research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (22RS,23SR,25RS,26SR)-23,25,5-tri­methyl-21-(2,2,2-tri­fluoro­acet­yl)-5-aza-2(2,6)-piperidina-1,3(2,5)-di­furana­cyclo­hexa­phan-24-one

crossmark logo

aDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Türkiye, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, cPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation, dFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), 31 Bldg 4, Leninsky prosp., Moscow, 119071, Russian Federation, eCentro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 1 February 2023; accepted 2 March 2023; online 10 March 2023)

The title compound, C20H21F3N2O4, features a main twelve-membered difuryl ring with which the furan rings make dihedral angles of 76.14 (5) and 33.81 (5)°. The dihedral angle between the furan rings is 42.55 (7)°. The six-membered nitro­gen heterocycle has a twist-boat conformation. In the crystal, pairs of mol­ecules are connected by inter­molecular C—H⋯O inter­actions, generating an R22(14) ring motif. These pairs of mol­ecules form zigzag chains along the a-axis direction by means of C—H⋯F inter­actions. Furthermore, C—H⋯π and C–F⋯π inter­actions link the mol­ecules into chains along the b-axis direction, forming sheets parallel to the (001) plane. These sheets are also connected by van der Waals inter­actions.

1. Chemical context

Twelve-membered aza- and oxa-macrocycles possess a wide range of useful biological activities and exhibit a tendency to bind metal cations with their macrocyclic cavities (Simonov et al., 1993[Simonov, Y. A., Dvorkin, A. A., Fonari, M. S., Malinowski, T. I., Luboch, E., Cygan, A., Biernat, J. F., Ganin, E. V. & Popkov, Y. A. (1993). J. Inclusion Phenom. Mol. Recognit. Chem. 15, 79-89.]). For example, well-known naturally occurring macrocycles such as enniatins demonstrate a high cytotoxic activity (Levy et al., 1995[Levy, D., Bluzat, A., Seigneuret, M. & Rigaud, J.-L. (1995). Biochem. Pharmacol. 50, 2105-2107.]; Ivanova et al., 2006[Ivanova, L., Skjerve, E., Eriksen, G. S. & Uhlig, S. (2006). Toxicon, 47, 868-876.]) and aza­tri(tetra­)pyrrolic macrocycles can be used as ion-pair receptors (Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]). Chiral macrocycles with multiple non-covalent bonding sites show chiral recognition to different anions (Ema et al., 2014[Ema, T., Okuda, K., Watanabe, S., Yamasaki, T., Minami, T., Esipenko, N. A. & Anzenbacher, P. (2014). Org. Lett. 16, 1302-1305.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]). S,N-Containing macrobicyclic aza­cryptands (Khabibullina et al., 2018[Khabibullina, G. R., Fedotova, E. S., Tyumkina, T. V., Abdullin, M. F., Ibragimov, A. G. & Dzhemilev, U. M. (2018). Chem. Heterocycl. C. 54, 744-750.]; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Kristallogr. New Cryst. Struct. 234, 1183-1185.]) including dipyrrolyl­methane subunits in their structures exhibit a high affinity to anions, especially the fluoride ion (Guchhait, et al., 2011[Guchhait, T. & Mani, G. (2011). J. Org. Chem. 76, 10114-10121.]; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]) and can be used as chemical delivery systems.

On the other hand, the Mannich reaction is an extensively used method for the construction of various types of polycyclic systems (Rivera et al., 2015[Rivera, A., Nerio, L. S. & Quevedo, R. (2015). Tetrahedron Lett. 56, 6059-6062.]; Ma et al., 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmoudi et al., 2016[Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.]), including those containing pyrroles (Jana et al., 2019). In order to create a short pathway to macrocycles possessing two different donating atoms in a twelve-membered ring, we used an acid-catalysed Mannich type reaction between 2,6-difuryl-substituted piperidone and N-substituted 1,5,3-diox­azepane (Fig. 1[link]). The main goal of this study was to obtain the first representative of a twelve-membered difuryl containing rings and to establish its stereochemistry and non-covalent bond donor or acceptor ability (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Mahmudov et al., 2021[Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370-14389.], 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). The rings formed in this transformation can serve as precursors for studying the IMDAV (intra­molecular Diels–Alder reaction of vinyl­arenes; Krishna, et al., 2022[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797-863.]) and IMDAF (intra­molecular Diels–Alder reaction of furans; Kvyatkovskaya et al., 2021a[Kvyatkovskaya, E. A., Borisova, K. K., Epifanova, P. P., Senin, A. A., Khrustalev, V. N., Grigoriev, M. S., Bunev, A. S., Gasanov, R. E., Polyanskii, K. B. & Zubkov, F. I. (2021a). New J. Chem. 45, 19497-19505.],b[Kvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021b). New J. Chem. 45, 3400-3407.]; Borisova, et al., 2018[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850-2853.]) reactions.

[Scheme 1]
[Figure 1]
Figure 1
The synthetic route.

2. Structural commentary

As shown in Fig. 2[link], the title compound has a main twelve-membered difuryl-containing ring (O18 /C2/C1/N17/C13/C12/O19/C9/C8/N7/C6/C5) to which the furan rings (O18/C2–C5 and O19/C9–C12) subtend dihedral angles of 76.14 (5) and 33.81 (5)°, respectively. The dihedral angle subtended by the furan ring is 42.55 (7)°. The six-membered nitro­gen heterocycle (N17/C1/C13–C16) adopts a twist-boat conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.6999 (12) Å, θ = 90.12 (10)° and φ = 228.08 (10)°.

[Figure 2]
Figure 2
Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of mol­ecules are connected by inter­molecular C—H⋯O inter­actions, forming an R22(14) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These pairs of mol­ecules form zigzag chains along the a-axis direction by C—H⋯F inter­actions (Table 1[link], Fig. 3[link]). Furthermore, C—H⋯π and C—F⋯π inter­actions [C18—F1⋯Cg1i, C18⋯Cg1i = 3.9574 (14) Å, F1⋯Cg1i = 3.5265 (9) Å, C18—F1⋯Cg1i = 98.83 (6)° and C18—F3⋯Cg1i, C18⋯Cg1i = 3.9574 (14) Å, F1⋯Cg1i = 3.5496 (11) Å, C18—F1⋯Cg1i = 97.90 (7)° where Cg1 is the centroid of the O18/C2–C5 ring; symmetry code: (i) [{1\over 2}] + x, y, [{3\over 2}] − z] link the mol­ecules into chains along the b-axis direction, forming sheets parallel to the (001) plane (Table 1[link], Fig. 4[link]). These sheets are also connected by van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the O19/C9–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O15i 0.95 2.51 3.3809 (15) 152
C20—H20B⋯F3ii 0.98 2.54 3.4700 (16) 160
C21—H21BCg2iii 0.98 2.88 3.7561 (13) 150
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 3]
Figure 3
View down the b-axis showing the C—H⋯O and C—H⋯F hydrogen bonds (dashed lines).
[Figure 4]
Figure 4
A general view in the unit cell of the C—H⋯π and C—F⋯π inter­actions (dashed lines). Symmetry codes: (iii) −x + [{1\over 2}], y − [{1\over 2}], z; (iv) [{1\over 2}] + x, y, [{3\over 2}] − z.

Crystal Explorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.https://hirshfeldsuface.net]) was used to perform a Hirshfeld surface analysis and to create the corres­ponding two-dimensional fingerprint plots, with the three-dimensional dnorm surfaces plotted at a standard resolution of −0.1525 (red) to 1.7277 (blue) a.u (Fig. 5[link]). The bright-red patches near atoms O15 and H20B on the Hirshfeld surface represent weak C—H⋯O and C—H⋯F inter­actions (Tables 1[link] and 2[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

N7⋯H4 2.71 [{1\over 2}] + x, y, [{3\over 2}] − z
F2⋯H19C 2.65 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
H20B⋯F3 2.54 1 − x, 1 − y, 1 − z
H21A⋯H19A 2.46 [{1\over 2}] − x, 1 − y, −[{1\over 2}] + z
H20A⋯H16 2.48 -x, 1 − y, 1 − z
H20C⋯H21B 2.50 [{1\over 2}] − x, [{1\over 2}] + y, z
H20A⋯H11 2.53 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
[Figure 5]
Figure 5
(a) Front and (b) back views of the three-dimensional Hirshfeld surfaces of the title mol­ecule.

The fingerprint plots (Fig. 6[link]) show that H⋯H (44.9%), F⋯H/H⋯F (23.0%), O⋯H/H⋯O (16.7%) and C⋯H/H⋯C (8.5%) inter­actions contribute the most to surface contacts. The crystal packing is additionally influenced by F⋯C/C⋯F (3.0%), N⋯H/H⋯N (1.4%), F⋯O/O⋯F (0.9%), C⋯O/O⋯C (0.9%), O⋯O (0.5%) and C⋯C (0.1%) inter­actions. The Hirshfeld surface study confirms the significance of H-atom inter­actions in the packing formation. The large number of H⋯H, F⋯H/H⋯F, O⋯H/H⋯O and C⋯H/H⋯C inter­actions indicate that van der Waals inter­actions and hydrogen bonding are important in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 6]
Figure 6
Two-dimensional fingerprint plots for title mol­ecules showing (a) all inter­actions, and delineated into (b) H⋯H, (c) F⋯H/H⋯F, (d) O⋯H/H⋯O and (e) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

1,8,12,19,24,26-Hexaaza­penta­cyclo­[17.3.1.13,6.18,12.114,17]hexa­cosa-3,5,14,16-tetra­ene ethyl acetate solvate dihydrate (CSD refcode NOYCOW; Jana et al., 2019[Jana, D., Guchhait, T., Subramaniyan, V., Kumar, A. & Mani, G. (2019). Tetrahedron Lett. 60, 151247-151250.]) is the most similar compound to the title found in a search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). It crystallizes in the monoclinic space group I2/a (15) with Z = 8. The two pyrrolic NH atoms are oriented in the same direction. It exhibits a different conformation from the title compound: the furan rings in the title compound are almost normal to the mean plane of the main twelve-membered difuryl-containing ring and their oxygen atoms are oriented to the opposite sides whereas in NOYCOW, they are also almost normal, but are on the same side.

5. Synthesis and crystallization

A mixture of N-tri­fluoro-acyl­ated piperodone (2.6 mmol), 3-methyl-1,5,3-dioxazepane (2.7 mmol) and Me3SiCl (1.1 mL, 8.6 mmol) in dry di­chloro­methane (CH2Cl2) (5 mL) was left for 5 days under an argon atmosphere without stirring. The reaction mixture was then poured into water (30 mL) and basified with solid K2CO3 until the pH was 9–10. The organic products were extracted with CH2Cl2 (2 × 20 mL) and dried over anhydrous Na2SO4. After evaporation of the solvent, the crude residue was purified by column chromatography on silica gel (ethyl acetate/hexane, from 1:20 to 1:4) and then the resulting solid fractions were recrystallized from a chloro­form/hexane mixture to give the macrocycle as a white solid. Single crystals were obtained by slow crystallization from a hexa­ne/chloro­form mixture.

Yield 20% (0.21 g), m.p. 420–422 K. 1H NMR (700 MHz, CDCl3) δ (J, Hz): 6.24 (br.s, 2H), 6.19 (br.s, 1H), 6.02 (d, J = 2.9 Hz, 1H), 5.28 (s, 1H), 5.11 (d, J = 9.5 Hz, 1H), 3.86 (d, J = 15.5 Hz, 1H), 3.76 (d, J = 15.3 Hz, 1H), 3.71 (s, 2H), 3.55–3.49 (m, 1H), 3.20 (q, J = 7.2 Hz, 1H), 2.35 (s, 3H), 1.36 (d, J = 7.2 Hz, 3H), 1.08 (d, J = 6.4 Hz, 3H); 13C{1H} NMR (176 MHz, CDCl3) δ 208.8, 156.5 (q, J = 36.5 Hz), 154.7, 152.3, 149.9, 148.6, 116.3 (q, J = 289.0 Hz), 111.4, 109.9, 109.8, 109.6, 57.2, 56.9, 53.3, 49.6, 44.7, 42.8, 42.0, 15.7, 12.9; HRMS (ESI) m/z: [M + H]+ 411.; Analysis calculated for C20H21F3N2O4 %: C 58.53, H 5.16, N 6.83. Found: C 58.54, H 5.17, N 6.83.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound H atoms were placed in calculated positions [C—H = 0.95–1.00 Å; Uiso(H) = 1.2 or 1.5Ueq(C)] and were included in the refinement in the riding-model approximation. Owing to poor agreement between observed and calculated intensities, twenty three outliers (0 0 6, 4 0 12, 5 1 6, 3 6 3, 4 8 5, 4 5 5, 12 11 0, 0 6 3, 4 7 5, 1 0 8, 1 1 2, 0 4 9, 6 5 2, 4 8 0, 3 6 7, 7 1 1, 4 1 9, 5 0 6, 0 0 2, 2 1 7, 4 2 8, 4 4 5, 2 5 5) were omitted during the final refinement cycle.

Table 3
Experimental details

Crystal data
Chemical formula C20H21F3N2O4
Mr 410.39
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 11.1351 (1), 17.0545 (2), 19.9131 (3)
V3) 3781.57 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.03
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.761, 0.801
No. of measured, independent and observed [I > 2σ(I)] reflections 24690, 4040, 3752
Rint 0.031
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.03
No. of reflections 4040
No. of parameters 265
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.21
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

/ (22RS,23SR,25RS,26SR)-\ 23,25,5-trimethyl-21-(2,2,2-\ trifluoroacetyl)-5-aza-2(2,6)-piperidina-1,3(2,5)-difuranacyclohexaphan-\ 24-one top
Crystal data top
C20H21F3N2O4Dx = 1.442 Mg m3
Mr = 410.39Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 15774 reflections
a = 11.1351 (1) Åθ = 2.2–78.7°
b = 17.0545 (2) ŵ = 1.03 mm1
c = 19.9131 (3) ÅT = 100 K
V = 3781.57 (8) Å3Prism, colourless
Z = 80.25 × 0.20 × 0.20 mm
F(000) = 1712
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3752 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.031
φ and ω scansθmax = 79.3°, θmin = 5.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1214
Tmin = 0.761, Tmax = 0.801k = 2021
24690 measured reflectionsl = 2525
4040 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0586P)2 + 1.2514P]
where P = (Fo2 + 2Fc2)/3
4040 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.46254 (7)0.40849 (4)0.69241 (4)0.03490 (19)
F20.47797 (8)0.35558 (4)0.59393 (4)0.0394 (2)
F30.62779 (7)0.41697 (5)0.63772 (5)0.0411 (2)
C10.25270 (10)0.46229 (6)0.61741 (6)0.0228 (2)
H10.28910.41360.63660.027*
C20.18508 (10)0.50270 (6)0.67299 (6)0.0234 (2)
C30.06815 (11)0.52036 (7)0.68327 (6)0.0269 (2)
H30.00210.50560.65590.032*
C40.06377 (11)0.56583 (7)0.74372 (6)0.0287 (3)
H40.00590.58750.76410.034*
C50.17741 (11)0.57194 (7)0.76607 (6)0.0264 (2)
C60.23342 (11)0.61600 (7)0.82269 (6)0.0291 (3)
H6A0.17010.64390.84810.035*
H6B0.27300.57860.85360.035*
N70.32220 (10)0.67275 (6)0.79832 (5)0.0295 (2)
C80.27337 (13)0.73574 (7)0.75550 (7)0.0337 (3)
H8A0.29400.78760.77470.040*
H8B0.18480.73150.75320.040*
C90.32582 (12)0.72806 (7)0.68700 (6)0.0299 (3)
C100.42408 (12)0.75661 (7)0.65530 (7)0.0318 (3)
H100.47220.79970.66920.038*
C110.44143 (11)0.70908 (7)0.59651 (6)0.0286 (3)
H110.50350.71430.56410.034*
C120.35196 (10)0.65556 (7)0.59651 (6)0.0246 (2)
C130.32223 (10)0.58544 (6)0.55457 (6)0.0230 (2)
H130.37330.58730.51330.028*
C140.18934 (10)0.58564 (6)0.53217 (6)0.0247 (2)
H140.13930.59800.57250.030*
C150.15409 (10)0.50470 (7)0.50819 (6)0.0243 (2)
O150.11156 (8)0.49283 (5)0.45311 (4)0.0309 (2)
C160.17334 (10)0.43780 (7)0.55769 (6)0.0250 (2)
H160.09300.42250.57590.030*
N170.35219 (9)0.51181 (5)0.59182 (5)0.0220 (2)
C170.47033 (10)0.49467 (7)0.59476 (6)0.0244 (2)
O170.54942 (7)0.53360 (5)0.56885 (4)0.0294 (2)
O180.25418 (7)0.53151 (5)0.72431 (4)0.02384 (18)
C180.50906 (11)0.41827 (7)0.63123 (7)0.0303 (3)
O190.27850 (8)0.66728 (5)0.65050 (4)0.02727 (19)
C190.39990 (13)0.70224 (8)0.85115 (7)0.0353 (3)
H19A0.43310.65810.87660.053*
H19B0.35340.73600.88130.053*
H19C0.46560.73250.83120.053*
C200.16602 (12)0.64922 (7)0.48000 (7)0.0320 (3)
H20A0.07980.65190.47040.048*
H20B0.20980.63680.43870.048*
H20C0.19340.69990.49740.048*
C210.22552 (12)0.36654 (7)0.52092 (6)0.0311 (3)
H21A0.17010.35010.48540.047*
H21B0.23670.32340.55280.047*
H21C0.30310.38060.50110.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0367 (4)0.0339 (4)0.0340 (4)0.0041 (3)0.0030 (3)0.0081 (3)
F20.0474 (5)0.0240 (4)0.0468 (5)0.0084 (3)0.0041 (4)0.0032 (3)
F30.0281 (4)0.0407 (4)0.0544 (5)0.0110 (3)0.0028 (3)0.0045 (4)
C10.0233 (5)0.0194 (5)0.0258 (5)0.0018 (4)0.0010 (4)0.0013 (4)
C20.0253 (5)0.0218 (5)0.0231 (5)0.0035 (4)0.0007 (4)0.0007 (4)
C30.0231 (5)0.0307 (6)0.0270 (6)0.0025 (4)0.0004 (4)0.0010 (5)
C40.0246 (6)0.0337 (6)0.0279 (6)0.0002 (5)0.0034 (4)0.0007 (5)
C50.0270 (6)0.0270 (6)0.0253 (6)0.0001 (4)0.0031 (4)0.0018 (4)
C60.0297 (6)0.0311 (6)0.0266 (6)0.0015 (5)0.0011 (5)0.0028 (5)
N70.0329 (5)0.0269 (5)0.0288 (5)0.0024 (4)0.0017 (4)0.0021 (4)
C80.0418 (7)0.0249 (6)0.0345 (7)0.0014 (5)0.0018 (5)0.0041 (5)
C90.0377 (7)0.0207 (5)0.0313 (6)0.0007 (5)0.0051 (5)0.0011 (4)
C100.0389 (7)0.0211 (5)0.0353 (7)0.0056 (5)0.0071 (5)0.0025 (5)
C110.0300 (6)0.0228 (5)0.0330 (6)0.0038 (4)0.0018 (5)0.0053 (5)
C120.0266 (5)0.0205 (5)0.0268 (5)0.0005 (4)0.0016 (4)0.0033 (4)
C130.0233 (5)0.0200 (5)0.0256 (5)0.0008 (4)0.0005 (4)0.0030 (4)
C140.0245 (5)0.0228 (5)0.0268 (6)0.0003 (4)0.0011 (4)0.0016 (4)
C150.0198 (5)0.0262 (5)0.0269 (6)0.0006 (4)0.0016 (4)0.0010 (4)
O150.0305 (4)0.0344 (5)0.0278 (4)0.0005 (4)0.0040 (4)0.0028 (3)
C160.0263 (5)0.0222 (5)0.0265 (6)0.0048 (4)0.0011 (4)0.0007 (4)
N170.0222 (5)0.0185 (4)0.0255 (5)0.0001 (3)0.0014 (4)0.0017 (3)
C170.0236 (5)0.0239 (5)0.0258 (6)0.0011 (4)0.0004 (4)0.0019 (4)
O170.0234 (4)0.0325 (4)0.0322 (5)0.0013 (3)0.0020 (3)0.0012 (3)
O180.0223 (4)0.0246 (4)0.0246 (4)0.0010 (3)0.0001 (3)0.0021 (3)
C180.0290 (6)0.0270 (6)0.0349 (6)0.0049 (5)0.0005 (5)0.0008 (5)
O190.0299 (4)0.0235 (4)0.0284 (4)0.0026 (3)0.0005 (3)0.0017 (3)
C190.0393 (7)0.0340 (6)0.0326 (7)0.0059 (5)0.0025 (5)0.0057 (5)
C200.0332 (6)0.0273 (6)0.0355 (6)0.0005 (5)0.0059 (5)0.0059 (5)
C210.0407 (7)0.0219 (5)0.0307 (6)0.0039 (5)0.0015 (5)0.0030 (5)
Geometric parameters (Å, º) top
F1—C181.3344 (15)C11—C121.3511 (16)
F2—C181.3470 (15)C11—H110.9500
F3—C181.3286 (15)C12—O191.3655 (14)
C1—N171.4833 (14)C12—C131.4958 (15)
C1—C21.5056 (16)C13—N171.4961 (13)
C1—C161.5393 (16)C13—C141.5455 (16)
C1—H11.0000C13—H131.0000
C2—C31.3521 (17)C14—C151.5125 (16)
C2—O181.3702 (14)C14—C201.5239 (16)
C3—C41.4328 (17)C14—H141.0000
C3—H30.9500C15—O151.2117 (15)
C4—C51.3454 (17)C15—C161.5230 (16)
C4—H40.9500C16—C211.5333 (16)
C5—O181.3776 (14)C16—H161.0000
C5—C61.4916 (16)N17—C171.3489 (15)
C6—N71.4661 (16)C17—O171.2176 (15)
C6—H6A0.9900C17—C181.5527 (16)
C6—H6B0.9900C19—H19A0.9800
N7—C191.4520 (16)C19—H19B0.9800
N7—C81.4755 (17)C19—H19C0.9800
C8—C91.4895 (19)C20—H20A0.9800
C8—H8A0.9900C20—H20B0.9800
C8—H8B0.9900C20—H20C0.9800
C9—C101.3537 (19)C21—H21A0.9800
C9—O191.3713 (14)C21—H21B0.9800
C10—C111.4370 (18)C21—H21C0.9800
C10—H100.9500
N17—C1—C2111.43 (9)N17—C13—H13107.9
N17—C1—C16108.54 (9)C14—C13—H13107.9
C2—C1—C16113.89 (9)C15—C14—C20112.95 (10)
N17—C1—H1107.6C15—C14—C13109.73 (9)
C2—C1—H1107.6C20—C14—C13111.19 (10)
C16—C1—H1107.6C15—C14—H14107.6
C3—C2—O18110.37 (10)C20—C14—H14107.6
C3—C2—C1134.01 (11)C13—C14—H14107.6
O18—C2—C1115.57 (10)O15—C15—C14122.66 (11)
C2—C3—C4106.29 (10)O15—C15—C16121.05 (10)
C2—C3—H3126.9C14—C15—C16116.28 (10)
C4—C3—H3126.9C15—C16—C21109.76 (10)
C5—C4—C3106.73 (11)C15—C16—C1112.18 (9)
C5—C4—H4126.6C21—C16—C1111.50 (10)
C3—C4—H4126.6C15—C16—H16107.7
C4—C5—O18110.19 (10)C21—C16—H16107.7
C4—C5—C6133.02 (11)C1—C16—H16107.7
O18—C5—C6116.68 (10)C17—N17—C1126.16 (9)
N7—C6—C5111.36 (10)C17—N17—C13114.89 (9)
N7—C6—H6A109.4C1—N17—C13118.79 (9)
C5—C6—H6A109.4O17—C17—N17124.67 (11)
N7—C6—H6B109.4O17—C17—C18117.06 (11)
C5—C6—H6B109.4N17—C17—C18118.23 (10)
H6A—C6—H6B108.0C2—O18—C5106.33 (9)
C19—N7—C6113.00 (10)F3—C18—F1107.18 (11)
C19—N7—C8112.71 (10)F3—C18—F2107.23 (10)
C6—N7—C8115.05 (10)F1—C18—F2107.72 (10)
N7—C8—C9108.70 (10)F3—C18—C17109.62 (10)
N7—C8—H8A109.9F1—C18—C17115.10 (10)
C9—C8—H8A109.9F2—C18—C17109.68 (10)
N7—C8—H8B109.9C12—O19—C9107.32 (9)
C9—C8—H8B109.9N7—C19—H19A109.5
H8A—C8—H8B108.3N7—C19—H19B109.5
C10—C9—O19109.59 (11)H19A—C19—H19B109.5
C10—C9—C8135.42 (12)N7—C19—H19C109.5
O19—C9—C8113.66 (11)H19A—C19—H19C109.5
C9—C10—C11106.59 (11)H19B—C19—H19C109.5
C9—C10—H10126.7C14—C20—H20A109.5
C11—C10—H10126.7C14—C20—H20B109.5
C12—C11—C10106.38 (11)H20A—C20—H20B109.5
C12—C11—H11126.8C14—C20—H20C109.5
C10—C11—H11126.8H20A—C20—H20C109.5
C11—C12—O19110.05 (10)H20B—C20—H20C109.5
C11—C12—C13134.69 (11)C16—C21—H21A109.5
O19—C12—C13115.09 (10)C16—C21—H21B109.5
C12—C13—N17110.17 (9)H21A—C21—H21B109.5
C12—C13—C14111.80 (9)C16—C21—H21C109.5
N17—C13—C14111.01 (9)H21A—C21—H21C109.5
C12—C13—H13107.9H21B—C21—H21C109.5
N17—C1—C2—C3125.68 (14)O15—C15—C16—C2142.86 (15)
C16—C1—C2—C32.49 (18)C14—C15—C16—C21137.91 (10)
N17—C1—C2—O1851.30 (13)O15—C15—C16—C1167.40 (11)
C16—C1—C2—O18174.48 (9)C14—C15—C16—C113.37 (14)
O18—C2—C3—C42.27 (13)N17—C1—C16—C1540.88 (12)
C1—C2—C3—C4174.82 (12)C2—C1—C16—C1583.87 (12)
C2—C3—C4—C50.54 (14)N17—C1—C16—C2182.69 (11)
C3—C4—C5—O181.37 (14)C2—C1—C16—C21152.56 (10)
C3—C4—C5—C6174.71 (13)C2—C1—N17—C17116.85 (12)
C4—C5—C6—N7118.73 (15)C16—C1—N17—C17116.96 (12)
O18—C5—C6—N757.15 (14)C2—C1—N17—C1367.88 (12)
C5—C6—N7—C19165.25 (11)C16—C1—N17—C1358.31 (12)
C5—C6—N7—C863.35 (13)C12—C13—N17—C1775.59 (12)
C19—N7—C8—C9112.65 (12)C14—C13—N17—C17160.03 (10)
C6—N7—C8—C9115.81 (12)C12—C13—N17—C1108.62 (11)
N7—C8—C9—C1090.45 (17)C14—C13—N17—C115.77 (13)
N7—C8—C9—O1974.55 (13)C1—N17—C17—O17174.16 (11)
O19—C9—C10—C111.95 (14)C13—N17—C17—O171.27 (17)
C8—C9—C10—C11163.48 (14)C1—N17—C17—C183.30 (17)
C9—C10—C11—C120.47 (14)C13—N17—C17—C18178.73 (10)
C10—C11—C12—O191.19 (13)C3—C2—O18—C53.10 (12)
C10—C11—C12—C13173.65 (12)C1—C2—O18—C5174.59 (9)
C11—C12—C13—N17103.88 (15)C4—C5—O18—C22.73 (13)
O19—C12—C13—N1770.77 (12)C6—C5—O18—C2174.06 (10)
C11—C12—C13—C14132.19 (14)O17—C17—C18—F311.43 (15)
O19—C12—C13—C1453.16 (13)N17—C17—C18—F3170.92 (10)
C12—C13—C14—C15163.52 (9)O17—C17—C18—F1132.31 (12)
N17—C13—C14—C1540.06 (12)N17—C17—C18—F150.03 (15)
C12—C13—C14—C2070.80 (12)O17—C17—C18—F2106.05 (12)
N17—C13—C14—C20165.74 (10)N17—C17—C18—F271.60 (14)
C20—C14—C15—O150.18 (16)C11—C12—O19—C92.39 (13)
C13—C14—C15—O15124.85 (12)C13—C12—O19—C9173.57 (9)
C20—C14—C15—C16179.39 (10)C10—C9—O19—C122.69 (13)
C13—C14—C15—C1655.94 (13)C8—C9—O19—C12166.19 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the O19/C9–C12 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···F11.002.232.9210 (14)125
C1—H1···F21.002.473.1341 (14)123
C3—H3···O15i0.952.513.3809 (15)152
C14—H14···O191.002.492.9114 (14)105
C20—H20B···F3ii0.982.543.4700 (16)160
C21—H21B···Cg2iii0.982.883.7561 (13)150
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z.
Summary of short interatomic contacts (Å) in the title compound top
N7···H42.711/2 + x, y, 3/2 - z
F2···H19C2.651 - x, -1/2 + y, 3/2 - z
H20B···F32.541 - x, 1 - y, 1 - z
H21A···H19A2.461/2 - x, 1 - y, -1/2 + z
H20A···H162.48-x, 1 - y, 1 - z
H20C···H21B2.501/2 - x, 1/2 + y, z
H20A···H112.53-1/2 + x, 3/2 - y, 1 - z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA, AAE and AB; synthesis, AAE, MSG and BGMR; X-ray analysis, SÖY and MA; writing (review and editing of the manuscript) SÖY, MA and AB; funding acquisition, AAE and MSG; supervision, MA, AAE and AB.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850–2853.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEma, T., Okuda, K., Watanabe, S., Yamasaki, T., Minami, T., Esipenko, N. A. & Anzenbacher, P. (2014). Org. Lett. 16, 1302–1305.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuchhait, T. & Mani, G. (2011). J. Org. Chem. 76, 10114–10121.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationIvanova, L., Skjerve, E., Eriksen, G. S. & Uhlig, S. (2006). Toxicon, 47, 868–876.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJana, D., Guchhait, T., Subramaniyan, V., Kumar, A. & Mani, G. (2019). Tetrahedron Lett. 60, 151247–151250.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhabibullina, G. R., Fedotova, E. S., Tyumkina, T. V., Abdullin, M. F., Ibragimov, A. G. & Dzhemilev, U. M. (2018). Chem. Heterocycl. C. 54, 744–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.  CAS Google Scholar
First citationKvyatkovskaya, E. A., Borisova, K. K., Epifanova, P. P., Senin, A. A., Khrustalev, V. N., Grigoriev, M. S., Bunev, A. S., Gasanov, R. E., Polyanskii, K. B. & Zubkov, F. I. (2021a). New J. Chem. 45, 19497–19505.  Web of Science CSD CrossRef CAS Google Scholar
First citationKvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021b). New J. Chem. 45, 3400–3407.  Web of Science CSD CrossRef CAS Google Scholar
First citationLevy, D., Bluzat, A., Seigneuret, M. & Rigaud, J.-L. (1995). Biochem. Pharmacol. 50, 2105–2107.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRivera, A., Nerio, L. S. & Quevedo, R. (2015). Tetrahedron Lett. 56, 6059–6062.  Web of Science CrossRef CAS Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSimonov, Y. A., Dvorkin, A. A., Fonari, M. S., Malinowski, T. I., Luboch, E., Cygan, A., Biernat, J. F., Ganin, E. V. & Popkov, Y. A. (1993). J. Inclusion Phenom. Mol. Recognit. Chem. 15, 79–89.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.https://hirshfeldsuface.net  Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds