.8C9—C12—H12A109.5
P3—O7—Zn1140.37 (13)C9—C12—H12B109.5
P3—O8—Zn2ii129.47 (12)H12A—C12—H12B109.5
P3—O9—Zn2v141.65 (14)C9—C12—H12C109.5
O12—P4—O11114.13 (12)H12A—C12—H12C109.5
O12—P4—O10114.03 (12)H12B—C12—H12C109.5
O11—P4—O10112.68 (12)C11—N3—C7122.5 (3)
O12—P4—H4104.9C11—N3—H4N116 (3)
O11—P4—H4104.9C7—N3—H4N121 (3)
O10—P4—H4104.9C7—N4—H5N118 (3)
P4—O10—Zn1138.13 (12)C7—N4—H6N121 (3)
P4—O11—Zn3iii133.31 (12)H5N—N4—H6N122 (4)
P4—O12—Zn2v138.52 (13)H1O—O13—H2O108.6
N2—C1—N1118.5 (2)
O2—P1—O1—Zn1131.13 (16)O11—P4—O12—Zn2v67.0 (2)
O3—P1—O1—Zn1102.59 (17)O10—P4—O12—Zn2v64.4 (2)
O3—P1—O2—Zn289.87 (19)N2—C1—C2—C3180.0 (2)
O1—P1—O2—Zn2144.71 (16)N1—C1—C2—C30.1 (4)
O2—P1—O3—Zn3iv14.2 (2)C1—C2—C3—C40.4 (4)
O1—P1—O3—Zn3iv139.51 (15)C1—C2—C3—C6179.7 (2)
O6—P2—O4—Zn174.23 (16)C2—C3—C4—C51.1 (4)
O5—P2—O4—Zn155.63 (16)C6—C3—C4—C5179.6 (3)
O6—P2—O5—Zn337.41 (16)C3—C4—C5—N11.3 (4)
O4—P2—O5—Zn3168.29 (11)N2—C1—N1—C5179.8 (2)
O4—P2—O6—Zn3iii85.7 (2)C2—C1—N1—C50.1 (4)
O5—P2—O6—Zn3iii42.5 (3)C4—C5—N1—C10.8 (4)
O9—P3—O7—Zn112.1 (3)N4—C7—C8—C9179.0 (3)
O8—P3—O7—Zn1142.09 (19)N3—C7—C8—C93.7 (5)
O9—P3—O8—Zn2ii1.7 (2)C7—C8—C9—C104.7 (5)
O7—P3—O8—Zn2ii132.07 (16)C7—C8—C9—C12178.6 (3)
O7—P3—O9—Zn2v47.6 (3)C8—C9—C10—C110.9 (5)
O8—P3—O9—Zn2v80.5 (2)C12—C9—C10—C11177.5 (3)
O12—P4—O10—Zn134.6 (2)C9—C10—C11—N34.1 (5)
O11—P4—O10—Zn197.6 (2)C10—C11—N3—C75.2 (5)
O12—P4—O11—Zn3iii66.5 (2)N4—C7—N3—C11176.2 (3)
O10—P4—O11—Zn3iii65.6 (2)C8—C7—N3—C111.2 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5iv0.881.972.833 (3)166
N2—H2N···O30.85 (4)2.05 (4)2.853 (3)157 (3)
N2—H3N···O100.85 (4)2.16 (4)2.961 (3)156 (3)
N3—H4N···O10.83 (4)2.07 (4)2.873 (3)163 (4)
N4—H5N···O13vi0.93 (4)1.95 (4)2.871 (4)177 (4)
N4—H6N···O20.88 (4)2.05 (4)2.918 (3)167 (4)
O13—H1O···O12iii0.982.053.028 (3)175
O13—H2O···O4vii0.962.052.952 (3)157
C5—H5···O4iv0.952.643.370 (3)134
C8—H8···O8viii0.952.483.350 (4)152
C11—H11···O70.952.473.199 (4)133
C11—H11···O13vii0.952.593.281 (4)130
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y+1, z; (vi) x, y, z; (vii) x+1, y, z; (viii) x, y, z+1.
(V) top
Crystal data top
(C6H9N2)2[ZnCl4]·H2OZ = 2
Mr = 443.49F(000) = 452
Triclinic, P1Dx = 1.596 Mg m3
a = 6.9541 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7092 (9) ÅCell parameters from 3331 reflections
c = 16.293 (3) Åθ = 2.5–27.4°
α = 83.239 (11)°µ = 1.92 mm1
β = 80.167 (10)°T = 173 K
γ = 72.049 (9)°Prism, colourless
V = 922.7 (2) Å30.15 × 0.05 × 0.05 mm
Data collection top
AFC10: Fixed Chi 2 circle CCD
diffractometer
3383 independent reflections
Radiation source: Rotating Anode3172 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
ω scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scanh = 88
Tmin = 0.851, Tmax = 1.000k = 1010
28291 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0281P)2 + 3.4309P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3383 reflectionsΔρmax = 1.10 e Å3
203 parametersΔρmin = 1.01 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1889 (9)0.1476 (6)0.5224 (3)0.0600 (15)
C20.1527 (15)0.0459 (7)0.5969 (4)0.104 (3)
C30.2121 (8)0.1169 (6)0.5878 (3)0.0520 (12)
H30.2114030.1881770.6366500.062*
C40.2731 (8)0.1829 (6)0.5112 (3)0.0531 (12)
H40.3101330.2965980.5074570.064*
C50.2788 (17)0.0840 (8)0.4429 (4)0.126 (4)
H50.3032490.1248790.3893310.151*
C60.0868 (10)0.1186 (7)0.6779 (3)0.0651 (16)
H6A0.0365420.2103860.6747260.098*
H6B0.1956980.1562580.6917920.098*
H6C0.0574120.0376200.7212930.098*
N10.2493 (9)0.0780 (6)0.4499 (3)0.0705 (15)
H10.2713930.1386460.4042360.085*
N20.1632 (6)0.3024 (5)0.5236 (2)0.0475 (10)
H2A0.1857000.3600390.4768520.057*
H2B0.1234700.3491000.5712020.057*
C70.2567 (8)0.2446 (6)0.0094 (3)0.0501 (12)
C80.3081 (8)0.1491 (6)0.0793 (3)0.0496 (12)
C90.2983 (7)0.0075 (6)0.0664 (3)0.0461 (11)
H90.3297010.0718700.1128160.055*
C100.2439 (8)0.0740 (7)0.0125 (4)0.0584 (14)
H100.2425380.1835110.0205820.070*
C110.1918 (9)0.0225 (9)0.0790 (4)0.0737 (19)
H110.1486490.0183410.1334040.088*
C120.3736 (8)0.2208 (6)0.1633 (3)0.0449 (11)
H12A0.4836280.2669370.1596400.067*
H12B0.2574600.3060890.1821290.067*
H12C0.4228400.1363640.2030870.067*
N30.2029 (7)0.1758 (6)0.0657 (3)0.0631 (12)
H3A0.1729860.2344880.1091250.076*
N40.2588 (7)0.3949 (5)0.0157 (3)0.0602 (12)
H4A0.2252390.4504020.0290290.072*
H4B0.2938960.4407660.0646930.072*
Zn10.40814 (8)0.39971 (6)0.23744 (3)0.03752 (16)
Cl10.37981 (18)0.50225 (14)0.36231 (7)0.0428 (3)
Cl20.73745 (17)0.33366 (14)0.17781 (8)0.0471 (3)
Cl30.19082 (18)0.57548 (14)0.15631 (7)0.0460 (3)
Cl40.2998 (2)0.17366 (15)0.25763 (7)0.0508 (3)
O10.1386 (6)0.5035 (5)0.6524 (2)0.0587 (9)
H1O0.0534640.5394170.6972630.07 (2)*
H2O0.2564630.5149170.6591630.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (4)0.041 (3)0.049 (3)0.024 (3)0.024 (3)0.010 (2)
C20.198 (9)0.042 (3)0.049 (3)0.031 (4)0.044 (4)0.006 (3)
C30.055 (3)0.039 (3)0.060 (3)0.015 (2)0.002 (2)0.001 (2)
C40.054 (3)0.040 (3)0.062 (3)0.012 (2)0.001 (2)0.014 (2)
C50.244 (12)0.059 (4)0.060 (4)0.060 (6)0.062 (6)0.029 (3)
C60.095 (4)0.045 (3)0.044 (3)0.018 (3)0.014 (3)0.002 (2)
N10.113 (4)0.052 (3)0.043 (2)0.038 (3)0.028 (3)0.013 (2)
N20.063 (3)0.040 (2)0.037 (2)0.0188 (19)0.0038 (18)0.0008 (16)
C70.056 (3)0.058 (3)0.035 (2)0.014 (2)0.005 (2)0.008 (2)
C80.059 (3)0.053 (3)0.039 (3)0.019 (2)0.007 (2)0.003 (2)
C90.038 (2)0.048 (3)0.054 (3)0.011 (2)0.014 (2)0.002 (2)
C100.051 (3)0.063 (3)0.067 (4)0.027 (3)0.018 (3)0.016 (3)
C110.051 (3)0.112 (6)0.056 (4)0.031 (3)0.008 (3)0.022 (4)
C120.055 (3)0.043 (3)0.035 (2)0.011 (2)0.005 (2)0.0054 (19)
N30.070 (3)0.086 (4)0.033 (2)0.024 (3)0.001 (2)0.005 (2)
N40.075 (3)0.056 (3)0.046 (2)0.010 (2)0.008 (2)0.018 (2)
Zn10.0406 (3)0.0372 (3)0.0340 (3)0.0110 (2)0.0026 (2)0.0052 (2)
Cl10.0489 (6)0.0443 (6)0.0345 (5)0.0129 (5)0.0017 (4)0.0090 (4)
Cl20.0406 (6)0.0446 (6)0.0526 (7)0.0090 (5)0.0021 (5)0.0114 (5)
Cl30.0487 (6)0.0458 (6)0.0403 (6)0.0067 (5)0.0105 (5)0.0042 (5)
Cl40.0696 (8)0.0456 (6)0.0439 (6)0.0282 (6)0.0045 (5)0.0039 (5)
O10.061 (2)0.070 (2)0.053 (2)0.030 (2)0.0003 (18)0.0173 (18)
Geometric parameters (Å, º) top
C1—N21.306 (6)C8—C91.376 (7)
C1—N11.335 (7)C8—C121.494 (6)
C1—C21.450 (7)C9—C101.387 (7)
C2—C31.368 (7)C9—H90.9500
C2—C61.472 (8)C10—C111.380 (9)
C3—C41.380 (7)C10—H100.9500
C3—H30.9500C11—N31.351 (8)
C4—C51.328 (9)C11—H110.9500
C4—H40.9500C12—H12A0.9800
C5—N11.377 (8)C12—H12B0.9800
C5—H50.9500C12—H12C0.9800
C6—H6A0.9800N3—H3A0.8800
C6—H6B0.9800N4—H4A0.8800
C6—H6C0.9800N4—H4B0.8800
N1—H10.8800Zn1—Cl22.2536 (13)
N2—H2A0.8800Zn1—Cl32.2704 (13)
N2—H2B0.8800Zn1—Cl12.2710 (12)
C7—N41.305 (7)Zn1—Cl42.2867 (13)
C7—N31.344 (6)O1—H1O0.8802
C7—C81.420 (7)O1—H2O0.8817
N2—C1—N1119.5 (5)C9—C8—C12122.6 (4)
N2—C1—C2122.9 (5)C7—C8—C12119.1 (4)
N1—C1—C2117.6 (5)C8—C9—C10121.8 (5)
C3—C2—C1116.2 (5)C8—C9—H9119.1
C3—C2—C6124.1 (5)C10—C9—H9119.1
C1—C2—C6119.0 (5)C11—C10—C9118.5 (5)
C2—C3—C4123.3 (5)C11—C10—H10120.7
C2—C3—H3118.4C9—C10—H10120.7
C4—C3—H3118.4N3—C11—C10119.1 (5)
C5—C4—C3118.6 (5)N3—C11—H11120.5
C5—C4—H4120.7C10—C11—H11120.5
C3—C4—H4120.7C8—C12—H12A109.5
C4—C5—N1119.8 (6)C8—C12—H12B109.5
C4—C5—H5120.1H12A—C12—H12B109.5
N1—C5—H5120.1C8—C12—H12C109.5
C2—C6—H6A109.5H12A—C12—H12C109.5
C2—C6—H6B109.5H12B—C12—H12C109.5
H6A—C6—H6B109.5C7—N3—C11124.4 (5)
C2—C6—H6C109.5C7—N3—H3A117.8
H6A—C6—H6C109.5C11—N3—H3A117.8
H6B—C6—H6C109.5C7—N4—H4A120.0
C1—N1—C5123.3 (5)C7—N4—H4B120.0
C1—N1—H1118.3H4A—N4—H4B120.0
C5—N1—H1118.3Cl2—Zn1—Cl3113.75 (5)
C1—N2—H2A120.0Cl2—Zn1—Cl1109.26 (5)
C1—N2—H2B120.0Cl3—Zn1—Cl1110.27 (5)
H2A—N2—H2B120.0Cl2—Zn1—Cl4109.40 (5)
N4—C7—N3119.5 (5)Cl3—Zn1—Cl4104.48 (5)
N4—C7—C8122.7 (5)Cl1—Zn1—Cl4109.55 (5)
N3—C7—C8117.8 (5)H1O—O1—H2O105.6
C9—C8—C7118.3 (5)
N2—C1—C2—C3171.5 (7)N4—C7—C8—C9179.1 (5)
N1—C1—C2—C39.1 (12)N3—C7—C8—C90.6 (8)
N2—C1—C2—C60.9 (13)N4—C7—C8—C121.9 (8)
N1—C1—C2—C6179.8 (7)N3—C7—C8—C12178.5 (5)
C1—C2—C3—C410.1 (12)C7—C8—C9—C101.3 (7)
C6—C2—C3—C4179.9 (7)C12—C8—C9—C10177.7 (5)
C2—C3—C4—C51.5 (11)C8—C9—C10—C112.2 (8)
C3—C4—C5—N18.0 (13)C9—C10—C11—N32.5 (8)
N2—C1—N1—C5179.6 (8)N4—C7—N3—C11178.7 (5)
C2—C1—N1—C50.2 (12)C8—C7—N3—C111.0 (8)
C4—C5—N1—C18.8 (14)C10—C11—N3—C72.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl40.882.353.134 (5)148
N2—H2A···Cl10.882.543.375 (4)158
N2—H2B···O10.882.032.838 (5)152
N3—H3A···Cl40.882.663.306 (4)132
N4—H4A···Cl30.882.403.268 (4)170
N4—H4B···Cl2i0.882.513.333 (5)155
O1—H1O···Cl3ii0.882.953.669 (4)141
O1—H1O···Cl4ii0.882.983.675 (4)138
O1—H2O···Cl1iii0.882.453.302 (4)162
C10—H10···Cl3iv0.952.923.696 (5)140
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z.
 

References

First citationChen, J. Y., Chen, S. Y., Chen, W. T., Yin, M. C. & Wang, C. M. (2022). Chem. Eur. J. 28 article e202200732.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGordon, L. & Harrison, W. T. A. (2004). Inorg. Chem. 43, 1808–1809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Phillips, M. L. F., Stanchfield, J. & Nenoff, T. M. (2001). Inorg. Chem. 40, 895–899.  Web of Science CSD CrossRef CAS Google Scholar
First citationHolmes, W., Cordes, D. B., Slawin, A. M. Z. & Harrison, W. T. A. (2018). Acta Cryst. E74, 1411–1416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatinaitė, J. & Harrison, W. T. A. (2017). Acta Cryst. E73, 759–762.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, J., Wang, Y., Yu, J., Li, Y. & Xu, R. (2003). Chem. Commun. pp. 882–883.  Web of Science CSD CrossRef Google Scholar
First citationLin, Z., Nayek, H. & Dehnen, S. (2009). Z. Anorg. Allg. Chem. 635, 2391–2395.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, Z.-E., Zhang, J., Zheng, S.-T., Wei, Q.-H. & Yang, G.-Y. (2003). Solid State Sci. 5, 1435–1438.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y., Li, N., Xiang, S. & Guan, N. (2007). J. Phys. Chem. C, 111, 18361–18366.  Web of Science CrossRef CAS Google Scholar
First citationMao, Y. M., Dong, X. H., Deng, Y. D., Li, J., Huang, L., Zeng, H. M., Zou, G. H. & Lin, Z. E. (2021). Dalton Trans. 50, 5442–5445.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPhillips, M. L. F., Nenoff, T. M., Thompson, C. T. & Harrison, W. T. A. (2002). J. Solid State Chem. 167, 337–343.  CrossRef CAS Google Scholar
First citationRigaku (2015). CrystalClear, Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUrsu, D., Casut, C. & Miclau, M. (2022). Materials 15, article 7792.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds