research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Garnet-type Na3Te2(FeO4)3

crossmark logo

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/E164-05-01, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 2 March 2023; accepted 8 March 2023; online 15 March 2023)

Na3Te2(FeO4)3 or Na3Te2Fe3O12, tris­odium ditellurium(VI) triiron(III) dodeca­oxide, was obtained in the form of single-crystals under hydro­thermal conditions. Na3Te2(FeO4)3 adopts the garnet structure type in space group Ia[\overline{3}]d and comprises one Na (multiplicity 24, Wyckoff letter c, site symmetry 2.22), one Te (16 a, .[\overline{3}].), one Fe (24 d, [\overline{4}]..) and one O atom (96 h, 1) in the asymmetric unit. The three-dimensional framework structure is built of [TeO6] octa­hedra and [FeO4] tetra­hedra by vertex-sharing. The larger Na+ cations are situated in the inter­stices of the framework and are eightfold coordinated in the form of a distorted dodeca­hedron. Qu­anti­tative structural comparisons with isotypic Na3Te2[(Fe0.5Al0.5)O4]3 and Na3Te2(GaO4)3 show a high degree of similarity between the three crystal structures.

1. Chemical context

Layered oxidotellurates(VI) comprising an alkali metal (or ammonium) and a transition metal M, such as (NH4)4(VO2)2Te2O8(OH)2·2H2O (Nagarathinam et al., 2022[Nagarathinam, M., Soares, C., Chen, Y., Seymour, V. R., Mazanek, V., Isaacs, M. A., Sofer, Z., Kolosov, O., Griffin, J. M. & Tapia-Ruiz, N. (2022). RSC Adv. 12, 12211-12218.]), Li2Ni2TeO6 (Grundish et al., 2019[Grundish, N. S., Seymour, I. D., Henkelman, G. & Goodenough, J. B. (2019). Chem. Mater. 31, 9379-9388.]), Na3Ni1.5TeO6 (Grundish et al., 2020[Grundish, N. S., Seymour, I. D., Li, Y., Sand, J.-B., Henkelman, G., Delmas, C. & Goodenough, J. B. (2020). Chem. Mater. 32, 10035-10044.]) or K2M2TeO6 (M = Ni, Mg, Zn, Co, Cu; Masese et al., 2018[Masese, T., Yoshii, K., Yamaguchi, Y., Okumura, T., Huang, Z.-D., Kato, M., Kubota, K., Furutani, J., Orikasa, Y., Senoh, H., Sakaebe, H. & Shikano, M. (2018). Nat. Commun. 9, 3823.]) are considered to be promising battery materials. In the quest for new representatives of this group of materials comprising K and FeIII, we obtained a phase under hydro­thermal conditions with a supposed composition of K12FeIII6TeVI4O27·3H2O. However, this phase is not layered but crystallizes in a cubic framework structure with positionally disordered crystal water mol­ecules [Z = 4, space group I[\overline{4}]3d, a = 14.7307 (12) Å at room temperature; Eder & Weil, 2023[Eder, F. & Weil, M. (2023). TU Wien, unpublished results.]], which is closely related to the phase K12+6xFe6Te4–xO27 [x = 0.222 (4), Z = 4, space group I[\overline{4}]3d, a = 14.7440 (10) Å at 100 K; Albrecht et al., 2021[Albrecht, R., Hoelzel, M., Beccard, H., Rüsing, M., Eng, L., Doert, T. & Ruck, M. (2021). Chem. Eur. J. 27, 14299-14306.]]. With the intention of synthesizing the possible Na-analogue Na12FeIII6TeVI4O27·3H2O, we obtained garnet-type Na3Te2(FeO4)3 instead, and report here its crystal structure and qu­anti­tative comparisons with related crystal structures.

2. Structural commentary

The garnet supergroup has the general formula {X3}[Y2](Z3)φ12 and includes all phases, which crystallize isostructurally with garnet, regardless of the type of elements present at the four atomic sites (Grew et al., 2013[Grew, E. S., Locock, A. J., Mills, S. J., Galuskina, I. O., Galuskin, E. V. & Hålenius, U. (2013). Am. Mineral. 98, 785-811.]). The crystal structure of garnet comprises a three-dimensional framework built of [Yφ6] octa­hedra and (Zφ4) tetra­hedra in which each octa­hedron is joined to six others through vertex-sharing tetra­hedra. In turn, each tetra­hedron shares its vertices with four octa­hedra, so that the composition of the framework is Y2Z3φ12. Larger X atoms occupy positions in the inter­stices of the framework and are eightfold coordinated in the form of a distorted dodeca­hedron (Wells, 1975[Wells, A. F. (1975). Structural Inorganic Chemistry. Fourth Edition, p. 500. Oxford University Press.]). In a crystal–chemical sense, the final composition can therefore be expressed as {X3}[8do][Y2][6o](Z3[4t])φ12, or as {X3}[8do][Y2][6o](Z[4t]φ4)3. In the title compound, Na takes the X position (multiplicity 24, Wyckoff letter c, site symmetry 2.22), Te the Y position (16 a, .[\overline{3}].), Fe the Z position (24 d, [\overline{4}]..) and O the φ position (96 h, 1). The crystal structure of Na3Te2(FeO4)3 is displayed in Fig. 1[link]. Bond-valence sums (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) for all atoms were computed with the parameters of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). The values (in valence units) of 1.19 for Na, 6.00 for Te, 2.98 for Fe and 2.04 for O are in very good agreement with the expected values of 1, 6, 3 and 2, respectively.

[Figure 1]
Figure 1
Projection of the garnet-type crystal structure of Na3Te2(FeO4)3 along [0[\overline{1}]0]. Displacement ellipsoids are drawn at the 90% probability level. [TeO6] octa­hedra (red) and (FeO4) tetra­hedra (blue) are given in the polyhedral representation, Na atoms as green ellipsoids and O atoms as white ellipsoids.

The garnet supergroup includes several chemical classes, which is also reflected by the high number of phases that adopt the garnet structure type. A search in the ICSD (version 2022-1; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]), using the garnet structure type in space group Ia[\overline{3}]d and with Si on the Z position as search field revealed about 420 entries, and with atoms other than Si on the Z position about 350 entries. With Te on the Y position, only five phases were found, including the mineral yafsoanite [ideally Ca3Te2(ZnO4)3, Jarosch & Zemann, 1989[Jarosch, D. & Zemann, J. (1989). Mineral. Petrol. 40, 111-116.]; Mills et al., 2010[Mills, S. J., Kampf, A. R., Kolitsch, U., Housley, R. M. & Raudsepp, M. (2010). Am. Mineral. 95, 933-938.]], the Li-conducting Nd3(Te2–xSbx)(Li3+xO4)3 (x = 0.05, 0.10) (O'Callaghan et al., 2008[O'Callaghan, M. P., Powell, A. S., Titman, J. J., Chen, G. Z. & Cussen, E. J. (2008). Chem. Mater. 20, 2360-2369.]), Na3Te2[(Fe0.5Al0.5)O4]3 (Wedel & Sugiyama, 1999[Wedel, B. & Sugiyama, K. (1999). Z. Kristallogr. New Cryst. Struct. 214, 151-152.]) and Na3Te2(GaO4)3 (Frau et al., 2008[Frau, A. F., Kim, J. H. & Shiv Halasyamani, P. (2008). Solid State Sci. 10, 1263-1268.]). The latter two phases comprise Na on the X position and, with respect to the title compound, therefore are the chemically most related compounds. A comparison of relevant bond lengths in the three garnets, together with structural similarity parameters, as revealed by the program compstru (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]) available at the Bilbao Crystallographic Server (Aroyo et al., 2006[Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.]), is given in Table 1[link]. The cations occupying the Z site apparently influence the two Na—O bond lengths in the crystal structures, although the ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) of Z do not directly correlate with this behaviour. The title compound with Z = Fe (ionic radius 0.49 Å) has the longest Na—O bonds, followed by the mixed-occupied compound with Z = (Fe,Al) (averaged ionic radius 0.44 Å) and the compound with Z = Ga (ionic radius 0.47 Å). On the other hand, the Te—O bond lengths in the three garnet structures are virtually identical.

Table 1
Selected bond lengths (Å) in related garnet-type Na3Te2(ZO4)3 oxidotellurates(VI) and their structure similarity parameters relative to Na3Te2(FeO4)3

  Na3Te2(FeO4)3 Na3Te2[(Al,Fe)O4]3 Na3Te2(GaO4)3
Na1—O1 (4×) 2.4208 (10) 2.396 (3) 2.3907 (17)
Na1—O1 (4×) 2.6226 (10) 2.597 (3) 2.5609 (17)
Te1—O1 (6×) 1.9169 (9) 1.914 (2) 1.9124 (17)
M1—O1 (4×) 1.8680 (9) 1.829 (2) 1.8405 (16)
       
Degree of lattice distortion, S   0.0064 0.0079
Atomic displacement of O1a (Å)   0.0205 0.0322
Measure of similarity, Δ   0.001 0.002
Note: (a) The three other atomic sites do not show a displacement due to their site symmetries.

An X-ray powder diffraction pattern of Na3Te2(FeO4)3 has been deposited with the ICDD (PDF 00-048-0300; Gates-Rector & Blanton, 2019[Gates-Rector, S. & Blanton, T. (2019). Powder Diffr. 34, 352-360.]) without giving atomic coordinates for the O-atom site or displacement parameters for the atoms. The corresponding unit-cell parameter a = 12.5257 (1) Å determined from room-temperature powder X-ray measurement data is in very good agreement with the one from single-crystal data (Table 2[link]). In the context of investigating the magnetic ordering of FeIII on the Z sites, neutron powder data recorded at room temperature were also reported for Na3Te2(FeO4)3 (Plakhtii et al., 1977[Plakhtii, V. P., Golosovskii, I. V., Bedrisova, M. N., Smirnov, O. P., Sokolov, V. I., Mill, B. V. & Parfenova, N. N. (1977). Phys. Status Solidi A, 39, 683-695.]).

Table 2
Experimental details

Crystal data
Chemical formula Na3Te2Fe3O12
Mr 683.72
Crystal system, space group Cubic, Ia[\overline{3}]d
Temperature (K) 296
a (Å) 12.5276 (9)
V3) 1966.1 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 10.39
Crystal size (mm) 0.06 × 0.06 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.677, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 42303, 569, 446
Rint 0.060
(sin θ/λ)max−1) 0.934
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.041, 1.16
No. of reflections 569
No. of parameters 18
Δρmax, Δρmin (e Å−3) 1.25, −0.68
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ATOMS for Windows (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

3. Synthesis and crystallization

The solid educts Fe(NO3)3·9H2O, TeO2, H6TeO6 and NaOH were weighed in the molar ratios 2:1:2:15 and placed into a Teflon container (inner volume ca 5 ml). The container was filled to about 2/3 of its volume with water, closed with a Teflon lid and embedded into a steel autoclave. The hydro­thermal experiment was conducted at 473 K for five days. The solid product was filtered off, washed with water and ethanol and dried in air. It consisted of light-brown microcrystalline material and a few amber-coloured cuboid crystals of Na3Te2(FeO4)3, as well as a very few small yellowish platy crystals of an unknown phase. Preliminary single-crystal measurements of the latter indicated a unit cell with hexa­gonal metrics (a = 5.252, c = 15.724 Å) and obvious twinning, which has precluded a structure solution so far. Similar metrics were found for Na2GeTeO6 (Woodward et al., 1998[Woodward, P., Sleight, A. W., Duw, L. & Grey, C. (1998). MRS Proceedings, 547, 233.]). The powder X-ray diffraction pattern of the bulk revealed Na3Te2(FeO4)3 as a side product and the unknown phase (assuming a close relation with Na2GeTeO6) as the main phase, in an approximate mass ratio of 0.15:0.85.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Trisodium ditellurium(VI) triiron(III) dodecaoxide top
Crystal data top
Na3Te2Fe3O12Mo Kα radiation, λ = 0.71073 Å
Mr = 683.72Cell parameters from 6128 reflections
Cubic, Ia3dθ = 4.0–41.1°
a = 12.5276 (9) ŵ = 10.39 mm1
V = 1966.1 (4) Å3T = 296 K
Z = 8Cube, amber
F(000) = 24880.06 × 0.06 × 0.06 mm
Dx = 4.620 Mg m3
Data collection top
Bruker APEXII CCD
diffractometer
446 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.060
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 41.6°, θmin = 4.0°
Tmin = 0.677, Tmax = 0.748h = 2323
42303 measured reflectionsk = 2323
569 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0169P)2 + 1.9053P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max < 0.001
wR(F2) = 0.041Δρmax = 1.25 e Å3
S = 1.16Δρmin = 0.68 e Å3
569 reflectionsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 parametersExtinction coefficient: 0.00158 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.2500000.3750000.5000000.01227 (18)
Te10.5000000.5000000.5000000.00480 (5)
Fe10.2500000.6250000.5000000.00637 (7)
O10.35650 (7)0.53021 (8)0.45633 (8)0.00976 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0150 (3)0.0068 (4)0.0150 (3)0.0000.0012 (4)0.000
Te10.00480 (5)0.00480 (5)0.00480 (5)0.00038 (3)0.00038 (3)0.00038 (3)
Fe10.00652 (9)0.00605 (14)0.00652 (9)0.0000.0000.000
O10.0068 (4)0.0106 (4)0.0119 (4)0.0023 (3)0.0013 (3)0.0006 (3)
Geometric parameters (Å, º) top
Na1—O1i2.4208 (10)Te1—O1viii1.9169 (9)
Na1—O1ii2.4208 (10)Te1—O1ix1.9169 (9)
Na1—O1iii2.4208 (10)Te1—O1x1.9169 (9)
Na1—O12.4208 (10)Te1—O1vii1.9169 (9)
Na1—O1iv2.6226 (10)Te1—O1xi1.9169 (9)
Na1—O1v2.6226 (10)Fe1—O1xii1.8680 (9)
Na1—O1vi2.6226 (10)Fe1—O1ii1.8680 (9)
Na1—O1vii2.6226 (10)Fe1—O1xiii1.8680 (9)
Te1—O11.9169 (9)Fe1—O11.8680 (9)
O1i—Na1—O1ii153.42 (4)O1—Te1—O1viii91.50 (4)
O1i—Na1—O1iii73.12 (4)O1—Te1—O1ix88.50 (4)
O1ii—Na1—O1iii113.33 (4)O1viii—Te1—O1ix180.0
O1i—Na1—O1113.33 (4)O1—Te1—O1x91.50 (4)
O1ii—Na1—O173.12 (4)O1viii—Te1—O1x88.50 (4)
O1iii—Na1—O1153.42 (4)O1ix—Te1—O1x91.50 (4)
O1i—Na1—O1iv125.56 (2)O1—Te1—O1vii88.50 (4)
O1ii—Na1—O1iv77.63 (3)O1viii—Te1—O1vii91.50 (4)
O1iii—Na1—O1iv63.92 (4)O1ix—Te1—O1vii88.50 (4)
O1—Na1—O1iv94.14 (3)O1x—Te1—O1vii180.0
O1i—Na1—O1v94.14 (3)O1—Te1—O1xi180.0
O1ii—Na1—O1v63.92 (4)O1viii—Te1—O1xi88.50 (4)
O1iii—Na1—O1v77.63 (3)O1ix—Te1—O1xi91.50 (4)
O1—Na1—O1v125.56 (2)O1x—Te1—O1xi88.50 (4)
O1iv—Na1—O1v106.99 (4)O1vii—Te1—O1xi91.50 (4)
O1i—Na1—O1vi63.92 (4)O1xii—Fe1—O1ii113.83 (3)
O1ii—Na1—O1vi94.14 (3)O1xii—Fe1—O1xiii101.06 (6)
O1iii—Na1—O1vi125.56 (2)O1ii—Fe1—O1xiii113.83 (3)
O1—Na1—O1vi77.63 (3)O1xii—Fe1—O1113.83 (3)
O1iv—Na1—O1vi169.86 (4)O1ii—Fe1—O1101.06 (6)
O1v—Na1—O1vi73.94 (4)O1xiii—Fe1—O1113.83 (3)
O1i—Na1—O1vii77.63 (3)Fe1—O1—Te1135.38 (5)
O1ii—Na1—O1vii125.56 (2)Fe1—O1—Na192.91 (4)
O1iii—Na1—O1vii94.14 (3)Te1—O1—Na1107.08 (4)
O1—Na1—O1vii63.92 (4)Fe1—O1—Na1ix116.33 (4)
O1iv—Na1—O1vii73.94 (4)Te1—O1—Na1ix99.78 (4)
O1v—Na1—O1vii169.86 (4)Na1—O1—Na1ix98.95 (3)
O1vi—Na1—O1vii106.99 (4)
Symmetry codes: (i) z+3/4, y+3/4, x+3/4; (ii) x+1/2, y, z+1; (iii) z1/4, y+3/4, x+1/4; (iv) y1/4, x+3/4, z+1/4; (v) z+1/2, x, y+1; (vi) y+3/4, x+3/4, z+3/4; (vii) z, x, y; (viii) y+1, z+1, x+1; (ix) y, z, x; (x) z+1, x+1, y+1; (xi) x+1, y+1, z+1; (xii) z+3/4, y+5/4, x+1/4; (xiii) z1/4, y+5/4, x+3/4.
Selected bond lengths (Å) in related garnet-type Na3Te2(ZO4)3 oxidotellurates(VI) and their structure similarity parameters relative to Na3Te2(FeO4)3 top
Na3Te2(FeO4)3Na3Te2[(Al,Fe)O4]3Na3Te2(GaO4)3
Na1—O1 (4×)2.4208 (10)2.396 (3)2.3907 (17)
Na1—O1 (4×)2.6226 (10)2.597 (3)2.5609 (17)
Te1—O1 (6×)1.9169 (9)1.914 (2)1.9124 (17)
M1—O1 (4×)1.8680 (9)1.829 (2)1.8405 (16)
Degree of lattice distortion, S0.00640.0079
Atomic displacement of O1a) / Å0.02050.0322
Measure of similarity, Δ0.0010.002
a) The three other atomic sites do not show a displacement due to their site symmetries
 

Acknowledgements

We thank Ruben do Carmo for assistance during preparative studies. The X-ray centre of TU Wien is acknowledged for providing access to the single-crystal and powder X-ray diffractometers.

Funding information

The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

First citationAlbrecht, R., Hoelzel, M., Beccard, H., Rüsing, M., Eng, L., Doert, T. & Ruck, M. (2021). Chem. Eur. J. 27, 14299–14306.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationAroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.  Web of Science CrossRef CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEder, F. & Weil, M. (2023). TU Wien, unpublished results.  Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFrau, A. F., Kim, J. H. & Shiv Halasyamani, P. (2008). Solid State Sci. 10, 1263–1268.  Web of Science CrossRef ICSD CAS Google Scholar
First citationGates-Rector, S. & Blanton, T. (2019). Powder Diffr. 34, 352–360.  CAS Google Scholar
First citationGrew, E. S., Locock, A. J., Mills, S. J., Galuskina, I. O., Galuskin, E. V. & Hålenius, U. (2013). Am. Mineral. 98, 785–811.  Web of Science CrossRef CAS Google Scholar
First citationGrundish, N. S., Seymour, I. D., Henkelman, G. & Goodenough, J. B. (2019). Chem. Mater. 31, 9379–9388.  Web of Science CrossRef ICSD CAS Google Scholar
First citationGrundish, N. S., Seymour, I. D., Li, Y., Sand, J.-B., Henkelman, G., Delmas, C. & Goodenough, J. B. (2020). Chem. Mater. 32, 10035–10044.  Web of Science CrossRef ICSD CAS Google Scholar
First citationJarosch, D. & Zemann, J. (1989). Mineral. Petrol. 40, 111–116.  CrossRef ICSD CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMasese, T., Yoshii, K., Yamaguchi, Y., Okumura, T., Huang, Z.-D., Kato, M., Kubota, K., Furutani, J., Orikasa, Y., Senoh, H., Sakaebe, H. & Shikano, M. (2018). Nat. Commun. 9, 3823.  Web of Science CrossRef PubMed Google Scholar
First citationMills, S. J., Kampf, A. R., Kolitsch, U., Housley, R. M. & Raudsepp, M. (2010). Am. Mineral. 95, 933–938.  Web of Science CrossRef ICSD CAS Google Scholar
First citationNagarathinam, M., Soares, C., Chen, Y., Seymour, V. R., Mazanek, V., Isaacs, M. A., Sofer, Z., Kolosov, O., Griffin, J. M. & Tapia-Ruiz, N. (2022). RSC Adv. 12, 12211–12218.  Web of Science CrossRef CAS PubMed Google Scholar
First citationO'Callaghan, M. P., Powell, A. S., Titman, J. J., Chen, G. Z. & Cussen, E. J. (2008). Chem. Mater. 20, 2360–2369.  CAS Google Scholar
First citationPlakhtii, V. P., Golosovskii, I. V., Bedrisova, M. N., Smirnov, O. P., Sokolov, V. I., Mill, B. V. & Parfenova, N. N. (1977). Phys. Status Solidi A, 39, 683–695.  CrossRef CAS Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWedel, B. & Sugiyama, K. (1999). Z. Kristallogr. New Cryst. Struct. 214, 151–152.  CrossRef ICSD CAS Google Scholar
First citationWells, A. F. (1975). Structural Inorganic Chemistry. Fourth Edition, p. 500. Oxford University Press.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoodward, P., Sleight, A. W., Duw, L. & Grey, C. (1998). MRS Proceedings, 547, 233.  Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds