research communications
κO)ytterbium(III)] pentabromidoplumbate(II) tribromide dimethyl sulfoxide monosolvate: a ytterbium-doped lead halide perovskite precursor
of bis[octakis(dimethyl sulfoxide-aGraduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan, and bResearch Center for Advanced Science and Technology (RCAST), The University of, Tokyo 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8904, Japan
*Correspondence e-mail: utkino@mail.ecc.u-tokyo.ac.jp
A mixture of PbBr2 and YbBr3·nH2O in a dimethyl sulfoxide (DMSO) solution yielded single crystals of a lead halide perovskite precursor with ytterbium, bis[octakis(dimethyl sulfoxide)ytterbium(III)]pentabromidoplumbate(II) tribromide with dimethyl sulfoxide as co-crystallite, [Yb(C2H6OS)8][PbBr5]0.5Br1.5·0.5C2H6OS. The complex ions PbBr53− and Yb(DMSO)83+ are present in the crystal together with three Br− ions and DMSO molecules. X-ray crystallography revealed that the Br− ions in YbBr3 are replaced by the solvent and bound to a PbII atom or remain free. The presence of PbBr53− units, which are molecular ions with a square-pyramidal structure, is also observed. These single crystals react with a caesium chloride solution, exhibiting near-infrared (NIR) luminescence by visible suggesting the formation of Yb3+-doped lead halide perovskites (CsPbBr3-xClx·Yb3+).
Keywords: lead halide perovskite; ytterbium; photoluminescence; crystal structure.
CCDC reference: 2251523
1. Chemical context
Lead halide perovskite crystals have attracted considerable attention in the fields of solar cells and optoelectronics (Lee et al., 2012; Burschka et al., 2013; Fu et al., 2019). Lead halide perovskite crystals have been investigated extensively owing to their facile solution-phase fabrication, high energy-conversion efficiency, and characteristic photoresponse. Lead halide perovskites can easily be prepared by spin coating microcrystalline thin films in solution.
Highly polar solvents, such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), are used in fabricating perovskite thin films by solution processing. Typically, these solvents are removed by thermal annealing using a hot plate or air drying after spin coating, and crystal growth proceeds as the solvent becomes supersaturated. The crystal morphology and crystalline phase depend on the annealing temperature and treatment time (Tenailleau et al., 2019; Bi et al., 2014; Xiao et al., 2014; Jung et al., 2019). The morphology of perovskite films, such as the film thickness and grain boundaries, significantly affects the performance of solar cells. Complex formation between Pb atoms and solvent molecules in the perovskite precursor solution significantly influences the film morphology (Ozaki et al., 2017; Wakamiya et al., 2014; Ozaki et al., 2019). The addition of CH3NH3I dissolved in 2-propanol to 1D crystals displaced the DMF solvent, forming a 3D perovskite structure. The addition of CH3NH3I dissolved in 2-propanol to these 1D crystals suspended in DMF solvent forms a 3D perovskite structure (Wakamiya et al., 2014). The CH3NH3I-PbI2-DMF intermediate formed by CH3NH3I addition was also observed during thermal annealing. DMF coordination with the intermediate is thought to be responsible for (Guo et al., 2016). Additionally, when DMSO was used as the solvent, a PbI2-(DMSO)2 complex was formed, in which DMSO was more strongly coordinated to PbI2 than DMF (Miyamae et al., 1980).
Lead halide perovskite thin films have been investigated extensively for solar cells and various other fields, including optoelectronics. Recently, the efficient luminescence of rare-earth elements using a lead halide perovskite as an optical absorption antenna was reported by doping ytterbium into a 3D CsPbBrxCl3-x perovskite (Kroupa et al., 2018; Erickson et al., 2019). However, the of lead halide perovskites doped with rare-earth elements and their mechanism of formation remains unclear. In this study, precursor single-crystals of a lead halide perovskite doped with rare-earth elements, bis[octakis(dimethyl sulfoxide)ytterbium(III)] pentabromidoplumbate(II) tribromide dimethyl sulfoxide solvate, were successfully prepared, and the structure of the precursor crystal was determined.
2. Structural commentary
The obtained structure exhibits an alternating sequence of PbBr53− and 2[Yb(DMSO)8]3+ units (Figs. 1 and 2). The [Yb(DMSO)8]3+ unit is considered to possess three Br− (Br3, Br4) ions as counter-anions. Interestingly, the PbBr53− unit exhibits a square-pyramidal structure. Lead halide compounds often show lead-centered octahedral structures, and there have been no previous reports of the PbBr53− molecular ion with a square-pyramidal geometry. The free atom Br3 is located on the straight line of the Br2—Pb1 bond, and the Pb1⋯Br3 distance is 6.781 (9) Å (Fig. 1). The free Br3 atom is located at a distance more than twice that of Br2 in the Pb1—Br2 bond [2.814 (4) Å], suggesting that there is no Pb1—Br3 interaction.
The DMSO molecule as co-crystallite is disordered, and the exact configuration was difficult to determine. Thermogravimetric analysis (TG–DTA) of the crystals revealed a weight loss of 3.4% at approximately 410 K, with an endothermic peak, corresponding to a dissociation of 0.5 equivalents of DMSO relative to Yb (theoretical value 3.1 wt%) (Fig. 3). The resembles that of a 1D perovskite with a series of (PbX53−) units (Wang et al., 1995). However, the weak interactions between the Br− ions and DMSO molecules in the gaps between the (PbX53−) units prevents the 1D perovskite from bridging. All halogen ions were lost when YbBr3 was added, and DMSO is coordinated to the YbIII atom instead. Several Br− ions react with PbBr2 to form PbBr53−, and therefore YbBr3 has served as a source of halogen ions in the lead halide perovskite framework.
3. Photophysical analysis
The precursor crystal did not exhibit any luminescence upon irradiation with visible light. In contrast, the dropwise addition of a methanol solution containing caesium chloride to the precursor crystals, followed by annealing at 473 K for 5 min, resulted in the formation of light-yellow microcrystals. The microcrystals exhibited Yb3+-derived near-infrared (NIR) emission at 980 nm upon at 400 nm (Fig. 4). This indicates that the precursor crystals reacted with caesium chloride, and Yb3+-doped 3D lead halide perovskite crystals (CsPbBr3-xClx·Yb3+) (Erickson et al., 2019) were formed. The NIR luminescence of doped Yb3+ was observed, in addition to the visible-light absorption of the lead halide perovskite crystals.
4. Database survey
The Inorganic ) did not include any closely related structures. For [Yb(DMSO)8]3+ units, tetrakis[1,4-bis(phenylsulfinyl)butane]ytterbium(III) triperchlorate (Li et al., 2004) and catena-[octakis(dimethyl sulfoxide)ytterbium heptakis(dimethyl sulfoxide)ytterbium hexakis(μ3-sulfido)dodecakis(μ2-sulfido)hexasulfidohexasilverhexatungsten] (Zhang et al., 2011) are present in the database.
Database (ICSD) (ICSD, 20235. Synthesis and crystallization
PbBr2 and YbBr3·nH2O were dissolved in DMSO (anhydrous, Fujifilm Wako Pure Chemicals) to prepare a 0.5 M solution. The solution was heated to 373 K using a hot plate; acetone was added gradually to obtain colourless needle-like crystals (Fig. 5).
6. Refinement
The crystal data, data collection, and structural . Because the precursor crystals contain numerous heavy atoms, it was difficult to analyze the residual electrons of these atoms; therefore, an empirical absorption correction using spherical harmonics was applied. The residual electron densities Δρmax and Δρmin of 8.97 and −1.78 e Å−3 are located 0.912 and 0.918 Å, respectively, from the Pd atom. H atoms were positioned geometrically (C—H = 0.98 Å) and refined as riding with Uiso(H) = 1.5Ueq(C). Various atoms were refined with fixed occupancies: S5 (0.25) C9 (0.5) H9A (0.5) H9B (0.5) H9C (0.5).
details are summarized in Table 1Supporting information
CCDC reference: 2251523
https://doi.org/10.1107/S2056989023002852/tx2065sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023002852/tx2065Isup2.hkl
Data collection: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2019); cell
CrysAlis PRO 1.171.40.43a (Rigaku OD, 2019); data reduction: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2019); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).[Yb(C2H6OS)8][PbBr5]0.5Br1.5·0.5C2H6OS | Dx = 1.988 Mg m−3 |
Mr = 1260.36 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, P4/ncc | Cell parameters from 8591 reflections |
a = 14.3940 (2) Å | θ = 4.4–74.7° |
c = 40.6538 (8) Å | µ = 16.57 mm−1 |
V = 8422.9 (3) Å3 | T = 93 K |
Z = 8 | Plate, colourless |
F(000) = 4864 | 0.50 × 0.36 × 0.04 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3579 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.108 |
ω scans | θmax = 74.9°, θmin = 2.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −16→17 |
Tmin = 0.195, Tmax = 1.000 | k = −12→17 |
23286 measured reflections | l = −35→50 |
4274 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.080 | H-atom parameters constrained |
wR(F2) = 0.225 | w = 1/[σ2(Fo2) + (0.152P)2 + 25.6573P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
4274 reflections | Δρmax = 8.97 e Å−3 |
203 parameters | Δρmin = −1.78 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pb1 | 0.250000 | 0.250000 | 0.50704 (2) | 0.0340 (3) | |
Yb1 | 0.750000 | 0.250000 | 0.37362 (2) | 0.0190 (3) | |
Br1 | 0.43356 (6) | 0.34068 (6) | 0.49553 (2) | 0.0349 (3) | |
Br3 | 0.250000 | 0.250000 | 0.34023 (5) | 0.0559 (6) | |
Br4 | 0.49813 (6) | 0.50187 (6) | 0.250000 | 0.0608 (7) | |
S4 | 0.54958 (13) | 0.14251 (13) | 0.40874 (5) | 0.0303 (4) | |
S3 | 0.53965 (14) | 0.27929 (16) | 0.33522 (5) | 0.0345 (5) | |
S2 | 0.76666 (17) | 0.46366 (15) | 0.33661 (5) | 0.0377 (5) | |
S1 | 0.64007 (15) | 0.41439 (19) | 0.42370 (6) | 0.0500 (7) | |
O3 | 0.6392 (4) | 0.3125 (4) | 0.33952 (15) | 0.0344 (12) | |
O1 | 0.7248 (4) | 0.3778 (4) | 0.40597 (15) | 0.0356 (12) | |
O4 | 0.6108 (4) | 0.2258 (4) | 0.40211 (14) | 0.0284 (11) | |
O2 | 0.8176 (4) | 0.3738 (4) | 0.34489 (14) | 0.0314 (12) | |
C7 | 0.4353 (5) | 0.1886 (7) | 0.4131 (2) | 0.0363 (18) | |
H7A | 0.435947 | 0.238849 | 0.429408 | 0.055* | |
H7B | 0.393082 | 0.139411 | 0.420479 | 0.055* | |
H7C | 0.414022 | 0.212997 | 0.391917 | 0.055* | |
C4 | 0.7484 (6) | 0.4587 (9) | 0.2931 (3) | 0.048 (3) | |
H4A | 0.807678 | 0.446497 | 0.281992 | 0.071* | |
H4B | 0.723157 | 0.518084 | 0.285400 | 0.071* | |
H4C | 0.704475 | 0.408721 | 0.287950 | 0.071* | |
O5 | 0.750000 | 0.750000 | 0.3018 (5) | 0.100 (9) | |
C8 | 0.5663 (7) | 0.1162 (8) | 0.4512 (3) | 0.050 (2) | |
H8A | 0.628770 | 0.090851 | 0.454460 | 0.075* | |
H8B | 0.520014 | 0.070349 | 0.458222 | 0.075* | |
H8C | 0.559160 | 0.173003 | 0.464263 | 0.075* | |
C5 | 0.4723 (7) | 0.3819 (8) | 0.3353 (3) | 0.052 (3) | |
H5A | 0.476672 | 0.411699 | 0.356951 | 0.078* | |
H5B | 0.407268 | 0.366359 | 0.330720 | 0.078* | |
H5C | 0.495481 | 0.424428 | 0.318416 | 0.078* | |
C6 | 0.5276 (11) | 0.2517 (8) | 0.2925 (3) | 0.060 (3) | |
H6A | 0.532561 | 0.308699 | 0.279429 | 0.090* | |
H6B | 0.466864 | 0.222907 | 0.288694 | 0.090* | |
H6C | 0.576829 | 0.208406 | 0.285983 | 0.090* | |
C3 | 0.8528 (10) | 0.5533 (7) | 0.3366 (3) | 0.065 (4) | |
H3A | 0.888786 | 0.550183 | 0.357047 | 0.097* | |
H3B | 0.822330 | 0.614034 | 0.335028 | 0.097* | |
H3C | 0.894404 | 0.544800 | 0.317779 | 0.097* | |
C1 | 0.6579 (9) | 0.3911 (13) | 0.4651 (3) | 0.080 (5) | |
H1A | 0.659188 | 0.323712 | 0.468536 | 0.119* | |
H1B | 0.607311 | 0.418331 | 0.478018 | 0.119* | |
H1C | 0.717213 | 0.418025 | 0.472066 | 0.119* | |
C2 | 0.6643 (11) | 0.5360 (10) | 0.4257 (4) | 0.095 (6) | |
H2A | 0.731670 | 0.545755 | 0.425340 | 0.143* | |
H2B | 0.638504 | 0.561609 | 0.446075 | 0.143* | |
H2C | 0.636020 | 0.567247 | 0.406771 | 0.143* | |
S5 | 0.7808 (8) | 0.7165 (8) | 0.2655 (2) | 0.0300 (17) | 0.25 |
C9 | 0.684 (2) | 0.686 (2) | 0.2475 (5) | 0.075 (11) | 0.5 |
H9A | 0.697334 | 0.666771 | 0.224902 | 0.113* | 0.5 |
H9B | 0.641419 | 0.739136 | 0.247289 | 0.113* | 0.5 |
H9C | 0.655988 | 0.634559 | 0.259618 | 0.113* | 0.5 |
Br2 | 0.250000 | 0.250000 | 0.57625 (11) | 0.0958 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb1 | 0.0241 (3) | 0.0241 (3) | 0.0539 (5) | 0.000 | 0.000 | 0.000 |
Yb1 | 0.0228 (3) | 0.0217 (3) | 0.0124 (4) | −0.00053 (15) | 0.000 | 0.000 |
Br1 | 0.0260 (4) | 0.0325 (5) | 0.0460 (5) | −0.0026 (3) | −0.0052 (3) | 0.0051 (3) |
Br3 | 0.0723 (10) | 0.0723 (10) | 0.0233 (10) | 0.000 | 0.000 | 0.000 |
Br4 | 0.0775 (10) | 0.0775 (10) | 0.0274 (8) | 0.0460 (12) | 0.0088 (6) | 0.0088 (6) |
S4 | 0.0305 (9) | 0.0285 (8) | 0.0320 (10) | −0.0019 (7) | 0.0069 (7) | 0.0006 (7) |
S3 | 0.0304 (9) | 0.0498 (11) | 0.0235 (9) | −0.0071 (8) | −0.0053 (7) | 0.0102 (9) |
S2 | 0.0557 (12) | 0.0316 (10) | 0.0257 (10) | −0.0024 (8) | −0.0002 (9) | 0.0059 (8) |
S1 | 0.0289 (10) | 0.0675 (15) | 0.0536 (14) | 0.0111 (9) | −0.0110 (9) | −0.0388 (12) |
O3 | 0.027 (3) | 0.043 (3) | 0.033 (3) | −0.001 (2) | −0.006 (2) | 0.010 (2) |
O1 | 0.042 (3) | 0.037 (3) | 0.028 (3) | 0.004 (3) | 0.002 (3) | −0.010 (2) |
O4 | 0.026 (3) | 0.033 (3) | 0.025 (3) | −0.006 (2) | 0.003 (2) | 0.008 (2) |
O2 | 0.037 (3) | 0.031 (3) | 0.026 (3) | −0.001 (2) | −0.001 (2) | 0.010 (2) |
C7 | 0.021 (3) | 0.050 (5) | 0.038 (4) | −0.002 (3) | 0.004 (3) | 0.009 (4) |
C4 | 0.044 (5) | 0.065 (7) | 0.035 (5) | 0.001 (4) | −0.013 (4) | 0.016 (5) |
O5 | 0.137 (14) | 0.137 (14) | 0.026 (9) | 0.000 | 0.000 | 0.000 |
C8 | 0.039 (5) | 0.069 (6) | 0.041 (5) | −0.005 (4) | 0.005 (4) | 0.027 (5) |
C5 | 0.041 (5) | 0.068 (7) | 0.048 (6) | 0.020 (5) | 0.010 (4) | 0.011 (5) |
C6 | 0.088 (9) | 0.063 (7) | 0.030 (5) | −0.009 (5) | −0.015 (6) | −0.008 (4) |
C3 | 0.099 (9) | 0.042 (5) | 0.053 (6) | −0.036 (6) | −0.018 (6) | 0.013 (5) |
C1 | 0.067 (7) | 0.139 (13) | 0.033 (5) | −0.054 (8) | 0.013 (5) | −0.018 (7) |
C2 | 0.088 (10) | 0.074 (9) | 0.124 (13) | 0.039 (8) | −0.033 (9) | −0.066 (9) |
S5 | 0.030 (7) | 0.026 (7) | 0.034 (4) | 0.008 (2) | −0.006 (3) | 0.005 (3) |
C9 | 0.10 (2) | 0.11 (2) | 0.018 (9) | −0.06 (2) | 0.002 (10) | −0.030 (11) |
Br2 | 0.1033 (18) | 0.1033 (18) | 0.081 (3) | 0.000 | 0.000 | 0.000 |
Pb1—Br1 | 2.9839 (9) | C7—H7A | 0.9800 |
Pb1—Br1i | 2.9840 (9) | C7—H7B | 0.9800 |
Pb1—Br1ii | 2.9840 (9) | C7—H7C | 0.9800 |
Pb1—Br1iii | 2.9840 (9) | C4—H4A | 0.9800 |
Pb1—Br2 | 2.814 (4) | C4—H4B | 0.9800 |
Yb1—S3iv | 3.4324 (19) | C4—H4C | 0.9800 |
Yb1—S3 | 3.4325 (19) | O5—S5 | 1.616 (18) |
Yb1—S2iv | 3.432 (2) | C8—H8A | 0.9800 |
Yb1—S2 | 3.432 (2) | C8—H8B | 0.9800 |
Yb1—O3 | 2.297 (5) | C8—H8C | 0.9800 |
Yb1—O3iv | 2.297 (5) | C5—H5A | 0.9800 |
Yb1—O1 | 2.290 (6) | C5—H5B | 0.9800 |
Yb1—O1iv | 2.290 (6) | C5—H5C | 0.9800 |
Yb1—O4 | 2.341 (5) | C6—H6A | 0.9800 |
Yb1—O4iv | 2.341 (5) | C6—H6B | 0.9800 |
Yb1—O2iv | 2.342 (5) | C6—H6C | 0.9800 |
Yb1—O2 | 2.342 (5) | C3—H3A | 0.9800 |
S4—O4 | 1.512 (6) | C3—H3B | 0.9800 |
S4—C7 | 1.783 (8) | C3—H3C | 0.9800 |
S4—C8 | 1.784 (10) | C1—H1A | 0.9800 |
S3—O3 | 1.521 (6) | C1—H1B | 0.9800 |
S3—C5 | 1.767 (10) | C1—H1C | 0.9800 |
S3—C6 | 1.790 (11) | C2—H2A | 0.9800 |
S2—O2 | 1.525 (6) | C2—H2B | 0.9800 |
S2—C4 | 1.792 (11) | C2—H2C | 0.9800 |
S2—C3 | 1.789 (10) | S5—C9 | 1.63 (3) |
S1—O1 | 1.511 (6) | C9—H9A | 0.9800 |
S1—C1 | 1.734 (13) | C9—H9B | 0.9800 |
S1—C2 | 1.786 (15) | C9—H9C | 0.9800 |
Br1—Pb1—Br1iii | 161.96 (5) | O4—S4—C8 | 105.2 (4) |
Br1i—Pb1—Br1ii | 161.96 (5) | C7—S4—C8 | 96.1 (4) |
Br1—Pb1—Br1i | 88.591 (8) | O3—S3—Yb1 | 32.3 (2) |
Br1iii—Pb1—Br1ii | 88.591 (8) | O3—S3—C5 | 104.7 (5) |
Br1—Pb1—Br1ii | 88.591 (8) | O3—S3—C6 | 105.8 (6) |
Br1iii—Pb1—Br1i | 88.591 (8) | C5—S3—Yb1 | 125.8 (4) |
Br2—Pb1—Br1ii | 99.02 (3) | C5—S3—C6 | 97.8 (6) |
Br2—Pb1—Br1 | 99.02 (3) | C6—S3—Yb1 | 120.0 (5) |
Br2—Pb1—Br1iii | 99.02 (3) | O2—S2—Yb1 | 34.6 (2) |
Br2—Pb1—Br1i | 99.02 (3) | O2—S2—C4 | 104.8 (5) |
S3iv—Yb1—S3 | 125.90 (7) | O2—S2—C3 | 106.2 (5) |
S2—Yb1—S3iv | 81.32 (5) | C4—S2—Yb1 | 112.8 (4) |
S2iv—Yb1—S3iv | 75.66 (5) | C3—S2—Yb1 | 134.0 (4) |
S2—Yb1—S3 | 75.66 (5) | C3—S2—C4 | 97.5 (5) |
S2iv—Yb1—S3 | 81.32 (5) | O1—S1—C1 | 106.0 (6) |
S2—Yb1—S2iv | 128.01 (8) | O1—S1—C2 | 101.9 (6) |
O3iv—Yb1—S3 | 112.72 (15) | C1—S1—C2 | 96.7 (8) |
O3—Yb1—S3iv | 112.72 (15) | S3—O3—Yb1 | 126.9 (3) |
O3iv—Yb1—S3iv | 20.75 (15) | S1—O1—Yb1 | 133.0 (4) |
O3—Yb1—S3 | 20.74 (15) | S4—O4—Yb1 | 134.8 (4) |
O3iv—Yb1—S2 | 92.18 (16) | S2—O2—Yb1 | 123.8 (3) |
O3—Yb1—S2 | 55.45 (15) | S4—C7—H7A | 109.5 |
O3iv—Yb1—S2iv | 55.45 (15) | S4—C7—H7B | 109.5 |
O3—Yb1—S2iv | 92.18 (16) | S4—C7—H7C | 109.5 |
O3iv—Yb1—O3 | 105.8 (3) | H7A—C7—H7B | 109.5 |
O3—Yb1—O4iv | 146.6 (2) | H7A—C7—H7C | 109.5 |
O3—Yb1—O4 | 76.3 (2) | H7B—C7—H7C | 109.5 |
O3iv—Yb1—O4iv | 76.3 (2) | S2—C4—H4A | 109.5 |
O3iv—Yb1—O4 | 146.6 (2) | S2—C4—H4B | 109.5 |
O3—Yb1—O2 | 71.92 (18) | S2—C4—H4C | 109.5 |
O3iv—Yb1—O2iv | 71.92 (18) | H4A—C4—H4B | 109.5 |
O3iv—Yb1—O2 | 73.06 (19) | H4A—C4—H4C | 109.5 |
O3—Yb1—O2iv | 73.05 (19) | H4B—C4—H4C | 109.5 |
O1—Yb1—S3iv | 119.98 (17) | S4—C8—H8A | 109.5 |
O1iv—Yb1—S3 | 119.98 (17) | S4—C8—H8B | 109.5 |
O1—Yb1—S3 | 91.31 (17) | S4—C8—H8C | 109.5 |
O1iv—Yb1—S3iv | 91.31 (17) | H8A—C8—H8B | 109.5 |
O1—Yb1—S2iv | 163.81 (17) | H8A—C8—H8C | 109.5 |
O1iv—Yb1—S2iv | 62.82 (16) | H8B—C8—H8C | 109.5 |
O1—Yb1—S2 | 62.82 (16) | S3—C5—H5A | 109.5 |
O1iv—Yb1—S2 | 163.81 (17) | S3—C5—H5B | 109.5 |
O1—Yb1—O3iv | 140.5 (2) | S3—C5—H5C | 109.5 |
O1iv—Yb1—O3iv | 85.5 (2) | H5A—C5—H5B | 109.5 |
O1—Yb1—O3 | 85.5 (2) | H5A—C5—H5C | 109.5 |
O1iv—Yb1—O3 | 140.5 (2) | H5B—C5—H5C | 109.5 |
O1iv—Yb1—O1 | 109.9 (3) | S3—C6—H6A | 109.5 |
O1iv—Yb1—O4 | 74.4 (2) | S3—C6—H6B | 109.5 |
O1iv—Yb1—O4iv | 72.5 (2) | S3—C6—H6C | 109.5 |
O1—Yb1—O4 | 72.5 (2) | H6A—C6—H6B | 109.5 |
O1—Yb1—O4iv | 74.4 (2) | H6A—C6—H6C | 109.5 |
O1iv—Yb1—O2iv | 75.0 (2) | H6B—C6—H6C | 109.5 |
O1iv—Yb1—O2 | 146.2 (2) | S2—C3—H3A | 109.5 |
O1—Yb1—O2 | 75.0 (2) | S2—C3—H3B | 109.5 |
O1—Yb1—O2iv | 146.2 (2) | S2—C3—H3C | 109.5 |
O4iv—Yb1—S3iv | 59.21 (14) | H3A—C3—H3B | 109.5 |
O4iv—Yb1—S3 | 164.14 (15) | H3A—C3—H3C | 109.5 |
O4—Yb1—S3 | 59.21 (14) | H3B—C3—H3C | 109.5 |
O4—Yb1—S3iv | 164.14 (15) | S1—C1—H1A | 109.5 |
O4iv—Yb1—S2 | 91.35 (15) | S1—C1—H1B | 109.5 |
O4iv—Yb1—S2iv | 114.21 (15) | S1—C1—H1C | 109.5 |
O4—Yb1—S2iv | 91.35 (15) | H1A—C1—H1B | 109.5 |
O4—Yb1—S2 | 114.22 (15) | H1A—C1—H1C | 109.5 |
O4iv—Yb1—O4 | 120.7 (3) | H1B—C1—H1C | 109.5 |
O4iv—Yb1—O2iv | 135.7 (2) | S1—C2—H2A | 109.5 |
O4—Yb1—O2 | 135.7 (2) | S1—C2—H2B | 109.5 |
O4iv—Yb1—O2 | 77.2 (2) | S1—C2—H2C | 109.5 |
O4—Yb1—O2iv | 77.2 (2) | H2A—C2—H2B | 109.5 |
O2iv—Yb1—S3iv | 92.66 (14) | H2A—C2—H2C | 109.5 |
O2—Yb1—S3iv | 60.01 (15) | H2B—C2—H2C | 109.5 |
O2—Yb1—S3 | 92.66 (14) | O5—S5—C9 | 104.8 (10) |
O2iv—Yb1—S3 | 60.00 (15) | S5—C9—H9A | 109.5 |
O2—Yb1—S2iv | 119.48 (15) | S5—C9—H9B | 109.5 |
O2iv—Yb1—S2iv | 21.68 (15) | S5—C9—H9C | 109.5 |
O2iv—Yb1—S2 | 119.48 (15) | H9A—C9—H9B | 109.5 |
O2—Yb1—S2 | 21.68 (15) | H9A—C9—H9C | 109.5 |
O2—Yb1—O2iv | 120.2 (3) | H9B—C9—H9C | 109.5 |
O4—S4—C7 | 105.1 (4) | ||
C7—S4—O4—Yb1 | −151.3 (5) | C6—S3—O3—Yb1 | −121.5 (5) |
C4—S2—O2—Yb1 | −108.9 (5) | C3—S2—O2—Yb1 | 148.6 (5) |
C8—S4—O4—Yb1 | 107.9 (5) | C1—S1—O1—Yb1 | 105.7 (6) |
C5—S3—O3—Yb1 | 135.8 (5) | C2—S1—O1—Yb1 | −153.7 (7) |
Symmetry codes: (i) y, −x+1/2, z; (ii) −y+1/2, x, z; (iii) −x+1/2, −y+1/2, z; (iv) −x+3/2, −y+1/2, z. |
Acknowledgements
The authors thank Dr Hiroyasu Sato (Rigaku) for his support with the structure analysis.
Funding information
Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. 18H02069); New Energy and Industrial Technology Development Organization.
References
Bi, C., Shao, Y., Yuan, Y., Xiao, Z., Wang, C., Gao, Y. & Huang, J. (2014). J. Mater. Chem. A, 2, 18508–18514. CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K. & Grätzel, M. (2013). Nature, 499, 316–319. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Erickson, C. S., Crane, M. J., Milstein, T. J. & Gamelin, D. R. (2019). J. Phys. Chem. C, 123, 12474–12484. CrossRef CAS Google Scholar
Fu, Y., Zhu, H., Chen, J., Hautzinger, M. P., Zhu, X.-Y. & Jin, S. (2019). Nat. Rev. Mater. 4, 169–188. CrossRef CAS Google Scholar
Guo, X., McCleese, C., Kolodziej, C., Samia, A. C. S., Zhao, Y. & Burda, C. (2016). Dalton Trans. 45, 3806–3813. CrossRef CAS PubMed Google Scholar
ICSD (2023). Inorganic Database, Web version. FIZ Karlsruhe, Germany. Google Scholar
Jung, M., Ji, S.-G., Kim, G. & Seok, S. I. (2019). Chem. Soc. Rev. 48, 2011–2038. CrossRef CAS PubMed Google Scholar
Kroupa, D. M., Roh, J. Y., Milstein, T. J., Creutz, S. E. & Gamelin, D. R. (2018). ACS Energy Lett. 3, 2390–2395. CrossRef CAS Google Scholar
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. (2012). Science, 338, 643–647. Web of Science CrossRef CAS PubMed Google Scholar
Li, J.-R., Bu, X.-H., Zhang, R.-H., Duan, C.-Y., Wong, K. M.-C. & Yam, V. W.-W. (2004). New J. Chem. 28, 261–265. CrossRef Google Scholar
Miyamae, H., Numahata, Y. & Nagata, M. (1980). Chem. Lett. 9, 663–664. CrossRef Google Scholar
Ozaki, M., Katsuki, Y., Liu, J., Handa, T., Nishikubo, R., Yakumaru, S., Hashikawa, Y., Murata, Y., Saito, T., Shimakawa, Y., Kanemitsu, Y., Saeki, A. & Wakamiya, A. (2017). ACS Omega, 2, 7016–7021. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ozaki, M., Shimazaki, A., Jung, M., Nakaike, Y., Maruyama, N., Yakumaru, S., Rafieh, A. I., Sasamori, T., Tokitoh, N., Ekanayake, P., Murata, Y., Murdey, R. & Wakamiya, A. (2019). Angew. Chem. Int. Ed. 58, 9389–9393. CrossRef CAS Google Scholar
Rigaku OD. (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tenailleau, C., Aharon, S., Cohen, B.-E. & Etgar, L. (2019). Nanoscale Adv. 1, 147–153. CrossRef CAS PubMed Google Scholar
Wakamiya, A., Endo, M., Sasamori, T., Tokitoh, N., Ogomi, Y., Hayase, S. & Murata, Y. (2014). Chem. Lett. 43, 711–713. CrossRef CAS Google Scholar
Wang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297–5302. CSD CrossRef CAS Web of Science Google Scholar
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y. & Huang, J. (2014). Adv. Mater. 26, 6503–6509. CrossRef CAS PubMed Google Scholar
Zhang, J., Meng, S., Song, Y., Yang, J., Wei, H., Huang, W., Cifuentes, M. P., Humphrey, M. G. & Zhang, C. (2011). New J. Chem. 35, 328–338. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.