research communications
2RS,23SR,25RS,26SR)-23,25,5-trimethyl-21-(2,2,2-trifluoroacetyl)-5-aza-2(2,6)-piperidina-1,3(2,5)-difuranacyclohexaphan-24-one
and Hirshfeld surface analysis of (2aDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Türkiye, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, cPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation, dFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), 31 Bldg 4, Leninsky prosp., Moscow, 119071, Russian Federation, eCentro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The title compound, C20H21F3N2O4, features a main twelve-membered difuryl ring with which the furan rings make dihedral angles of 76.14 (5) and 33.81 (5)°. The dihedral angle between the furan rings is 42.55 (7)°. The six-membered nitrogen heterocycle has a twist-boat conformation. In the crystal, pairs of molecules are connected by intermolecular C—H⋯O interactions, generating an R22(14) ring motif. These pairs of molecules form zigzag chains along the a-axis direction by means of C—H⋯F interactions. Furthermore, C—H⋯π and C–F⋯π interactions link the molecules into chains along the b-axis direction, forming sheets parallel to the (001) plane. These sheets are also connected by van der Waals interactions.
Keywords: crystal structure; twelve-membered heterocycles; furan; alkylation; piperidon; Hirshfeld surface analysis; Mannich reaction.
CCDC reference: 2245808
1. Chemical context
Twelve-membered aza- and oxa-macrocycles possess a wide range of useful biological activities and exhibit a tendency to bind metal cations with their macrocyclic cavities (Simonov et al., 1993). For example, well-known naturally occurring macrocycles such as enniatins demonstrate a high cytotoxic activity (Levy et al., 1995; Ivanova et al., 2006) and azatri(tetra)pyrrolic macrocycles can be used as ion-pair receptors (Yadigarov et al., 2009). Chiral macrocycles with multiple non-covalent bonding sites show chiral recognition to different anions (Ema et al., 2014; Khalilov et al., 2021; Maharramov et al., 2010). S,N-Containing macrobicyclic azacryptands (Khabibullina et al., 2018; Naghiyev et al., 2020; Safavora et al., 2019) including dipyrrolylmethane subunits in their structures exhibit a high affinity to anions, especially the fluoride ion (Guchhait, et al., 2011; Shikhaliyev et al., 2018, 2019) and can be used as chemical delivery systems.
On the other hand, the Mannich reaction is an extensively used method for the construction of various types of polycyclic systems (Rivera et al., 2015; Ma et al., 2021; Mahmoudi et al., 2016), including those containing pyrroles (Jana et al., 2019). In order to create a short pathway to macrocycles possessing two different donating atoms in a twelve-membered ring, we used an acid-catalysed Mannich type reaction between 2,6-difuryl-substituted piperidone and N-substituted 1,5,3-dioxazepane (Fig. 1). The main goal of this study was to obtain the first representative of a twelve-membered difuryl containing rings and to establish its stereochemistry and non-covalent bond donor or acceptor ability (Gurbanov et al., 2020a,b; Mahmudov et al., 2021, 2022). The rings formed in this transformation can serve as precursors for studying the IMDAV (intramolecular Diels–Alder reaction of vinylarenes; Krishna, et al., 2022) and IMDAF (intramolecular Diels–Alder reaction of furans; Kvyatkovskaya et al., 2021a,b; Borisova, et al., 2018) reactions.
2. Structural commentary
As shown in Fig. 2, the title compound has a main twelve-membered difuryl-containing ring (O18 /C2/C1/N17/C13/C12/O19/C9/C8/N7/C6/C5) to which the furan rings (O18/C2–C5 and O19/C9–C12) subtend dihedral angles of 76.14 (5) and 33.81 (5)°, respectively. The dihedral angle subtended by the furan ring is 42.55 (7)°. The six-membered nitrogen heterocycle (N17/C1/C13–C16) adopts a twist-boat conformation with puckering parameters (Cremer & Pople, 1975) QT = 0.6999 (12) Å, θ = 90.12 (10)° and φ = 228.08 (10)°.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, pairs of molecules are connected by intermolecular C—H⋯O interactions, forming an R22(14) ring motif (Bernstein et al., 1995). These pairs of molecules form zigzag chains along the a-axis direction by C—H⋯F interactions (Table 1, Fig. 3). Furthermore, C—H⋯π and C—F⋯π interactions [C18—F1⋯Cg1i, C18⋯Cg1i = 3.9574 (14) Å, F1⋯Cg1i = 3.5265 (9) Å, C18—F1⋯Cg1i = 98.83 (6)° and C18—F3⋯Cg1i, C18⋯Cg1i = 3.9574 (14) Å, F1⋯Cg1i = 3.5496 (11) Å, C18—F1⋯Cg1i = 97.90 (7)° where Cg1 is the centroid of the O18/C2–C5 ring; symmetry code: (i) + x, y, − z] link the molecules into chains along the b-axis direction, forming sheets parallel to the (001) plane (Table 1, Fig. 4). These sheets are also connected by van der Waals interactions.
Crystal Explorer17.5 (Turner et al., 2017) was used to perform a Hirshfeld surface analysis and to create the corresponding two-dimensional fingerprint plots, with the three-dimensional dnorm surfaces plotted at a standard resolution of −0.1525 (red) to 1.7277 (blue) a.u (Fig. 5). The bright-red patches near atoms O15 and H20B on the Hirshfeld surface represent weak C—H⋯O and C—H⋯F interactions (Tables 1 and 2).
|
The fingerprint plots (Fig. 6) show that H⋯H (44.9%), F⋯H/H⋯F (23.0%), O⋯H/H⋯O (16.7%) and C⋯H/H⋯C (8.5%) interactions contribute the most to surface contacts. The crystal packing is additionally influenced by F⋯C/C⋯F (3.0%), N⋯H/H⋯N (1.4%), F⋯O/O⋯F (0.9%), C⋯O/O⋯C (0.9%), O⋯O (0.5%) and C⋯C (0.1%) interactions. The Hirshfeld surface study confirms the significance of H-atom interactions in the packing formation. The large number of H⋯H, F⋯H/H⋯F, O⋯H/H⋯O and C⋯H/H⋯C interactions indicate that van der Waals interactions and hydrogen bonding are important in the crystal packing (Hathwar et al., 2015).
4. Database survey
1,8,12,19,24,26-Hexaazapentacyclo[17.3.1.13,6.18,12.114,17]hexacosa-3,5,14,16-tetraene ethyl acetate solvate dihydrate (CSD refcode NOYCOW; Jana et al., 2019) is the most similar compound to the title found in a search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016). It crystallizes in the monoclinic I2/a (15) with Z = 8. The two pyrrolic NH atoms are oriented in the same direction. It exhibits a different conformation from the title compound: the furan rings in the title compound are almost normal to the mean plane of the main twelve-membered difuryl-containing ring and their oxygen atoms are oriented to the opposite sides whereas in NOYCOW, they are also almost normal, but are on the same side.
5. Synthesis and crystallization
A mixture of N-trifluoro-acylated piperodone (2.6 mmol), 3-methyl-1,5,3-dioxazepane (2.7 mmol) and Me3SiCl (1.1 mL, 8.6 mmol) in dry dichloromethane (CH2Cl2) (5 mL) was left for 5 days under an argon atmosphere without stirring. The reaction mixture was then poured into water (30 mL) and basified with solid K2CO3 until the pH was 9–10. The organic products were extracted with CH2Cl2 (2 × 20 mL) and dried over anhydrous Na2SO4. After evaporation of the solvent, the crude residue was purified by on silica gel (ethyl acetate/hexane, from 1:20 to 1:4) and then the resulting solid fractions were recrystallized from a chloroform/hexane mixture to give the macrocycle as a white solid. Single crystals were obtained by slow crystallization from a hexane/chloroform mixture.
Yield 20% (0.21 g), m.p. 420–422 K. 1H NMR (700 MHz, CDCl3) δ (J, Hz): 6.24 (br.s, 2H), 6.19 (br.s, 1H), 6.02 (d, J = 2.9 Hz, 1H), 5.28 (s, 1H), 5.11 (d, J = 9.5 Hz, 1H), 3.86 (d, J = 15.5 Hz, 1H), 3.76 (d, J = 15.3 Hz, 1H), 3.71 (s, 2H), 3.55–3.49 (m, 1H), 3.20 (q, J = 7.2 Hz, 1H), 2.35 (s, 3H), 1.36 (d, J = 7.2 Hz, 3H), 1.08 (d, J = 6.4 Hz, 3H); 13C{1H} NMR (176 MHz, CDCl3) δ 208.8, 156.5 (q, J = 36.5 Hz), 154.7, 152.3, 149.9, 148.6, 116.3 (q, J = 289.0 Hz), 111.4, 109.9, 109.8, 109.6, 57.2, 56.9, 53.3, 49.6, 44.7, 42.8, 42.0, 15.7, 12.9; HRMS (ESI) m/z: [M + H]+ 411.; Analysis calculated for C20H21F3N2O4 %: C 58.53, H 5.16, N 6.83. Found: C 58.54, H 5.17, N 6.83.
6. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in calculated positions [C—H = 0.95–1.00 Å; Uiso(H) = 1.2 or 1.5Ueq(C)] and were included in the in the riding-model approximation. Owing to poor agreement between observed and calculated intensities, twenty three outliers (0 0 6, 4 0 12, 5 1 6, 3 6 3, 4 8 5, 4 5 5, 12 11 0, 0 6 3, 4 7 5, 1 0 8, 1 1 2, 0 4 9, 6 5 2, 4 8 0, 3 6 7, 7 1 1, 4 1 9, 5 0 6, 0 0 2, 2 1 7, 4 2 8, 4 4 5, 2 5 5) were omitted during the final cycle.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2245808
https://doi.org/10.1107/S2056989023001986/tx2063sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023001986/tx2063Isup2.hkl
Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); cell
CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C20H21F3N2O4 | Dx = 1.442 Mg m−3 |
Mr = 410.39 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 15774 reflections |
a = 11.1351 (1) Å | θ = 2.2–78.7° |
b = 17.0545 (2) Å | µ = 1.03 mm−1 |
c = 19.9131 (3) Å | T = 100 K |
V = 3781.57 (8) Å3 | Prism, colourless |
Z = 8 | 0.25 × 0.20 × 0.20 mm |
F(000) = 1712 |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3752 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.031 |
φ and ω scans | θmax = 79.3°, θmin = 5.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −12→14 |
Tmin = 0.761, Tmax = 0.801 | k = −20→21 |
24690 measured reflections | l = −25→25 |
4040 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0586P)2 + 1.2514P] where P = (Fo2 + 2Fc2)/3 |
4040 reflections | (Δ/σ)max = 0.001 |
265 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.46254 (7) | 0.40849 (4) | 0.69241 (4) | 0.03490 (19) | |
F2 | 0.47797 (8) | 0.35558 (4) | 0.59393 (4) | 0.0394 (2) | |
F3 | 0.62779 (7) | 0.41697 (5) | 0.63772 (5) | 0.0411 (2) | |
C1 | 0.25270 (10) | 0.46229 (6) | 0.61741 (6) | 0.0228 (2) | |
H1 | 0.2891 | 0.4136 | 0.6366 | 0.027* | |
C2 | 0.18508 (10) | 0.50270 (6) | 0.67299 (6) | 0.0234 (2) | |
C3 | 0.06815 (11) | 0.52036 (7) | 0.68327 (6) | 0.0269 (2) | |
H3 | 0.0021 | 0.5056 | 0.6559 | 0.032* | |
C4 | 0.06377 (11) | 0.56583 (7) | 0.74372 (6) | 0.0287 (3) | |
H4 | −0.0059 | 0.5875 | 0.7641 | 0.034* | |
C5 | 0.17741 (11) | 0.57194 (7) | 0.76607 (6) | 0.0264 (2) | |
C6 | 0.23342 (11) | 0.61600 (7) | 0.82269 (6) | 0.0291 (3) | |
H6A | 0.1701 | 0.6439 | 0.8481 | 0.035* | |
H6B | 0.2730 | 0.5786 | 0.8536 | 0.035* | |
N7 | 0.32220 (10) | 0.67275 (6) | 0.79832 (5) | 0.0295 (2) | |
C8 | 0.27337 (13) | 0.73574 (7) | 0.75550 (7) | 0.0337 (3) | |
H8A | 0.2940 | 0.7876 | 0.7747 | 0.040* | |
H8B | 0.1848 | 0.7315 | 0.7532 | 0.040* | |
C9 | 0.32582 (12) | 0.72806 (7) | 0.68700 (6) | 0.0299 (3) | |
C10 | 0.42408 (12) | 0.75661 (7) | 0.65530 (7) | 0.0318 (3) | |
H10 | 0.4722 | 0.7997 | 0.6692 | 0.038* | |
C11 | 0.44143 (11) | 0.70908 (7) | 0.59651 (6) | 0.0286 (3) | |
H11 | 0.5035 | 0.7143 | 0.5641 | 0.034* | |
C12 | 0.35196 (10) | 0.65556 (7) | 0.59651 (6) | 0.0246 (2) | |
C13 | 0.32223 (10) | 0.58544 (6) | 0.55457 (6) | 0.0230 (2) | |
H13 | 0.3733 | 0.5873 | 0.5133 | 0.028* | |
C14 | 0.18934 (10) | 0.58564 (6) | 0.53217 (6) | 0.0247 (2) | |
H14 | 0.1393 | 0.5980 | 0.5725 | 0.030* | |
C15 | 0.15409 (10) | 0.50470 (7) | 0.50819 (6) | 0.0243 (2) | |
O15 | 0.11156 (8) | 0.49283 (5) | 0.45311 (4) | 0.0309 (2) | |
C16 | 0.17334 (10) | 0.43780 (7) | 0.55769 (6) | 0.0250 (2) | |
H16 | 0.0930 | 0.4225 | 0.5759 | 0.030* | |
N17 | 0.35219 (9) | 0.51181 (5) | 0.59182 (5) | 0.0220 (2) | |
C17 | 0.47033 (10) | 0.49467 (7) | 0.59476 (6) | 0.0244 (2) | |
O17 | 0.54942 (7) | 0.53360 (5) | 0.56885 (4) | 0.0294 (2) | |
O18 | 0.25418 (7) | 0.53151 (5) | 0.72431 (4) | 0.02384 (18) | |
C18 | 0.50906 (11) | 0.41827 (7) | 0.63123 (7) | 0.0303 (3) | |
O19 | 0.27850 (8) | 0.66728 (5) | 0.65050 (4) | 0.02727 (19) | |
C19 | 0.39990 (13) | 0.70224 (8) | 0.85115 (7) | 0.0353 (3) | |
H19A | 0.4331 | 0.6581 | 0.8766 | 0.053* | |
H19B | 0.3534 | 0.7360 | 0.8813 | 0.053* | |
H19C | 0.4656 | 0.7325 | 0.8312 | 0.053* | |
C20 | 0.16602 (12) | 0.64922 (7) | 0.48000 (7) | 0.0320 (3) | |
H20A | 0.0798 | 0.6519 | 0.4704 | 0.048* | |
H20B | 0.2098 | 0.6368 | 0.4387 | 0.048* | |
H20C | 0.1934 | 0.6999 | 0.4974 | 0.048* | |
C21 | 0.22552 (12) | 0.36654 (7) | 0.52092 (6) | 0.0311 (3) | |
H21A | 0.1701 | 0.3501 | 0.4854 | 0.047* | |
H21B | 0.2367 | 0.3234 | 0.5528 | 0.047* | |
H21C | 0.3031 | 0.3806 | 0.5011 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0367 (4) | 0.0339 (4) | 0.0340 (4) | 0.0041 (3) | −0.0030 (3) | 0.0081 (3) |
F2 | 0.0474 (5) | 0.0240 (4) | 0.0468 (5) | 0.0084 (3) | −0.0041 (4) | −0.0032 (3) |
F3 | 0.0281 (4) | 0.0407 (4) | 0.0544 (5) | 0.0110 (3) | −0.0028 (3) | 0.0045 (4) |
C1 | 0.0233 (5) | 0.0194 (5) | 0.0258 (5) | −0.0018 (4) | 0.0010 (4) | 0.0013 (4) |
C2 | 0.0253 (5) | 0.0218 (5) | 0.0231 (5) | −0.0035 (4) | −0.0007 (4) | 0.0007 (4) |
C3 | 0.0231 (5) | 0.0307 (6) | 0.0270 (6) | −0.0025 (4) | −0.0004 (4) | 0.0010 (5) |
C4 | 0.0246 (6) | 0.0337 (6) | 0.0279 (6) | 0.0002 (5) | 0.0034 (4) | −0.0007 (5) |
C5 | 0.0270 (6) | 0.0270 (6) | 0.0253 (6) | −0.0001 (4) | 0.0031 (4) | −0.0018 (4) |
C6 | 0.0297 (6) | 0.0311 (6) | 0.0266 (6) | −0.0015 (5) | 0.0011 (5) | −0.0028 (5) |
N7 | 0.0329 (5) | 0.0269 (5) | 0.0288 (5) | −0.0024 (4) | −0.0017 (4) | −0.0021 (4) |
C8 | 0.0418 (7) | 0.0249 (6) | 0.0345 (7) | 0.0014 (5) | −0.0018 (5) | −0.0041 (5) |
C9 | 0.0377 (7) | 0.0207 (5) | 0.0313 (6) | −0.0007 (5) | −0.0051 (5) | −0.0011 (4) |
C10 | 0.0389 (7) | 0.0211 (5) | 0.0353 (7) | −0.0056 (5) | −0.0071 (5) | 0.0025 (5) |
C11 | 0.0300 (6) | 0.0228 (5) | 0.0330 (6) | −0.0038 (4) | −0.0018 (5) | 0.0053 (5) |
C12 | 0.0266 (5) | 0.0205 (5) | 0.0268 (5) | 0.0005 (4) | −0.0016 (4) | 0.0033 (4) |
C13 | 0.0233 (5) | 0.0200 (5) | 0.0256 (5) | −0.0008 (4) | 0.0005 (4) | 0.0030 (4) |
C14 | 0.0245 (5) | 0.0228 (5) | 0.0268 (6) | 0.0003 (4) | −0.0011 (4) | 0.0016 (4) |
C15 | 0.0198 (5) | 0.0262 (5) | 0.0269 (6) | −0.0006 (4) | 0.0016 (4) | −0.0010 (4) |
O15 | 0.0305 (4) | 0.0344 (5) | 0.0278 (4) | −0.0005 (4) | −0.0040 (4) | −0.0028 (3) |
C16 | 0.0263 (5) | 0.0222 (5) | 0.0265 (6) | −0.0048 (4) | 0.0011 (4) | −0.0007 (4) |
N17 | 0.0222 (5) | 0.0185 (4) | 0.0255 (5) | 0.0001 (3) | 0.0014 (4) | 0.0017 (3) |
C17 | 0.0236 (5) | 0.0239 (5) | 0.0258 (6) | 0.0011 (4) | 0.0004 (4) | −0.0019 (4) |
O17 | 0.0234 (4) | 0.0325 (4) | 0.0322 (5) | −0.0013 (3) | 0.0020 (3) | 0.0012 (3) |
O18 | 0.0223 (4) | 0.0246 (4) | 0.0246 (4) | −0.0010 (3) | 0.0001 (3) | −0.0021 (3) |
C18 | 0.0290 (6) | 0.0270 (6) | 0.0349 (6) | 0.0049 (5) | −0.0005 (5) | 0.0008 (5) |
O19 | 0.0299 (4) | 0.0235 (4) | 0.0284 (4) | −0.0026 (3) | 0.0005 (3) | −0.0017 (3) |
C19 | 0.0393 (7) | 0.0340 (6) | 0.0326 (7) | −0.0059 (5) | −0.0025 (5) | −0.0057 (5) |
C20 | 0.0332 (6) | 0.0273 (6) | 0.0355 (6) | 0.0005 (5) | −0.0059 (5) | 0.0059 (5) |
C21 | 0.0407 (7) | 0.0219 (5) | 0.0307 (6) | −0.0039 (5) | 0.0015 (5) | −0.0030 (5) |
F1—C18 | 1.3344 (15) | C11—C12 | 1.3511 (16) |
F2—C18 | 1.3470 (15) | C11—H11 | 0.9500 |
F3—C18 | 1.3286 (15) | C12—O19 | 1.3655 (14) |
C1—N17 | 1.4833 (14) | C12—C13 | 1.4958 (15) |
C1—C2 | 1.5056 (16) | C13—N17 | 1.4961 (13) |
C1—C16 | 1.5393 (16) | C13—C14 | 1.5455 (16) |
C1—H1 | 1.0000 | C13—H13 | 1.0000 |
C2—C3 | 1.3521 (17) | C14—C15 | 1.5125 (16) |
C2—O18 | 1.3702 (14) | C14—C20 | 1.5239 (16) |
C3—C4 | 1.4328 (17) | C14—H14 | 1.0000 |
C3—H3 | 0.9500 | C15—O15 | 1.2117 (15) |
C4—C5 | 1.3454 (17) | C15—C16 | 1.5230 (16) |
C4—H4 | 0.9500 | C16—C21 | 1.5333 (16) |
C5—O18 | 1.3776 (14) | C16—H16 | 1.0000 |
C5—C6 | 1.4916 (16) | N17—C17 | 1.3489 (15) |
C6—N7 | 1.4661 (16) | C17—O17 | 1.2176 (15) |
C6—H6A | 0.9900 | C17—C18 | 1.5527 (16) |
C6—H6B | 0.9900 | C19—H19A | 0.9800 |
N7—C19 | 1.4520 (16) | C19—H19B | 0.9800 |
N7—C8 | 1.4755 (17) | C19—H19C | 0.9800 |
C8—C9 | 1.4895 (19) | C20—H20A | 0.9800 |
C8—H8A | 0.9900 | C20—H20B | 0.9800 |
C8—H8B | 0.9900 | C20—H20C | 0.9800 |
C9—C10 | 1.3537 (19) | C21—H21A | 0.9800 |
C9—O19 | 1.3713 (14) | C21—H21B | 0.9800 |
C10—C11 | 1.4370 (18) | C21—H21C | 0.9800 |
C10—H10 | 0.9500 | ||
N17—C1—C2 | 111.43 (9) | N17—C13—H13 | 107.9 |
N17—C1—C16 | 108.54 (9) | C14—C13—H13 | 107.9 |
C2—C1—C16 | 113.89 (9) | C15—C14—C20 | 112.95 (10) |
N17—C1—H1 | 107.6 | C15—C14—C13 | 109.73 (9) |
C2—C1—H1 | 107.6 | C20—C14—C13 | 111.19 (10) |
C16—C1—H1 | 107.6 | C15—C14—H14 | 107.6 |
C3—C2—O18 | 110.37 (10) | C20—C14—H14 | 107.6 |
C3—C2—C1 | 134.01 (11) | C13—C14—H14 | 107.6 |
O18—C2—C1 | 115.57 (10) | O15—C15—C14 | 122.66 (11) |
C2—C3—C4 | 106.29 (10) | O15—C15—C16 | 121.05 (10) |
C2—C3—H3 | 126.9 | C14—C15—C16 | 116.28 (10) |
C4—C3—H3 | 126.9 | C15—C16—C21 | 109.76 (10) |
C5—C4—C3 | 106.73 (11) | C15—C16—C1 | 112.18 (9) |
C5—C4—H4 | 126.6 | C21—C16—C1 | 111.50 (10) |
C3—C4—H4 | 126.6 | C15—C16—H16 | 107.7 |
C4—C5—O18 | 110.19 (10) | C21—C16—H16 | 107.7 |
C4—C5—C6 | 133.02 (11) | C1—C16—H16 | 107.7 |
O18—C5—C6 | 116.68 (10) | C17—N17—C1 | 126.16 (9) |
N7—C6—C5 | 111.36 (10) | C17—N17—C13 | 114.89 (9) |
N7—C6—H6A | 109.4 | C1—N17—C13 | 118.79 (9) |
C5—C6—H6A | 109.4 | O17—C17—N17 | 124.67 (11) |
N7—C6—H6B | 109.4 | O17—C17—C18 | 117.06 (11) |
C5—C6—H6B | 109.4 | N17—C17—C18 | 118.23 (10) |
H6A—C6—H6B | 108.0 | C2—O18—C5 | 106.33 (9) |
C19—N7—C6 | 113.00 (10) | F3—C18—F1 | 107.18 (11) |
C19—N7—C8 | 112.71 (10) | F3—C18—F2 | 107.23 (10) |
C6—N7—C8 | 115.05 (10) | F1—C18—F2 | 107.72 (10) |
N7—C8—C9 | 108.70 (10) | F3—C18—C17 | 109.62 (10) |
N7—C8—H8A | 109.9 | F1—C18—C17 | 115.10 (10) |
C9—C8—H8A | 109.9 | F2—C18—C17 | 109.68 (10) |
N7—C8—H8B | 109.9 | C12—O19—C9 | 107.32 (9) |
C9—C8—H8B | 109.9 | N7—C19—H19A | 109.5 |
H8A—C8—H8B | 108.3 | N7—C19—H19B | 109.5 |
C10—C9—O19 | 109.59 (11) | H19A—C19—H19B | 109.5 |
C10—C9—C8 | 135.42 (12) | N7—C19—H19C | 109.5 |
O19—C9—C8 | 113.66 (11) | H19A—C19—H19C | 109.5 |
C9—C10—C11 | 106.59 (11) | H19B—C19—H19C | 109.5 |
C9—C10—H10 | 126.7 | C14—C20—H20A | 109.5 |
C11—C10—H10 | 126.7 | C14—C20—H20B | 109.5 |
C12—C11—C10 | 106.38 (11) | H20A—C20—H20B | 109.5 |
C12—C11—H11 | 126.8 | C14—C20—H20C | 109.5 |
C10—C11—H11 | 126.8 | H20A—C20—H20C | 109.5 |
C11—C12—O19 | 110.05 (10) | H20B—C20—H20C | 109.5 |
C11—C12—C13 | 134.69 (11) | C16—C21—H21A | 109.5 |
O19—C12—C13 | 115.09 (10) | C16—C21—H21B | 109.5 |
C12—C13—N17 | 110.17 (9) | H21A—C21—H21B | 109.5 |
C12—C13—C14 | 111.80 (9) | C16—C21—H21C | 109.5 |
N17—C13—C14 | 111.01 (9) | H21A—C21—H21C | 109.5 |
C12—C13—H13 | 107.9 | H21B—C21—H21C | 109.5 |
N17—C1—C2—C3 | 125.68 (14) | O15—C15—C16—C21 | 42.86 (15) |
C16—C1—C2—C3 | 2.49 (18) | C14—C15—C16—C21 | −137.91 (10) |
N17—C1—C2—O18 | −51.30 (13) | O15—C15—C16—C1 | 167.40 (11) |
C16—C1—C2—O18 | −174.48 (9) | C14—C15—C16—C1 | −13.37 (14) |
O18—C2—C3—C4 | 2.27 (13) | N17—C1—C16—C15 | −40.88 (12) |
C1—C2—C3—C4 | −174.82 (12) | C2—C1—C16—C15 | 83.87 (12) |
C2—C3—C4—C5 | −0.54 (14) | N17—C1—C16—C21 | 82.69 (11) |
C3—C4—C5—O18 | −1.37 (14) | C2—C1—C16—C21 | −152.56 (10) |
C3—C4—C5—C6 | 174.71 (13) | C2—C1—N17—C17 | 116.85 (12) |
C4—C5—C6—N7 | −118.73 (15) | C16—C1—N17—C17 | −116.96 (12) |
O18—C5—C6—N7 | 57.15 (14) | C2—C1—N17—C13 | −67.88 (12) |
C5—C6—N7—C19 | −165.25 (11) | C16—C1—N17—C13 | 58.31 (12) |
C5—C6—N7—C8 | 63.35 (13) | C12—C13—N17—C17 | −75.59 (12) |
C19—N7—C8—C9 | 112.65 (12) | C14—C13—N17—C17 | 160.03 (10) |
C6—N7—C8—C9 | −115.81 (12) | C12—C13—N17—C1 | 108.62 (11) |
N7—C8—C9—C10 | −90.45 (17) | C14—C13—N17—C1 | −15.77 (13) |
N7—C8—C9—O19 | 74.55 (13) | C1—N17—C17—O17 | 174.16 (11) |
O19—C9—C10—C11 | −1.95 (14) | C13—N17—C17—O17 | −1.27 (17) |
C8—C9—C10—C11 | 163.48 (14) | C1—N17—C17—C18 | −3.30 (17) |
C9—C10—C11—C12 | 0.47 (14) | C13—N17—C17—C18 | −178.73 (10) |
C10—C11—C12—O19 | 1.19 (13) | C3—C2—O18—C5 | −3.10 (12) |
C10—C11—C12—C13 | −173.65 (12) | C1—C2—O18—C5 | 174.59 (9) |
C11—C12—C13—N17 | 103.88 (15) | C4—C5—O18—C2 | 2.73 (13) |
O19—C12—C13—N17 | −70.77 (12) | C6—C5—O18—C2 | −174.06 (10) |
C11—C12—C13—C14 | −132.19 (14) | O17—C17—C18—F3 | 11.43 (15) |
O19—C12—C13—C14 | 53.16 (13) | N17—C17—C18—F3 | −170.92 (10) |
C12—C13—C14—C15 | −163.52 (9) | O17—C17—C18—F1 | 132.31 (12) |
N17—C13—C14—C15 | −40.06 (12) | N17—C17—C18—F1 | −50.03 (15) |
C12—C13—C14—C20 | 70.80 (12) | O17—C17—C18—F2 | −106.05 (12) |
N17—C13—C14—C20 | −165.74 (10) | N17—C17—C18—F2 | 71.60 (14) |
C20—C14—C15—O15 | −0.18 (16) | C11—C12—O19—C9 | −2.39 (13) |
C13—C14—C15—O15 | −124.85 (12) | C13—C12—O19—C9 | 173.57 (9) |
C20—C14—C15—C16 | −179.39 (10) | C10—C9—O19—C12 | 2.69 (13) |
C13—C14—C15—C16 | 55.94 (13) | C8—C9—O19—C12 | −166.19 (10) |
Cg2 is the centroid of the O19/C9–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···F1 | 1.00 | 2.23 | 2.9210 (14) | 125 |
C1—H1···F2 | 1.00 | 2.47 | 3.1341 (14) | 123 |
C3—H3···O15i | 0.95 | 2.51 | 3.3809 (15) | 152 |
C14—H14···O19 | 1.00 | 2.49 | 2.9114 (14) | 105 |
C20—H20B···F3ii | 0.98 | 2.54 | 3.4700 (16) | 160 |
C21—H21B···Cg2iii | 0.98 | 2.88 | 3.7561 (13) | 150 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y−1/2, z. |
N7···H4 | 2.71 | 1/2 + x, y, 3/2 - z |
F2···H19C | 2.65 | 1 - x, -1/2 + y, 3/2 - z |
H20B···F3 | 2.54 | 1 - x, 1 - y, 1 - z |
H21A···H19A | 2.46 | 1/2 - x, 1 - y, -1/2 + z |
H20A···H16 | 2.48 | -x, 1 - y, 1 - z |
H20C···H21B | 2.50 | 1/2 - x, 1/2 + y, z |
H20A···H11 | 2.53 | -1/2 + x, 3/2 - y, 1 - z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, MA, AAE and AB; synthesis, AAE, MSG and BGMR; X-ray analysis, SÖY and MA; writing (review and editing of the manuscript) SÖY, MA and AB; funding acquisition, AAE and MSG; supervision, MA, AAE and AB.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850–2853. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Ema, T., Okuda, K., Watanabe, S., Yamasaki, T., Minami, T., Esipenko, N. A. & Anzenbacher, P. (2014). Org. Lett. 16, 1302–1305. Web of Science CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guchhait, T. & Mani, G. (2011). J. Org. Chem. 76, 10114–10121. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Ivanova, L., Skjerve, E., Eriksen, G. S. & Uhlig, S. (2006). Toxicon, 47, 868–876. Web of Science CrossRef PubMed CAS Google Scholar
Jana, D., Guchhait, T., Subramaniyan, V., Kumar, A. & Mani, G. (2019). Tetrahedron Lett. 60, 151247–151250. Web of Science CSD CrossRef CAS Google Scholar
Khabibullina, G. R., Fedotova, E. S., Tyumkina, T. V., Abdullin, M. F., Ibragimov, A. G. & Dzhemilev, U. M. (2018). Chem. Heterocycl. C. 54, 744–750. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863. CAS Google Scholar
Kvyatkovskaya, E. A., Borisova, K. K., Epifanova, P. P., Senin, A. A., Khrustalev, V. N., Grigoriev, M. S., Bunev, A. S., Gasanov, R. E., Polyanskii, K. B. & Zubkov, F. I. (2021a). New J. Chem. 45, 19497–19505. Web of Science CSD CrossRef CAS Google Scholar
Kvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021b). New J. Chem. 45, 3400–3407. Web of Science CSD CrossRef CAS Google Scholar
Levy, D., Bluzat, A., Seigneuret, M. & Rigaud, J.-L. (1995). Biochem. Pharmacol. 50, 2105–2107. CrossRef CAS PubMed Web of Science Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389. Web of Science CrossRef CAS PubMed Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rivera, A., Nerio, L. S. & Quevedo, R. (2015). Tetrahedron Lett. 56, 6059–6062. Web of Science CrossRef CAS Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Simonov, Y. A., Dvorkin, A. A., Fonari, M. S., Malinowski, T. I., Luboch, E., Cygan, A., Biernat, J. F., Ganin, E. V. & Popkov, Y. A. (1993). J. Inclusion Phenom. Mol. Recognit. Chem. 15, 79–89. CSD CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.https://hirshfeldsuface.net Google Scholar
Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.