research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N-{N-[amino­(di­methyl­amino)­meth­yl]carbamimido­yl}-3-bromo­benzene­sulfonamide

crossmark logo

aDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium, and bCollege of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by S. Parkin, University of Kentucky, USA (Received 1 March 2023; accepted 7 March 2023; online 21 March 2023)

The title compound, C10H14BrN5O2S, is the bromo­benzene­sulfonamide derivative of the type 2 diabetes drug metformin. The asymmetric unit contains two mol­ecules with almost identical conformations but a different orientation of the bromo­phenyl moiety. Both mol­ecules exhibit intra­molecular N—H⋯N and N—H⋯O hydrogen bonds. The mol­ecular packing features chain formation in the a-axis direction by alternating N—H⋯N and N—H⋯O inter­actions. In addition, ring motifs consisting of four mol­ecules and ππ inter­actions between the phenyl rings contribute to the three-dimensional architecture. A Hirshfeld surface analysis shows that the largest contributions to surface contacts arise from contacts in which H atoms are involved.

1. Chemical context

Metformin is a widely known effective drug for type 2 diabetes, which does not cause weight gain and rarely causes hypoglycemia. Metformin works by decreasing gluconeogenesis in the liver, increasing insulin sensitivity and preventing insulin resistance (Giannarelli et al., 2003[Giannarelli, R., Aragona, M., Coppelli, A. & Del Prato, S. (2003). Diabetes Metab. 29, 6S2, 8-635.]). In addition to anti­diabetics, metformin shows confirmed benefits against aging (Barzilai et al., 2016[Barzilai, N., Crandall, J., Kritchevsky, S. & Espeland, M. (2016). Cell Metab. 23, 1060-1065.]) and various diseases such as polycystic ovary syndrome (Lord et al., 2003[Lord, J., Flight, I. H. K. & Norman, R. J. (2003). BMJ, 327, 951-955.]), cancers (Libby et al., 2009[Libby, G., Donnelly, L. A., Donnan, P. T., Alessi, D. R., Morris, A. D. & Evans, J. M. (2009). Diabetes Care, 32, 1620-1625.]), obesity (Jing et al., 2018[Jing, Y., Wu, F., Li, D., Yang, L., Li, Q. & Li, R. (2018). Mol. Cell. Endocrinol. 461, 256-264.]), liver disease (Lin et al., 2000[Lin, H. Z., Yang, S. Q., Chuckaree, C., Kuhajda, F., Ronnet, G. & Diehl, A. M. (2000). Nat. Med. 6, 998-1003.]) and cardiovascular disease (Rena & Lang, 2018[Rena, G. & Lang, C. C. (2018). Circulation, 137, 422-424.]). In recent decades, there has been great inter­est in metformin because of its multiple medical applications and low toxicity. However, metformin also has some disadvantages, such as low bioavailability, incomplete absorption, and gastrointestinal side effects. Gliclazide is an oral sulfonyl­urea anti­diabetic agent that works by stimulating insulin synthesis (Sarkar et al., 2011[Sarkar, A., Tiwari, A., Bhasin, P. S. & Mitra, M. (2011). J. Appl. Pharm. Sci. 1, 11-19.]). We think that the combination of the two with different mechanisms of action can synergize and result in a potent hypoglycemic effect. In addition, the combination can improve their physico-chemical properties and alleviate the side effects caused by high doses of a single drug.

Introducing sulfonyl into small medical mol­ecules is an important strategy in modifying the mol­ecular structure of drugs. Sulfonyl can provide two hydrogen-bond acceptors, and the introduction of the sulfonyl group can improve the bioactivity of the compound by increasing the hydrogen-bond inter­actions between drug and target. In addition, the sulfonyl group has a relatively stable structure, and the introduction of sulfonyl can block easily metabolizable sites and prolong its time of action, improving its bioavailability, and thereby improving the pharmacokinetic properties of small mol­ecules. In summary, it makes sense to synthesize ion pairs of gliclazide and sulfonyl-modified metformin and investigate its pharmaceutical properties. Herein we report the crystal structure and Hirshfeld surface analysis of the title compound, C10H14BrN5O2S, obtained during our efforts to crystallize the ion pair with gliclazide.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic space group P[\overline{1}] with two mol­ecules (A containing S8 and B containing S27) in the asymmetric unit (Fig. 1[link]). Although both mol­ecules have an almost identical conformation, the bromo­phenyl part shows two orientations related by a rotation of 180° (Fig. 2[link]). The hydrogen atoms involved in the intra­molecular hydrogen bonds N11⋯N15 (mol­ecule A) and N30⋯N34 (mol­ecule B) are shared by the two nitro­gen atoms with an occupancy of 0.85 (4) at atoms N15 and N34, and 0.15 (4) at atoms N11 and N30. The dihedral angles between the phenyl ring (C1–C6 in A, C20–C25 in B) and the best plane through the N-containing moiety (N11–C19 in A and N30–C38 in B) are 87.12 (12) and 96.05 (12)° in A and B, respectively. Next to the intra­molecular hydrogen bonds N15—H15B⋯N11 and N34—H34B⋯N30, a short inter­action is present between atoms H16B and O9 in A, and H35B and O9 in B (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H15B⋯N11 0.86 (6) 2.02 (6) 2.655 (6) 130 (5)
N16—H16B⋯O9 0.83 (6) 2.19 (5) 2.830 (6) 134 (5)
N34—H34B⋯N30 0.86 (6) 2.02 (6) 2.696 (5) 135 (5)
N35—H35A⋯O29 0.83 (5) 2.18 (5) 2.823 (6) 136 (4)
N35—H35B⋯O9 0.78 (5) 2.27 (5) 3.049 (6) 175 (5)
N16—H16A⋯N32i 0.81 (5) 2.54 (5) 3.225 (6) 144 (4)
N34—H34A⋯O10ii 0.85 (5) 2.23 (5) 3.063 (5) 165 (4)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major component is shown. Intra­molecular inter­actions are shown as dotted lines.
[Figure 2]
Figure 2
A view of the mol­ecular fit of the A (green) and B (orange) mol­ecules of the title compound (major component) calculated using the Overlay routine in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Supra­molecular features

The crystal packing of the title compound is characterized by N—H⋯N, N—H⋯O and ππ inter­actions. The two mol­ecules A and B in the asymmetric unit are linked by an N35—H35B⋯O9 inter­action (Table 1[link]). Mol­ecule A inter­acts with a second mol­ecule B by an N16—H16A⋯N32(−x, −y + 1, −z + 1) inter­action, while mol­ecule B forms an N34—H34A⋯O10(−x + 1, −y + 1, −z + 1) hydrogen-bond inter­action (Table 1[link]). These dimers [graph-set notation D11(2); Etter & MacDonald, 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]] are the building blocks for a three-dimensional network consisting of chains [graph-set notation C22(10)] and rings [graph-set notation R44(20)]. A chain running in the a-axis direction is formed by subsequent N16⋯N32 and N34⋯O10 inter­actions (Fig. 3[link]). One ring motif consists of N16⋯N32 and N35 ⋯O9 inter­actions (Fig. 4[link]), while N34⋯O10 and N35 ⋯O9 inter­actions result in the second ring motif (Fig. 5[link]).

[Figure 3]
Figure 3
Partial crystal packing of the title compound, showing the chain formation in the a-direction. N—H⋯N and N—H⋯O hydrogen bonding are shown as blue and red dashed lines, respectively. Symmetry codes: (i) −x, −y + 1, −z + 1, (ii) −x + 1, −y + 1, −z + 1, (iii) x + 1, y, z.
[Figure 4]
Figure 4
Partial crystal packing of the title compound, showing R44(20) ring formation through N—H⋯N and N—H⋯O hydrogen bonding shown as blue and red dashed lines, respectively. Symmetry code: (i) −x, −y + 1, −z + 1.
[Figure 5]
Figure 5
Partial crystal packing of the title compound, showing R44(20) ring formation through N—H⋯O hydrogen bonding shown as red dashed lines. Symmetry code: (i) −x + 1, −y + 1, −z + 1.

Further dimer formation is obtained through ππ stacking between the phenyl rings (Fig. 6[link]). For mol­ecule A, the Cg1⋯Cg1(−x, −y + 1, −z) distance is 3.686 (3) Å and the slippage is 0.650 Å, while for mol­ecule B the Cg2⋯Cg2(−x + 1, −y, −z) distance is 4.1086 (3) Å and the slippage is 1.936 Å (Cg1 and Cg2 are the centroids of rings C1–C6 and C20–C25, respectively).

[Figure 6]
Figure 6
Partial crystal packing of the title compound, showing the ππ stacking between the phenyl rings. Centroid to centroid distances are given in Å.

A Hirshfeld surface analysis was performed, and two-dimensional fingerprint plots were created with Crystal Explorer21.3 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surfaces of mol­ecules A and B mapped over dnorm are given in Figs. 7[link] and 8[link], respectively. The bright-red spots in Fig. 7[link] near atoms O9 and O10 are indicative of the N34—H34A⋯O10 and N35—H35B⋯O9 hydrogen bonds, while the additional faint-red spots illustrate weaker C14⋯H23 (2.66 Å), H16A⋯N32 [2.54 (5) Å] and Br⋯Br [3.4165 (10) Å] inter­actions present in the crystal packing. The bright-red spots in Fig. 8[link] near atoms N32, H34A and H35B refer to the N16—H16A⋯N32, N34—H34A⋯O10 and N35—H35B⋯O9 hydrogen bonds, while the additional faint-red spots illustrate weaker H15A⋯N30 [2.70 (5) Å] and C14⋯H23 (2.66 Å) inter­actions present in the crystal packing. The relative distributions from the different inter­atomic contacts to the Hirshfeld surfaces are presented in Table 2[link]. The most significant contributions to the Hirshfeld surface are H⋯H (35.0%, 34.0%), O⋯H/H⋯O (19.2%, 17.7%), H⋯Br/Br⋯H (14.1%, 14.6%), H⋯C/C⋯H (13.1%, 15.0%), and H⋯N/N⋯H (11.5%, 10.5%) contacts (values for mol­ecule A and B, respectively).

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces for mol­ecules A and B

Contact Mol­ecule A Mol­ecule B
C⋯C 3.2 2.4
C⋯H/H⋯C 13.1 15.0
H⋯H 35.0 34.0
Br⋯C/C⋯Br 0.2 2.1
Br⋯H/H⋯Br 14.1 14.6
Br⋯Br 1.7 0.0
S⋯C/C⋯S 0.0 0.0
S⋯H/H⋯S 0.1 0.1
S⋯Br/Br⋯S 0.0 0.0
S⋯S 0.0 0.0
O⋯C/C⋯O 0.4 0.0
O⋯H/H⋯O 19.2 17.7
O⋯Br/Br⋯O 0.8 2.9
O⋯S/S⋯O 0.0 0.0
O⋯O 0.1 0.1
N⋯C/C⋯N 0.3 0.2
N⋯H/H⋯N 11.5 10.5
N⋯Br/Br⋯N 0.0 0.0
N⋯S/S⋯N 0.0 0.0
N⋯O/O⋯N 0.0 0.0
N⋯N 0.2 0.4
[Figure 7]
Figure 7
The Hirshfeld surface for mol­ecule A mapped over dnorm: (a) front view, (b) back view.
[Figure 8]
Figure 8
The Hirshfeld surface for mol­ecule B mapped over dnorm: (a) front view, (b) back view.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the N-containing part of the title compound, as shown in Fig. 9[link]a resulted in 17 hits [DEXBUF and DEXBUF01 (Nanubolu et al., 2013[Nanubolu, J. B., Sridhar, B., Ravikumar, K., Sawant, K. D., Naik, T. A., Patkar, L. N., Cherukuvada, S. & Sreedhar, B. (2013). CrystEngComm, 15, 4448-4464.]), DELKAK (Diniz et al., 2022[Diniz, L. F., Carvalho, P. S., Gonçalves, J. E., Diniz, R. & Fernandes, C. (2022). New J. Chem. 46, 13725-13737.]), EQUTIV (Olar et al., 2010a[Olar, R., Badea, M., Grecu, M. N., Balotescu, C.-M., Marinescu, D., Iorgulescu, E.-E., Lazar, V. & Bleotu, C. (2010a). Anal. Univ. Bucuresti Chim. 19, 13.]), EWISAH (Polito-Lucas et al., 2021[Polito-Lucas, J. A., Núñez-Ávila, J. A., Bernès, S. & Pérez-Benítez, A. (2021). IUCrData, 6, x210634.]), JUMXOH (Bian et al., 2020[Bian, X., Jiang, L., Zhou, J., Guan, X., Wang, J., Xiang, P., Pan, J. & Hu, X. (2020). Molecules, 25, 1343.]), MAXJAA (Sun et al., 2022[Sun, J., Jia, L., Wang, M., Liu, Y., Li, M., Han, D. & Gong, J. (2022). Cryst. Growth Des. 22, 1005-1016.]), NAKWAB (Manjunatha et al., 2020[Manjunatha, N. K., Mahesha, Gayathri, B. H., Lokanath, N. K., Swamy, M. T., Chandra Nayaka, S., Siddaraju, B. P., Ragini, N., Al-Ghorbani, M., Kannika, B. R. & Madan Kumar, S. (2020). Chem. Data Collect. 30, 100577.]), NICCEJ (Satyanarayana Reddy et al., 2013[Satyanarayana Reddy, J., Ravikumar, N., Gaddamanugu, G., Naresh, K. N., Rajan, S. S. & Anand Solomon, K. (2013). J. Mol. Struct. 1039, 137-143.]), NUPXED (Dong et al., 2015[Dong, J., Liu, B. & Yang, B. (2015). Acta Cryst. E71, o747-o748.]), OJOSUC (Olar et al., 2010b[Olar, R., Badea, M., Marinescu, D., Chifiriuc, C., Bleotu, C., Grecu, M. N., Iorgulescu, E. E., Bucur, M., Lazar, V. & Finaru, A. (2010^b). Eur. J. Med. Chem. 45, 2868-2875.]), OJOSUC01 (Wei et al., 2014[Wei, X., Fan, Y., Bi, C., Yan, X., Zhang, X. & Li, X. (2014). Bull. Korean Chem. Soc. 35, 3495-3501.]), QILBOF (Sánchez-Lara et al., 2018[Sánchez-Lara, E., Treviño, S., Sánchez-Gaytán, B. L., Sánchez-Mora, E., Eugenia Castro, M., Meléndez-Bustamante, F. J., Méndez-Rojas, M. A. & González-Vergara, E. (2018). Front. Chem. 6, 402.]), ROLFUW (Jia et al., 2019[Jia, L., Wu, S. & Gong, J. (2019). Acta Cryst. C75, 1250-1258.]), UKODUW01 (Feng et al., 2021[Feng, W., Wang, L., Gao, J., Zhao, M., Li, Y., Wu, Z. & Yan, C. (2021). J. Mol. Struct. 1234, 130166.]), WIBSIJ (Lemoine et al., 1994[Lemoine, P., Tomas, A., Viossat, B., Dung, N-H. (1994). Acta Cryst. C50, 1437-1439.]), YEJVOC (Jiang et al., 2022[Jiang, L., Hu, X. & Cai, L. (2022). Molecules, 27, 3472.]); for more details, see the supporting information]. In contrast to the title compound, all 17 compounds bear a positve charge. The histogram of the torsion angle TOR1 illustrates that the majority of these fragments are non-planar (Fig. 9[link]b). For the title compound, this torsion angle is −177.5 (4) and −171.8 (4)° in A and B, respectively.

[Figure 9]
Figure 9
(a) Fragment used for search in Cambridge Structural Database, (b) histogram of torsion angle TOR1 [shown in red in (a)].

5. Synthesis and crystallization

The reaction scheme to synthesize the title compound is given in Fig. 10[link].

[Figure 10]
Figure 10
Reaction scheme for the synthesis of the title compound.

Metformin hydro­chloride (662.5 mg, 4.0 mmol) was dissolved in 1M sodium hydroxide solution (320 ml, 8.0 mmol). The mixture was stirred for 30 min at room temperature. After the reaction was complete, water was removed under reduced pressure and the residue was dissolved in cold anhydrous methanol. The sodium chloride was filtered off and the filtrate was evaporated under reduced pressure to obtain basic metformin.

The basic metformin (258.2 mg, 2.0 mmol) and 3-bromo­benzene­sulfonyl chloride (144 µL, 1.0 mmol) were dissolved in 6 mL of anhydrous di­chloro­methane and stirred under a nitro­gen atmosphere for 3 h at room temperature. The solvent was removed on a rotary evaporator and the residue was purified by column chromatography (eluent: MeOH: CH2Cl2 = 1:10) to obtain the title compound as a colourless solid.

To obtain its hydro­chloride salt, the title compound was dissolved in ethanol and stirred at room temperature. An ethanol solution of hydro­chloric acid was added dropwise until pH = 2 and the reaction was followed by TLC. After completion of the reaction, the solvent was removed under reduced pressure to obtain the hydro­chloride salt.

The hydro­chloride salt (76.7 mg, 0.2 mmol) and sodium gliclazide (69.3 mg, 0.2 mmol) were dissolved in 5 mL of acetone and stirred overnight at room temperature. The solvent was removed under reduced pressure and a light-yellow solid was obtained, which was expected to be the sulfonyl­urea salt of the title compound.

Cuboid-shaped colourless crystals were grown in an NMR tube by slow evaporation over two weeks using deuterated chloro­form as solvent. However, the grown crystals consist of the title compound and not of its sulfonyl­urea salt.

NMR spectra of the title compound were recorded on a 400 MHz NMR spectrometer: 1H NMR (400 MHz, CDCl3) δ 8.03 (t, J = 1.7 Hz, 1H, phen­yl), 7.90–7.76 (m, 1H, phen­yl), 7.64–7.57 (m, 1H, phen­yl), 7.56–7.22 (m, 3H, phenyl and NH2), 7.06 (s, 1H, NH2), 5.19 (s, 1H, NH2), 2.99 (s, 6H, CH3). 13C NMR (101 MHz, CDCl3) δ 160.29 (s), 158.59 (s), 145.65 (s), 134.41 (s), 130.20 (s), 129.13 (s), 124.70 (s), 122.54 (s), 37.00 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms bound to carbon were placed at idealized positions and refined using a riding model, with Uiso(H) values assigned as 1.2Ueq or 1.5Ueq (methyl only) of the parent atoms, with C—H distances of 0.93 (aromatic) and 0.96 Å (meth­yl). The hydrogen atoms bound to nitro­gen were located in a difference-Fourier map and refined freely with Uiso(H) values assigned as 1.2Ueq of the parent atoms. The occupancy factors of hydrogen atoms H11 and H15B (mol­ecule A), and H30 and H34B (mol­ecule B) involved in intra­molecular hydrogen bonds converged during refinement to 0.85 (4) for H15B and H34B, and 0.15 (4) for H11 and H30.

Table 3
Experimental details

Crystal data
Chemical formula C10H14BrN5O2S
Mr 348.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 294
a, b, c (Å) 10.3839 (5), 11.3296 (6), 12.3477 (7)
α, β, γ (°) 103.393 (5), 96.380 (4), 97.934 (4)
V3) 1384.10 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.13
Crystal size (mm) 0.6 × 0.3 × 0.3
 
Data collection
Diffractometer SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.417, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16803, 5658, 3549
Rint 0.051
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.117, 1.02
No. of reflections 5658
No. of parameters 372
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.05, −0.88
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.73a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.42.73a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.73a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).

N-{N-[Amino(dimethylamino)methyl]carbamimidoyl}-3-bromobenzenesulfonamide top
Crystal data top
C10H14BrN5O2SZ = 4
Mr = 348.23F(000) = 704
Triclinic, P1Dx = 1.671 Mg m3
a = 10.3839 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3296 (6) ÅCell parameters from 4121 reflections
c = 12.3477 (7) Åθ = 2.8–25.9°
α = 103.393 (5)°µ = 3.13 mm1
β = 96.380 (4)°T = 294 K
γ = 97.934 (4)°Block, colourless
V = 1384.10 (13) Å30.6 × 0.3 × 0.3 mm
Data collection top
SuperNova, Single source at offset/far, Eos
diffractometer
5658 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3549 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1414
Tmin = 0.417, Tmax = 1.000l = 1515
16803 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.035P)2 + 1.4413P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5658 reflectionsΔρmax = 1.05 e Å3
372 parametersΔρmin = 0.88 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0600 (5)0.7080 (4)0.0460 (3)0.0392 (11)
C20.0355 (4)0.6995 (4)0.1296 (3)0.0357 (11)
H20.1115110.7582470.1536170.043*
C30.0135 (4)0.5996 (4)0.1764 (3)0.0318 (10)
C40.0994 (5)0.5123 (4)0.1403 (4)0.0442 (12)
H40.1129810.4459650.1725760.053*
C50.1915 (5)0.5246 (5)0.0562 (4)0.0530 (13)
H50.2674090.4658540.0314370.064*
C60.1727 (5)0.6219 (5)0.0087 (4)0.0469 (13)
H60.2352000.6298640.0480860.056*
Br70.03344 (6)0.84386 (6)0.02036 (5)0.0661 (2)
S80.13699 (11)0.58384 (11)0.28223 (9)0.0367 (3)
O90.0932 (3)0.4667 (3)0.3068 (3)0.0508 (9)
O100.2597 (3)0.5961 (3)0.2382 (3)0.0503 (9)
N110.1473 (3)0.6992 (3)0.3852 (3)0.0347 (9)
H110.2142390.7569360.3968780.042*0.15 (4)
C120.0568 (4)0.7124 (4)0.4561 (3)0.0337 (10)
N130.0563 (3)0.8161 (3)0.5341 (3)0.0324 (8)
C140.1437 (4)0.9194 (4)0.5488 (3)0.0308 (10)
N150.2461 (4)0.9308 (4)0.4932 (4)0.0435 (11)
H15A0.301 (5)0.992 (5)0.506 (4)0.052*
H15B0.253 (5)0.871 (5)0.438 (5)0.052*0.85 (4)
N160.0418 (5)0.6209 (4)0.4518 (4)0.0513 (12)
H16A0.088 (5)0.634 (5)0.500 (4)0.062*
H16B0.035 (5)0.549 (5)0.422 (4)0.062*
N170.1270 (3)1.0179 (3)0.6273 (3)0.0364 (9)
C180.0186 (5)1.0110 (5)0.6928 (4)0.0543 (14)
H18A0.0354820.9312020.6665560.081*
H18B0.0331261.0730650.6840680.081*
H18C0.0532841.0242120.7708410.081*
C190.2135 (5)1.1361 (4)0.6488 (4)0.0494 (13)
H19A0.3031901.1251830.6638590.074*
H19B0.1920021.1921250.7127770.074*
H19C0.2022541.1690860.5840870.074*
C200.5361 (5)0.1808 (4)0.0442 (4)0.0398 (12)
C210.4466 (4)0.1344 (4)0.1054 (3)0.0359 (11)
H210.3566970.1283060.0843120.043*
C220.4950 (4)0.0973 (4)0.1993 (3)0.0311 (10)
C230.6286 (5)0.1067 (4)0.2308 (4)0.0484 (13)
H230.6602720.0834780.2948400.058*
C240.7145 (5)0.1507 (5)0.1663 (5)0.0645 (16)
H240.8045150.1558220.1864000.077*
C250.6690 (5)0.1871 (5)0.0730 (5)0.0527 (14)
H250.7276020.2158870.0294000.063*
Br260.47490 (7)0.23897 (6)0.08045 (5)0.0725 (2)
S270.38479 (12)0.04014 (10)0.28332 (9)0.0356 (3)
O280.4452 (3)0.0477 (3)0.3299 (3)0.0496 (9)
O290.2591 (3)0.0032 (3)0.2118 (3)0.0467 (8)
N300.3838 (3)0.1539 (3)0.3879 (3)0.0343 (9)
H300.4287550.1564160.4515190.041*0.15 (4)
C310.3160 (4)0.2461 (4)0.3813 (3)0.0319 (10)
N320.3220 (3)0.3472 (3)0.4660 (3)0.0330 (8)
C330.4065 (4)0.3742 (4)0.5619 (3)0.0307 (10)
N340.4890 (4)0.3022 (4)0.5916 (3)0.0414 (10)
H34A0.550 (5)0.327 (4)0.648 (4)0.050*
H34B0.486 (5)0.234 (5)0.543 (5)0.050*0.85 (4)
N350.2361 (4)0.2468 (4)0.2884 (3)0.0434 (11)
H35A0.213 (5)0.182 (4)0.239 (4)0.052*
H35B0.196 (5)0.301 (4)0.295 (4)0.052*
N360.4036 (4)0.4825 (3)0.6346 (3)0.0418 (10)
C370.3317 (5)0.5744 (4)0.6032 (4)0.0510 (13)
H37A0.2901760.5445620.5263080.076*
H37B0.3917340.6494730.6113750.076*
H37C0.2660480.5896150.6511890.076*
C380.4763 (5)0.5172 (5)0.7476 (4)0.0593 (15)
H38A0.4738510.4459380.7773980.089*
H38B0.4372220.5780410.7946220.089*
H38C0.5658940.5504650.7455390.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.042 (3)0.027 (2)0.016 (3)0.005 (2)0.003 (2)
C20.035 (3)0.036 (3)0.033 (2)0.005 (2)0.002 (2)0.002 (2)
C30.028 (3)0.033 (3)0.030 (2)0.008 (2)0.0028 (19)0.0012 (19)
C40.040 (3)0.039 (3)0.049 (3)0.003 (2)0.001 (2)0.009 (2)
C50.039 (3)0.047 (3)0.061 (3)0.003 (3)0.010 (3)0.005 (3)
C60.037 (3)0.057 (3)0.040 (3)0.014 (3)0.008 (2)0.001 (3)
Br70.0806 (4)0.0701 (4)0.0497 (3)0.0082 (3)0.0065 (3)0.0297 (3)
S80.0382 (7)0.0386 (7)0.0329 (6)0.0165 (6)0.0017 (5)0.0036 (5)
O90.070 (2)0.0349 (19)0.051 (2)0.0233 (18)0.0047 (18)0.0108 (16)
O100.0370 (19)0.070 (2)0.0405 (18)0.0223 (18)0.0074 (15)0.0008 (17)
N110.033 (2)0.038 (2)0.0307 (19)0.0037 (18)0.0064 (17)0.0028 (17)
C120.036 (3)0.034 (3)0.033 (2)0.008 (2)0.003 (2)0.012 (2)
N130.035 (2)0.030 (2)0.0323 (19)0.0048 (18)0.0110 (17)0.0060 (17)
C140.034 (3)0.035 (3)0.024 (2)0.008 (2)0.0017 (19)0.0094 (19)
N150.040 (3)0.041 (3)0.042 (2)0.012 (2)0.013 (2)0.003 (2)
N160.060 (3)0.031 (2)0.061 (3)0.001 (2)0.028 (2)0.002 (2)
N170.036 (2)0.035 (2)0.035 (2)0.0012 (19)0.0055 (18)0.0046 (17)
C180.057 (4)0.048 (3)0.058 (3)0.012 (3)0.028 (3)0.003 (3)
C190.052 (3)0.034 (3)0.056 (3)0.000 (3)0.002 (3)0.005 (2)
C200.058 (3)0.030 (3)0.033 (2)0.011 (2)0.013 (2)0.006 (2)
C210.039 (3)0.035 (3)0.032 (2)0.010 (2)0.008 (2)0.003 (2)
C220.034 (3)0.027 (2)0.029 (2)0.005 (2)0.007 (2)0.0001 (18)
C230.043 (3)0.054 (3)0.054 (3)0.010 (3)0.007 (3)0.025 (3)
C240.036 (3)0.079 (4)0.089 (4)0.013 (3)0.015 (3)0.037 (4)
C250.051 (4)0.047 (3)0.068 (4)0.009 (3)0.026 (3)0.021 (3)
Br260.1075 (5)0.0769 (5)0.0443 (3)0.0238 (4)0.0172 (3)0.0299 (3)
S270.0461 (7)0.0289 (6)0.0326 (6)0.0081 (6)0.0128 (5)0.0053 (5)
O280.075 (2)0.0375 (19)0.0488 (19)0.0247 (18)0.0270 (18)0.0193 (16)
O290.043 (2)0.045 (2)0.0437 (19)0.0034 (16)0.0109 (16)0.0031 (16)
N300.044 (2)0.032 (2)0.0283 (18)0.0132 (18)0.0067 (17)0.0045 (16)
C310.032 (3)0.033 (3)0.031 (2)0.005 (2)0.010 (2)0.008 (2)
N320.032 (2)0.031 (2)0.035 (2)0.0084 (17)0.0030 (17)0.0033 (16)
C330.024 (2)0.030 (2)0.035 (2)0.000 (2)0.008 (2)0.006 (2)
N340.039 (3)0.040 (3)0.037 (2)0.008 (2)0.0092 (19)0.001 (2)
N350.049 (3)0.043 (3)0.037 (2)0.019 (2)0.002 (2)0.0046 (19)
N360.049 (2)0.034 (2)0.036 (2)0.007 (2)0.0013 (19)0.0022 (18)
C370.056 (3)0.032 (3)0.060 (3)0.006 (3)0.008 (3)0.002 (2)
C380.063 (4)0.054 (3)0.046 (3)0.013 (3)0.005 (3)0.014 (3)
Geometric parameters (Å, º) top
C1—C21.381 (6)C20—C211.385 (6)
C1—C61.374 (6)C20—C251.374 (7)
C1—Br71.906 (5)C20—Br261.890 (4)
C2—H20.9300C21—H210.9300
C2—C31.389 (6)C21—C221.388 (6)
C3—C41.382 (6)C22—C231.381 (6)
C3—S81.784 (4)C22—S271.782 (4)
C4—H40.9300C23—H230.9300
C4—C51.377 (6)C23—C241.378 (7)
C5—H50.9300C24—H240.9300
C5—C61.366 (7)C24—C251.369 (7)
C6—H60.9300C25—H250.9300
S8—O91.453 (3)S27—O281.439 (3)
S8—O101.441 (3)S27—O291.446 (3)
S8—N111.581 (4)S27—N301.602 (3)
N11—H110.8600N30—H300.8600
N11—C121.354 (5)N30—C311.350 (5)
C12—N131.336 (5)C31—N321.349 (5)
C12—N161.340 (6)C31—N351.342 (6)
N13—C141.341 (5)N32—C331.340 (5)
C14—N151.336 (5)C33—N341.339 (5)
C14—N171.343 (5)C33—N361.349 (5)
N15—H15A0.80 (5)N34—H34A0.85 (5)
N15—H15B0.86 (6)N34—H34B0.85 (6)
N16—H16A0.80 (5)N35—H35A0.83 (5)
N16—H16B0.83 (5)N35—H35B0.78 (5)
N17—C181.461 (5)N36—C371.459 (6)
N17—C191.457 (6)N36—C381.449 (6)
C18—H18A0.9600C37—H37A0.9600
C18—H18B0.9600C37—H37B0.9600
C18—H18C0.9600C37—H37C0.9600
C19—H19A0.9600C38—H38A0.9600
C19—H19B0.9600C38—H38B0.9600
C19—H19C0.9600C38—H38C0.9600
C2—C1—Br7118.5 (4)C21—C20—Br26119.5 (4)
C6—C1—C2122.4 (4)C25—C20—C21121.3 (4)
C6—C1—Br7119.1 (3)C25—C20—Br26119.1 (4)
C1—C2—H2121.4C20—C21—H21120.9
C1—C2—C3117.2 (4)C20—C21—C22118.1 (4)
C3—C2—H2121.4C22—C21—H21120.9
C2—C3—S8118.3 (3)C21—C22—S27120.2 (3)
C4—C3—C2121.2 (4)C23—C22—C21120.9 (4)
C4—C3—S8120.4 (3)C23—C22—S27118.9 (3)
C3—C4—H4120.3C22—C23—H23120.3
C5—C4—C3119.3 (5)C24—C23—C22119.3 (5)
C5—C4—H4120.3C24—C23—H23120.3
C4—C5—H5119.6C23—C24—H24119.6
C6—C5—C4120.8 (5)C25—C24—C23120.8 (5)
C6—C5—H5119.6C25—C24—H24119.6
C1—C6—H6120.5C20—C25—H25120.3
C5—C6—C1119.0 (4)C24—C25—C20119.5 (5)
C5—C6—H6120.5C24—C25—H25120.3
O9—S8—C3105.9 (2)O28—S27—C22106.94 (19)
O9—S8—N11114.05 (19)O28—S27—O29117.7 (2)
O10—S8—C3106.56 (19)O28—S27—N30105.69 (19)
O10—S8—O9116.50 (19)O29—S27—C22106.34 (19)
O10—S8—N11106.7 (2)O29—S27—N30113.73 (18)
N11—S8—C3106.42 (19)N30—S27—C22105.63 (19)
S8—N11—H11118.1S27—N30—H30118.3
C12—N11—S8123.7 (3)C31—N30—S27123.3 (3)
C12—N11—H11118.1C31—N30—H30118.3
N13—C12—N11123.7 (4)N32—C31—N30124.1 (4)
N13—C12—N16114.6 (4)N35—C31—N30123.0 (4)
N16—C12—N11121.7 (4)N35—C31—N32112.9 (4)
C12—N13—C14123.6 (4)C33—N32—C31123.7 (4)
N13—C14—N17116.7 (4)N32—C33—N36115.6 (4)
N15—C14—N13125.2 (4)N34—C33—N32125.8 (4)
N15—C14—N17118.1 (4)N34—C33—N36118.6 (4)
C14—N15—H15A124 (4)C33—N34—H34A123 (3)
C14—N15—H15B119 (4)C33—N34—H34B115 (4)
H15A—N15—H15B117 (5)H34A—N34—H34B121 (5)
C12—N16—H16A116 (4)C31—N35—H35A119 (3)
C12—N16—H16B119 (4)C31—N35—H35B115 (4)
H16A—N16—H16B120 (5)H35A—N35—H35B123 (5)
C14—N17—C18120.9 (4)C33—N36—C37122.3 (4)
C14—N17—C19121.8 (4)C33—N36—C38122.0 (4)
C19—N17—C18117.3 (4)C38—N36—C37115.7 (4)
N17—C18—H18A109.5N36—C37—H37A109.5
N17—C18—H18B109.5N36—C37—H37B109.5
N17—C18—H18C109.5N36—C37—H37C109.5
H18A—C18—H18B109.5H37A—C37—H37B109.5
H18A—C18—H18C109.5H37A—C37—H37C109.5
H18B—C18—H18C109.5H37B—C37—H37C109.5
N17—C19—H19A109.5N36—C38—H38A109.5
N17—C19—H19B109.5N36—C38—H38B109.5
N17—C19—H19C109.5N36—C38—H38C109.5
H19A—C19—H19B109.5H38A—C38—H38B109.5
H19A—C19—H19C109.5H38A—C38—H38C109.5
H19B—C19—H19C109.5H38B—C38—H38C109.5
C1—C2—C3—C40.1 (6)C20—C21—C22—C230.1 (6)
C1—C2—C3—S8178.5 (3)C20—C21—C22—S27178.6 (3)
C2—C1—C6—C50.3 (7)C21—C20—C25—C242.2 (8)
C2—C3—C4—C50.2 (6)C21—C22—C23—C241.6 (7)
C2—C3—S8—O9174.6 (3)C21—C22—S27—O28149.4 (3)
C2—C3—S8—O1049.9 (4)C21—C22—S27—O2922.8 (4)
C2—C3—S8—N1163.6 (4)C21—C22—S27—N3098.3 (4)
C3—C4—C5—C60.3 (7)C22—C23—C24—C251.1 (8)
C3—S8—N11—C1274.5 (4)C22—S27—N30—C3178.0 (4)
C4—C3—S8—O93.7 (4)C23—C22—S27—O2832.1 (4)
C4—C3—S8—O10128.4 (3)C23—C22—S27—O29158.7 (4)
C4—C3—S8—N11118.0 (3)C23—C22—S27—N3080.1 (4)
C4—C5—C6—C10.0 (7)C23—C24—C25—C200.7 (8)
C6—C1—C2—C30.4 (6)C25—C20—C21—C221.8 (7)
Br7—C1—C2—C3180.0 (3)Br26—C20—C21—C22177.3 (3)
Br7—C1—C6—C5179.9 (4)Br26—C20—C25—C24176.9 (4)
S8—C3—C4—C5178.1 (4)S27—C22—C23—C24180.0 (4)
S8—N11—C12—N13171.1 (3)S27—N30—C31—N32174.7 (3)
S8—N11—C12—N167.9 (6)S27—N30—C31—N354.6 (6)
O9—S8—N11—C1241.9 (4)O28—S27—N30—C31168.8 (3)
O10—S8—N11—C12172.0 (3)O29—S27—N30—C3138.2 (4)
N11—C12—N13—C141.6 (6)N30—C31—N32—C337.6 (7)
C12—N13—C14—N154.1 (7)C31—N32—C33—N345.4 (7)
C12—N13—C14—N17177.1 (4)C31—N32—C33—N36176.4 (4)
N13—C14—N17—C180.1 (6)N32—C33—N36—C3710.9 (6)
N13—C14—N17—C19178.3 (4)N32—C33—N36—C38171.7 (4)
N15—C14—N17—C18178.7 (4)N34—C33—N36—C37170.8 (4)
N15—C14—N17—C192.8 (6)N34—C33—N36—C386.6 (6)
N16—C12—N13—C14177.5 (4)N35—C31—N32—C33171.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15B···N110.86 (6)2.02 (6)2.655 (6)130 (5)
N16—H16B···O90.83 (6)2.19 (5)2.830 (6)134 (5)
N34—H34B···N300.86 (6)2.02 (6)2.696 (5)135 (5)
N35—H35A···O290.83 (5)2.18 (5)2.823 (6)136 (4)
N35—H35B···O90.78 (5)2.27 (5)3.049 (6)175 (5)
N16—H16A···N32i0.81 (5)2.54 (5)3.225 (6)144 (4)
N34—H34A···O10ii0.85 (5)2.23 (5)3.063 (5)165 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Percentage contributions of interatomic contacts to the Hirshfeld surfaces for molecules A and B top
ContactMolecule AMolecule B
C···C3.22.4
C···H/H···C13.115.0
H···H35.034.0
Br···C/C···Br0.22.1
Br···H/H···Br14.114.6
Br···Br1.70.0
S···C/C···S0.00.0
S···H/H···S0.10.1
S···Br/Br···S0.00.0
S···S0.00.0
O···C/C···O0.40.0
O···H/H···O19.217.7
O···Br/Br···O0.82.9
O···S/S···O0.00.0
O···O0.10.1
N···C/C···N0.30.2
N···H/H···N11.510.5
N···Br/Br···N0.00.0
N···S/S···N0.00.0
N···O/O···N0.00.0
N···N0.20.4
 

Acknowledgements

The authors thank Bingyu Li and Professor Wim De Borggraeve for assistance with the synthesis.

Funding information

KS thanks the Chinese Scholarship Council for a CSC Fellowship and LVM the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035. JL acknowledges the Sichuan Science and Technology Program (project No. 2022ZYD0016 and 2023JDRC0013), and the National Natural Science Foundation of China (project No. 21776120).

References

First citationBarzilai, N., Crandall, J., Kritchevsky, S. & Espeland, M. (2016). Cell Metab. 23, 1060–1065.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBian, X., Jiang, L., Zhou, J., Guan, X., Wang, J., Xiang, P., Pan, J. & Hu, X. (2020). Molecules, 25, 1343.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDiniz, L. F., Carvalho, P. S., Gonçalves, J. E., Diniz, R. & Fernandes, C. (2022). New J. Chem. 46, 13725–13737.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, J., Liu, B. & Yang, B. (2015). Acta Cryst. E71, o747–o748.  CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFeng, W., Wang, L., Gao, J., Zhao, M., Li, Y., Wu, Z. & Yan, C. (2021). J. Mol. Struct. 1234, 130166.  Web of Science CSD CrossRef Google Scholar
First citationGiannarelli, R., Aragona, M., Coppelli, A. & Del Prato, S. (2003). Diabetes Metab. 29, 6S2, 8–635.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJia, L., Wu, S. & Gong, J. (2019). Acta Cryst. C75, 1250–1258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, L., Hu, X. & Cai, L. (2022). Molecules, 27, 3472.  Web of Science CSD CrossRef PubMed Google Scholar
First citationJing, Y., Wu, F., Li, D., Yang, L., Li, Q. & Li, R. (2018). Mol. Cell. Endocrinol. 461, 256–264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLemoine, P., Tomas, A., Viossat, B., Dung, N-H. (1994). Acta Cryst. C50, 1437–1439.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLibby, G., Donnelly, L. A., Donnan, P. T., Alessi, D. R., Morris, A. D. & Evans, J. M. (2009). Diabetes Care, 32, 1620–1625.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, H. Z., Yang, S. Q., Chuckaree, C., Kuhajda, F., Ronnet, G. & Diehl, A. M. (2000). Nat. Med. 6, 998–1003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLord, J., Flight, I. H. K. & Norman, R. J. (2003). BMJ, 327, 951–955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManjunatha, N. K., Mahesha, Gayathri, B. H., Lokanath, N. K., Swamy, M. T., Chandra Nayaka, S., Siddaraju, B. P., Ragini, N., Al-Ghorbani, M., Kannika, B. R. & Madan Kumar, S. (2020). Chem. Data Collect. 30, 100577.  CSD CrossRef Google Scholar
First citationNanubolu, J. B., Sridhar, B., Ravikumar, K., Sawant, K. D., Naik, T. A., Patkar, L. N., Cherukuvada, S. & Sreedhar, B. (2013). CrystEngComm, 15, 4448–4464.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlar, R., Badea, M., Grecu, M. N., Balotescu, C.-M., Marinescu, D., Iorgulescu, E.-E., Lazar, V. & Bleotu, C. (2010a). Anal. Univ. Bucuresti Chim. 19, 13.  Google Scholar
First citationOlar, R., Badea, M., Marinescu, D., Chifiriuc, C., Bleotu, C., Grecu, M. N., Iorgulescu, E. E., Bucur, M., Lazar, V. & Finaru, A. (2010^b). Eur. J. Med. Chem. 45, 2868–2875.  Google Scholar
First citationPolito-Lucas, J. A., Núñez-Ávila, J. A., Bernès, S. & Pérez-Benítez, A. (2021). IUCrData, 6, x210634.  Google Scholar
First citationRena, G. & Lang, C. C. (2018). Circulation, 137, 422–424.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSánchez-Lara, E., Treviño, S., Sánchez-Gaytán, B. L., Sánchez-Mora, E., Eugenia Castro, M., Meléndez-Bustamante, F. J., Méndez-Rojas, M. A. & González-Vergara, E. (2018). Front. Chem. 6, 402.  PubMed Google Scholar
First citationSarkar, A., Tiwari, A., Bhasin, P. S. & Mitra, M. (2011). J. Appl. Pharm. Sci. 1, 11–19.  Google Scholar
First citationSatyanarayana Reddy, J., Ravikumar, N., Gaddamanugu, G., Naresh, K. N., Rajan, S. S. & Anand Solomon, K. (2013). J. Mol. Struct. 1039, 137–143.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J., Jia, L., Wang, M., Liu, Y., Li, M., Han, D. & Gong, J. (2022). Cryst. Growth Des. 22, 1005–1016.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, X., Fan, Y., Bi, C., Yan, X., Zhang, X. & Li, X. (2014). Bull. Korean Chem. Soc. 35, 3495–3501.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds