research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[octa­kis­(di­methyl sulfoxide-κO)­ytterbium(III)] penta­bromido­plumbate(II) tribromide di­methyl sulfoxide monosolvate: a ytterbium-doped lead halide perovskite precursor

crossmark logo

aGraduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan, and bResearch Center for Advanced Science and Technology (RCAST), The University of, Tokyo 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8904, Japan
*Correspondence e-mail: utkino@mail.ecc.u-tokyo.ac.jp

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 15 March 2023; accepted 24 March 2023; online 31 March 2023)

A mixture of PbBr2 and YbBr3·nH2O in a dimethyl sulfoxide (DMSO) solution yielded single crystals of a lead halide perovskite precursor with ytterbium, bis­[octa­kis­(di­methyl sulfoxide)­ytterbium(III)]penta­bromido­plumbate(II) tri­bromide with di­methyl sulfoxide as co-crystallite, [Yb(C2H6OS)8][PbBr5]0.5Br1.5·0.5C2H6OS. The complex ions PbBr53− and Yb(DMSO)83+ are present in the crystal together with three Br ions and DMSO mol­ecules. X-ray crystallography revealed that the Br ions in YbBr3 are replaced by the solvent and bound to a PbII atom or remain free. The presence of PbBr53− units, which are mol­ecular ions with a square-pyramidal structure, is also observed. These single crystals react with a caesium chloride solution, exhibiting near-infrared (NIR) luminescence by visible photoexcitation, suggesting the formation of Yb3+-doped lead halide perovskites (CsPbBr3-xClx·Yb3+).

1. Chemical context

Lead halide perovskite crystals have attracted considerable attention in the fields of solar cells and optoelectronics (Lee et al., 2012[Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. (2012). Science, 338, 643-647.]; Burschka et al., 2013[Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K. & Grätzel, M. (2013). Nature, 499, 316-319.]; Fu et al., 2019[Fu, Y., Zhu, H., Chen, J., Hautzinger, M. P., Zhu, X.-Y. & Jin, S. (2019). Nat. Rev. Mater. 4, 169-188.]). Lead halide perovskite crystals have been investigated extensively owing to their facile solution-phase fabrication, high energy-conversion efficiency, and characteristic photoresponse. Lead halide perovskites can easily be prepared by spin coating microcrystalline thin films in solution.

[Scheme 1]

Highly polar solvents, such as di­methyl­formamide (DMF) and dimethyl sulfoxide (DMSO), are used in fabricating perovskite thin films by solution processing. Typically, these solvents are removed by thermal annealing using a hot plate or air drying after spin coating, and crystal growth proceeds as the solvent becomes supersaturated. The crystal morphology and crystalline phase depend on the annealing temperature and treatment time (Tenailleau et al., 2019[Tenailleau, C., Aharon, S., Cohen, B.-E. & Etgar, L. (2019). Nanoscale Adv. 1, 147-153.]; Bi et al., 2014[Bi, C., Shao, Y., Yuan, Y., Xiao, Z., Wang, C., Gao, Y. & Huang, J. (2014). J. Mater. Chem. A, 2, 18508-18514.]; Xiao et al., 2014[Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y. & Huang, J. (2014). Adv. Mater. 26, 6503-6509.]; Jung et al., 2019[Jung, M., Ji, S.-G., Kim, G. & Seok, S. I. (2019). Chem. Soc. Rev. 48, 2011-2038.]). The morphology of perovskite films, such as the film thickness and grain boundaries, significantly affects the performance of solar cells. Complex formation between Pb atoms and solvent mol­ecules in the perovskite precursor solution significantly influences the film morphology (Ozaki et al., 2017[Ozaki, M., Katsuki, Y., Liu, J., Handa, T., Nishikubo, R., Yakumaru, S., Hashikawa, Y., Murata, Y., Saito, T., Shimakawa, Y., Kanemitsu, Y., Saeki, A. & Wakamiya, A. (2017). ACS Omega, 2, 7016-7021.]; Wakamiya et al., 2014[Wakamiya, A., Endo, M., Sasamori, T., Tokitoh, N., Ogomi, Y., Hayase, S. & Murata, Y. (2014). Chem. Lett. 43, 711-713.]; Ozaki et al., 2019[Ozaki, M., Shimazaki, A., Jung, M., Nakaike, Y., Maruyama, N., Yakumaru, S., Rafieh, A. I., Sasamori, T., Tokitoh, N., Ekanayake, P., Murata, Y., Murdey, R. & Wakamiya, A. (2019). Angew. Chem. Int. Ed. 58, 9389-9393.]). The addition of CH3NH3I dissolved in 2-propanol to 1D crystals displaced the DMF solvent, forming a 3D perovskite structure. The addition of CH3NH3I dissolved in 2-propanol to these 1D crystals suspended in DMF solvent forms a 3D perovskite structure (Wakamiya et al., 2014[Wakamiya, A., Endo, M., Sasamori, T., Tokitoh, N., Ogomi, Y., Hayase, S. & Murata, Y. (2014). Chem. Lett. 43, 711-713.]). The CH3NH3I-PbI2-DMF inter­mediate formed by CH3NH3I addition was also observed during thermal annealing. DMF coordination with the inter­mediate is thought to be responsible for Ostwald ripening (Guo et al., 2016[Guo, X., McCleese, C., Kolodziej, C., Samia, A. C. S., Zhao, Y. & Burda, C. (2016). Dalton Trans. 45, 3806-3813.]). Additionally, when DMSO was used as the solvent, a PbI2-(DMSO)2 complex was formed, in which DMSO was more strongly coordinated to PbI2 than DMF (Miyamae et al., 1980[Miyamae, H., Numahata, Y. & Nagata, M. (1980). Chem. Lett. 9, 663-664.]).

Lead halide perovskite thin films have been investigated extensively for solar cells and various other fields, including optoelectronics. Recently, the efficient luminescence of rare-earth elements using a lead halide perovskite as an optical absorption antenna was reported by doping ytterbium into a 3D CsPbBrxCl3-x perovskite (Kroupa et al., 2018[Kroupa, D. M., Roh, J. Y., Milstein, T. J., Creutz, S. E. & Gamelin, D. R. (2018). ACS Energy Lett. 3, 2390-2395.]; Erickson et al., 2019[Erickson, C. S., Crane, M. J., Milstein, T. J. & Gamelin, D. R. (2019). J. Phys. Chem. C, 123, 12474-12484.]). However, the crystal structure of lead halide perovskites doped with rare-earth elements and their mechanism of formation remains unclear. In this study, precursor single-crystals of a lead halide perovskite doped with rare-earth elements, bis­[octa­kis­(di­methyl sulfoxide)­ytterbium(III)] penta­bromido­plumbate(II) tribromide di­methyl sulfoxide solvate, were successfully prepared, and the structure of the precursor crystal was determined.

2. Structural commentary

The obtained structure exhibits an alternating sequence of PbBr53− and 2[Yb(DMSO)8]3+ units (Figs. 1[link] and 2[link]). The [Yb(DMSO)8]3+ unit is considered to possess three Br (Br3, Br4) ions as counter-anions. Inter­estingly, the PbBr53− unit exhibits a square-pyramidal structure. Lead halide compounds often show lead-centered octa­hedral structures, and there have been no previous reports of the PbBr53− mol­ecular ion with a square-pyramidal geometry. The free atom Br3 is located on the straight line of the Br2—Pb1 bond, and the Pb1⋯Br3 distance is 6.781 (9) Å (Fig. 1[link]). The free Br3 atom is located at a distance more than twice that of Br2 in the Pb1—Br2 bond [2.814 (4) Å], suggesting that there is no Pb1—Br3 inter­action.

[Figure 1]
Figure 1
Arrangement of [Yb(DMSO)8]3+, [PbBr3]2− and free Br anions in the precursor crystal, with displacement ellipsoids at the 50% probability level. The disordered DMSO mol­ecule is omitted for clarity. Symmetry codes: (i) y, [{1\over 2}] − x, z; (ii) [{1\over 2}] − y, x, z; (iii) [{1\over 2}] − x, [{1\over 2}] − y, z; (iv) [{3\over 2}] − x, [{1\over 2}] − y, z.
[Figure 2]
Figure 2
Perspective view of the precursor crystal structure along [100].

The DMSO mol­ecule as co-crystallite is disordered, and the exact configuration was difficult to determine. Thermogravimetric analysis (TG–DTA) of the crystals revealed a weight loss of 3.4% at approximately 410 K, with an endothermic peak, corresponding to a dissociation of 0.5 equivalents of DMSO relative to Yb (theoretical value 3.1 wt%) (Fig. 3[link]). The crystal structure resembles that of a 1D perovskite with a series of (PbX53−) units (Wang et al., 1995[Wang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297-5302.]). However, the weak inter­actions between the Br ions and DMSO mol­ecules in the gaps between the (PbX53−) units prevents the 1D perovskite from bridging. All halogen ions were lost when YbBr3 was added, and DMSO is coordinated to the YbIII atom instead. Several Br ions react with PbBr2 to form PbBr53−, and therefore YbBr3 has served as a source of halogen ions in the lead halide perovskite framework.

[Figure 3]
Figure 3
TG–DTA curves acquired under a nitro­gen atmosphere.

3. Photophysical analysis

The precursor crystal did not exhibit any luminescence upon irradiation with visible light. In contrast, the dropwise addition of a methanol solution containing caesium chloride to the precursor crystals, followed by annealing at 473 K for 5 min, resulted in the formation of light-yellow microcrystals. The microcrystals exhibited Yb3+-derived near-infrared (NIR) emission at 980 nm upon photoexcitation at 400 nm (Fig. 4[link]). This indicates that the precursor crystals reacted with caesium chloride, and Yb3+-doped 3D lead halide perovskite crystals (CsPbBr3-xClx·Yb3+) (Erickson et al., 2019[Erickson, C. S., Crane, M. J., Milstein, T. J. & Gamelin, D. R. (2019). J. Phys. Chem. C, 123, 12474-12484.]) were formed. The NIR luminescence of doped Yb3+ was observed, in addition to the visible-light absorption of the lead halide perovskite crystals.

[Figure 4]
Figure 4
Near-infrared emission from Yb3+ after treatment of the precursor crystals with a CsCl methanol solution.

4. Database survey

The Inorganic Crystal Structure Database (ICSD) (ICSD, 2023[ICSD (2023). Inorganic Crystal Structure Database, Web version. FIZ Karlsruhe, Germany.]) did not include any closely related structures. For [Yb(DMSO)8]3+ units, tetra­kis­[1,4-bis­(phenyl­sulfin­yl)butane]­ytterbium(III) triperchlorate (Li et al., 2004[Li, J.-R., Bu, X.-H., Zhang, R.-H., Duan, C.-Y., Wong, K. M.-C. & Yam, V. W.-W. (2004). New J. Chem. 28, 261-265.]) and catena-[octa­kis­(di­methyl sulfoxide)­ytterbium hepta­kis­(di­methyl sulfoxide)­ytterbium hexa­kis­(μ3-sulfido)­dodeca­kis­(μ2-sulfido)­hexa­sulfido­hexa­silverhexa­tungsten] (Zhang et al., 2011[Zhang, J., Meng, S., Song, Y., Yang, J., Wei, H., Huang, W., Cifuentes, M. P., Humphrey, M. G. & Zhang, C. (2011). New J. Chem. 35, 328-338.]) are present in the database.

5. Synthesis and crystallization

PbBr2 and YbBr3·nH2O were dissolved in DMSO (anhydrous, Fujifilm Wako Pure Chemicals) to prepare a 0.5 M solution. The solution was heated to 373 K using a hot plate; acetone was added gradually to obtain colourless needle-like crystals (Fig. 5[link]).

[Figure 5]
Figure 5
Photographs of crystals in solution and of the single crystal used for the measurement.

6. Refinement

The crystal data, data collection, and structural refinement details are summarized in Table 1[link]. Because the precursor crystals contain numerous heavy atoms, it was difficult to analyze the residual electrons of these atoms; therefore, an empirical absorption correction using spherical harmonics was applied. The residual electron densities Δρmax and Δρmin of 8.97 and −1.78 e Å−3 are located 0.912 and 0.918 Å, respectively, from the Pd atom. H atoms were positioned geom­etrically (C—H = 0.98 Å) and refined as riding with Uiso(H) = 1.5Ueq(C). Various atoms were refined with fixed occupancies: S5 (0.25) C9 (0.5) H9A (0.5) H9B (0.5) H9C (0.5).

Table 1
Experimental details

Crystal data
Chemical formula [Yb(C2H6OS)8][PbBr5]0.5Br1.5·0.5C2H6OS
Mr 1260.36
Crystal system, space group Tetragonal, P4/ncc
Temperature (K) 93
a, c (Å) 14.3940 (2), 40.6538 (8)
V3) 8422.9 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 16.57
Crystal size (mm) 0.50 × 0.36 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD. (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Oxfordshire, England.])
Tmin, Tmax 0.195, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23286, 4274, 3579
Rint 0.108
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.225, 1.08
No. of reflections 4274
No. of parameters 203
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 8.97, −1.78
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD. (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Oxfordshire, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2019); cell refinement: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2019); data reduction: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2019); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Bis[octakis(dimethyl sulfoxide-κO)ytterbium(III)] pentabromidoplumbate(II) tribromide dimethyl sulfoxide monosolvate top
Crystal data top
[Yb(C2H6OS)8][PbBr5]0.5Br1.5·0.5C2H6OSDx = 1.988 Mg m3
Mr = 1260.36Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P4/nccCell parameters from 8591 reflections
a = 14.3940 (2) Åθ = 4.4–74.7°
c = 40.6538 (8) ŵ = 16.57 mm1
V = 8422.9 (3) Å3T = 93 K
Z = 8Plate, colourless
F(000) = 48640.50 × 0.36 × 0.04 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3579 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.108
ω scansθmax = 74.9°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1617
Tmin = 0.195, Tmax = 1.000k = 1217
23286 measured reflectionsl = 3550
4274 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.225 w = 1/[σ2(Fo2) + (0.152P)2 + 25.6573P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4274 reflectionsΔρmax = 8.97 e Å3
203 parametersΔρmin = 1.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.2500000.2500000.50704 (2)0.0340 (3)
Yb10.7500000.2500000.37362 (2)0.0190 (3)
Br10.43356 (6)0.34068 (6)0.49553 (2)0.0349 (3)
Br30.2500000.2500000.34023 (5)0.0559 (6)
Br40.49813 (6)0.50187 (6)0.2500000.0608 (7)
S40.54958 (13)0.14251 (13)0.40874 (5)0.0303 (4)
S30.53965 (14)0.27929 (16)0.33522 (5)0.0345 (5)
S20.76666 (17)0.46366 (15)0.33661 (5)0.0377 (5)
S10.64007 (15)0.41439 (19)0.42370 (6)0.0500 (7)
O30.6392 (4)0.3125 (4)0.33952 (15)0.0344 (12)
O10.7248 (4)0.3778 (4)0.40597 (15)0.0356 (12)
O40.6108 (4)0.2258 (4)0.40211 (14)0.0284 (11)
O20.8176 (4)0.3738 (4)0.34489 (14)0.0314 (12)
C70.4353 (5)0.1886 (7)0.4131 (2)0.0363 (18)
H7A0.4359470.2388490.4294080.055*
H7B0.3930820.1394110.4204790.055*
H7C0.4140220.2129970.3919170.055*
C40.7484 (6)0.4587 (9)0.2931 (3)0.048 (3)
H4A0.8076780.4464970.2819920.071*
H4B0.7231570.5180840.2854000.071*
H4C0.7044750.4087210.2879500.071*
O50.7500000.7500000.3018 (5)0.100 (9)
C80.5663 (7)0.1162 (8)0.4512 (3)0.050 (2)
H8A0.6287700.0908510.4544600.075*
H8B0.5200140.0703490.4582220.075*
H8C0.5591600.1730030.4642630.075*
C50.4723 (7)0.3819 (8)0.3353 (3)0.052 (3)
H5A0.4766720.4116990.3569510.078*
H5B0.4072680.3663590.3307200.078*
H5C0.4954810.4244280.3184160.078*
C60.5276 (11)0.2517 (8)0.2925 (3)0.060 (3)
H6A0.5325610.3086990.2794290.090*
H6B0.4668640.2229070.2886940.090*
H6C0.5768290.2084060.2859830.090*
C30.8528 (10)0.5533 (7)0.3366 (3)0.065 (4)
H3A0.8887860.5501830.3570470.097*
H3B0.8223300.6140340.3350280.097*
H3C0.8944040.5448000.3177790.097*
C10.6579 (9)0.3911 (13)0.4651 (3)0.080 (5)
H1A0.6591880.3237120.4685360.119*
H1B0.6073110.4183310.4780180.119*
H1C0.7172130.4180250.4720660.119*
C20.6643 (11)0.5360 (10)0.4257 (4)0.095 (6)
H2A0.7316700.5457550.4253400.143*
H2B0.6385040.5616090.4460750.143*
H2C0.6360200.5672470.4067710.143*
S50.7808 (8)0.7165 (8)0.2655 (2)0.0300 (17)0.25
C90.684 (2)0.686 (2)0.2475 (5)0.075 (11)0.5
H9A0.6973340.6667710.2249020.113*0.5
H9B0.6414190.7391360.2472890.113*0.5
H9C0.6559880.6345590.2596180.113*0.5
Br20.2500000.2500000.57625 (11)0.0958 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0241 (3)0.0241 (3)0.0539 (5)0.0000.0000.000
Yb10.0228 (3)0.0217 (3)0.0124 (4)0.00053 (15)0.0000.000
Br10.0260 (4)0.0325 (5)0.0460 (5)0.0026 (3)0.0052 (3)0.0051 (3)
Br30.0723 (10)0.0723 (10)0.0233 (10)0.0000.0000.000
Br40.0775 (10)0.0775 (10)0.0274 (8)0.0460 (12)0.0088 (6)0.0088 (6)
S40.0305 (9)0.0285 (8)0.0320 (10)0.0019 (7)0.0069 (7)0.0006 (7)
S30.0304 (9)0.0498 (11)0.0235 (9)0.0071 (8)0.0053 (7)0.0102 (9)
S20.0557 (12)0.0316 (10)0.0257 (10)0.0024 (8)0.0002 (9)0.0059 (8)
S10.0289 (10)0.0675 (15)0.0536 (14)0.0111 (9)0.0110 (9)0.0388 (12)
O30.027 (3)0.043 (3)0.033 (3)0.001 (2)0.006 (2)0.010 (2)
O10.042 (3)0.037 (3)0.028 (3)0.004 (3)0.002 (3)0.010 (2)
O40.026 (3)0.033 (3)0.025 (3)0.006 (2)0.003 (2)0.008 (2)
O20.037 (3)0.031 (3)0.026 (3)0.001 (2)0.001 (2)0.010 (2)
C70.021 (3)0.050 (5)0.038 (4)0.002 (3)0.004 (3)0.009 (4)
C40.044 (5)0.065 (7)0.035 (5)0.001 (4)0.013 (4)0.016 (5)
O50.137 (14)0.137 (14)0.026 (9)0.0000.0000.000
C80.039 (5)0.069 (6)0.041 (5)0.005 (4)0.005 (4)0.027 (5)
C50.041 (5)0.068 (7)0.048 (6)0.020 (5)0.010 (4)0.011 (5)
C60.088 (9)0.063 (7)0.030 (5)0.009 (5)0.015 (6)0.008 (4)
C30.099 (9)0.042 (5)0.053 (6)0.036 (6)0.018 (6)0.013 (5)
C10.067 (7)0.139 (13)0.033 (5)0.054 (8)0.013 (5)0.018 (7)
C20.088 (10)0.074 (9)0.124 (13)0.039 (8)0.033 (9)0.066 (9)
S50.030 (7)0.026 (7)0.034 (4)0.008 (2)0.006 (3)0.005 (3)
C90.10 (2)0.11 (2)0.018 (9)0.06 (2)0.002 (10)0.030 (11)
Br20.1033 (18)0.1033 (18)0.081 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Pb1—Br12.9839 (9)C7—H7A0.9800
Pb1—Br1i2.9840 (9)C7—H7B0.9800
Pb1—Br1ii2.9840 (9)C7—H7C0.9800
Pb1—Br1iii2.9840 (9)C4—H4A0.9800
Pb1—Br22.814 (4)C4—H4B0.9800
Yb1—S3iv3.4324 (19)C4—H4C0.9800
Yb1—S33.4325 (19)O5—S51.616 (18)
Yb1—S2iv3.432 (2)C8—H8A0.9800
Yb1—S23.432 (2)C8—H8B0.9800
Yb1—O32.297 (5)C8—H8C0.9800
Yb1—O3iv2.297 (5)C5—H5A0.9800
Yb1—O12.290 (6)C5—H5B0.9800
Yb1—O1iv2.290 (6)C5—H5C0.9800
Yb1—O42.341 (5)C6—H6A0.9800
Yb1—O4iv2.341 (5)C6—H6B0.9800
Yb1—O2iv2.342 (5)C6—H6C0.9800
Yb1—O22.342 (5)C3—H3A0.9800
S4—O41.512 (6)C3—H3B0.9800
S4—C71.783 (8)C3—H3C0.9800
S4—C81.784 (10)C1—H1A0.9800
S3—O31.521 (6)C1—H1B0.9800
S3—C51.767 (10)C1—H1C0.9800
S3—C61.790 (11)C2—H2A0.9800
S2—O21.525 (6)C2—H2B0.9800
S2—C41.792 (11)C2—H2C0.9800
S2—C31.789 (10)S5—C91.63 (3)
S1—O11.511 (6)C9—H9A0.9800
S1—C11.734 (13)C9—H9B0.9800
S1—C21.786 (15)C9—H9C0.9800
Br1—Pb1—Br1iii161.96 (5)O4—S4—C8105.2 (4)
Br1i—Pb1—Br1ii161.96 (5)C7—S4—C896.1 (4)
Br1—Pb1—Br1i88.591 (8)O3—S3—Yb132.3 (2)
Br1iii—Pb1—Br1ii88.591 (8)O3—S3—C5104.7 (5)
Br1—Pb1—Br1ii88.591 (8)O3—S3—C6105.8 (6)
Br1iii—Pb1—Br1i88.591 (8)C5—S3—Yb1125.8 (4)
Br2—Pb1—Br1ii99.02 (3)C5—S3—C697.8 (6)
Br2—Pb1—Br199.02 (3)C6—S3—Yb1120.0 (5)
Br2—Pb1—Br1iii99.02 (3)O2—S2—Yb134.6 (2)
Br2—Pb1—Br1i99.02 (3)O2—S2—C4104.8 (5)
S3iv—Yb1—S3125.90 (7)O2—S2—C3106.2 (5)
S2—Yb1—S3iv81.32 (5)C4—S2—Yb1112.8 (4)
S2iv—Yb1—S3iv75.66 (5)C3—S2—Yb1134.0 (4)
S2—Yb1—S375.66 (5)C3—S2—C497.5 (5)
S2iv—Yb1—S381.32 (5)O1—S1—C1106.0 (6)
S2—Yb1—S2iv128.01 (8)O1—S1—C2101.9 (6)
O3iv—Yb1—S3112.72 (15)C1—S1—C296.7 (8)
O3—Yb1—S3iv112.72 (15)S3—O3—Yb1126.9 (3)
O3iv—Yb1—S3iv20.75 (15)S1—O1—Yb1133.0 (4)
O3—Yb1—S320.74 (15)S4—O4—Yb1134.8 (4)
O3iv—Yb1—S292.18 (16)S2—O2—Yb1123.8 (3)
O3—Yb1—S255.45 (15)S4—C7—H7A109.5
O3iv—Yb1—S2iv55.45 (15)S4—C7—H7B109.5
O3—Yb1—S2iv92.18 (16)S4—C7—H7C109.5
O3iv—Yb1—O3105.8 (3)H7A—C7—H7B109.5
O3—Yb1—O4iv146.6 (2)H7A—C7—H7C109.5
O3—Yb1—O476.3 (2)H7B—C7—H7C109.5
O3iv—Yb1—O4iv76.3 (2)S2—C4—H4A109.5
O3iv—Yb1—O4146.6 (2)S2—C4—H4B109.5
O3—Yb1—O271.92 (18)S2—C4—H4C109.5
O3iv—Yb1—O2iv71.92 (18)H4A—C4—H4B109.5
O3iv—Yb1—O273.06 (19)H4A—C4—H4C109.5
O3—Yb1—O2iv73.05 (19)H4B—C4—H4C109.5
O1—Yb1—S3iv119.98 (17)S4—C8—H8A109.5
O1iv—Yb1—S3119.98 (17)S4—C8—H8B109.5
O1—Yb1—S391.31 (17)S4—C8—H8C109.5
O1iv—Yb1—S3iv91.31 (17)H8A—C8—H8B109.5
O1—Yb1—S2iv163.81 (17)H8A—C8—H8C109.5
O1iv—Yb1—S2iv62.82 (16)H8B—C8—H8C109.5
O1—Yb1—S262.82 (16)S3—C5—H5A109.5
O1iv—Yb1—S2163.81 (17)S3—C5—H5B109.5
O1—Yb1—O3iv140.5 (2)S3—C5—H5C109.5
O1iv—Yb1—O3iv85.5 (2)H5A—C5—H5B109.5
O1—Yb1—O385.5 (2)H5A—C5—H5C109.5
O1iv—Yb1—O3140.5 (2)H5B—C5—H5C109.5
O1iv—Yb1—O1109.9 (3)S3—C6—H6A109.5
O1iv—Yb1—O474.4 (2)S3—C6—H6B109.5
O1iv—Yb1—O4iv72.5 (2)S3—C6—H6C109.5
O1—Yb1—O472.5 (2)H6A—C6—H6B109.5
O1—Yb1—O4iv74.4 (2)H6A—C6—H6C109.5
O1iv—Yb1—O2iv75.0 (2)H6B—C6—H6C109.5
O1iv—Yb1—O2146.2 (2)S2—C3—H3A109.5
O1—Yb1—O275.0 (2)S2—C3—H3B109.5
O1—Yb1—O2iv146.2 (2)S2—C3—H3C109.5
O4iv—Yb1—S3iv59.21 (14)H3A—C3—H3B109.5
O4iv—Yb1—S3164.14 (15)H3A—C3—H3C109.5
O4—Yb1—S359.21 (14)H3B—C3—H3C109.5
O4—Yb1—S3iv164.14 (15)S1—C1—H1A109.5
O4iv—Yb1—S291.35 (15)S1—C1—H1B109.5
O4iv—Yb1—S2iv114.21 (15)S1—C1—H1C109.5
O4—Yb1—S2iv91.35 (15)H1A—C1—H1B109.5
O4—Yb1—S2114.22 (15)H1A—C1—H1C109.5
O4iv—Yb1—O4120.7 (3)H1B—C1—H1C109.5
O4iv—Yb1—O2iv135.7 (2)S1—C2—H2A109.5
O4—Yb1—O2135.7 (2)S1—C2—H2B109.5
O4iv—Yb1—O277.2 (2)S1—C2—H2C109.5
O4—Yb1—O2iv77.2 (2)H2A—C2—H2B109.5
O2iv—Yb1—S3iv92.66 (14)H2A—C2—H2C109.5
O2—Yb1—S3iv60.01 (15)H2B—C2—H2C109.5
O2—Yb1—S392.66 (14)O5—S5—C9104.8 (10)
O2iv—Yb1—S360.00 (15)S5—C9—H9A109.5
O2—Yb1—S2iv119.48 (15)S5—C9—H9B109.5
O2iv—Yb1—S2iv21.68 (15)S5—C9—H9C109.5
O2iv—Yb1—S2119.48 (15)H9A—C9—H9B109.5
O2—Yb1—S221.68 (15)H9A—C9—H9C109.5
O2—Yb1—O2iv120.2 (3)H9B—C9—H9C109.5
O4—S4—C7105.1 (4)
C7—S4—O4—Yb1151.3 (5)C6—S3—O3—Yb1121.5 (5)
C4—S2—O2—Yb1108.9 (5)C3—S2—O2—Yb1148.6 (5)
C8—S4—O4—Yb1107.9 (5)C1—S1—O1—Yb1105.7 (6)
C5—S3—O3—Yb1135.8 (5)C2—S1—O1—Yb1153.7 (7)
Symmetry codes: (i) y, x+1/2, z; (ii) y+1/2, x, z; (iii) x+1/2, y+1/2, z; (iv) x+3/2, y+1/2, z.
 

Acknowledgements

The authors thank Dr Hiroyasu Sato (Rigaku) for his support with the structure analysis.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. 18H02069); New Energy and Industrial Technology Development Organization.

References

First citationBi, C., Shao, Y., Yuan, Y., Xiao, Z., Wang, C., Gao, Y. & Huang, J. (2014). J. Mater. Chem. A, 2, 18508–18514.  CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBurschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K. & Grätzel, M. (2013). Nature, 499, 316–319.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErickson, C. S., Crane, M. J., Milstein, T. J. & Gamelin, D. R. (2019). J. Phys. Chem. C, 123, 12474–12484.  CrossRef CAS Google Scholar
First citationFu, Y., Zhu, H., Chen, J., Hautzinger, M. P., Zhu, X.-Y. & Jin, S. (2019). Nat. Rev. Mater. 4, 169–188.  CrossRef CAS Google Scholar
First citationGuo, X., McCleese, C., Kolodziej, C., Samia, A. C. S., Zhao, Y. & Burda, C. (2016). Dalton Trans. 45, 3806–3813.  CrossRef CAS PubMed Google Scholar
First citationICSD (2023). Inorganic Crystal Structure Database, Web version. FIZ Karlsruhe, Germany.  Google Scholar
First citationJung, M., Ji, S.-G., Kim, G. & Seok, S. I. (2019). Chem. Soc. Rev. 48, 2011–2038.  CrossRef CAS PubMed Google Scholar
First citationKroupa, D. M., Roh, J. Y., Milstein, T. J., Creutz, S. E. & Gamelin, D. R. (2018). ACS Energy Lett. 3, 2390–2395.  CrossRef CAS Google Scholar
First citationLee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. (2012). Science, 338, 643–647.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, J.-R., Bu, X.-H., Zhang, R.-H., Duan, C.-Y., Wong, K. M.-C. & Yam, V. W.-W. (2004). New J. Chem. 28, 261–265.  CrossRef Google Scholar
First citationMiyamae, H., Numahata, Y. & Nagata, M. (1980). Chem. Lett. 9, 663–664.  CrossRef Google Scholar
First citationOzaki, M., Katsuki, Y., Liu, J., Handa, T., Nishikubo, R., Yakumaru, S., Hashikawa, Y., Murata, Y., Saito, T., Shimakawa, Y., Kanemitsu, Y., Saeki, A. & Wakamiya, A. (2017). ACS Omega, 2, 7016–7021.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOzaki, M., Shimazaki, A., Jung, M., Nakaike, Y., Maruyama, N., Yakumaru, S., Rafieh, A. I., Sasamori, T., Tokitoh, N., Ekanayake, P., Murata, Y., Murdey, R. & Wakamiya, A. (2019). Angew. Chem. Int. Ed. 58, 9389–9393.  CrossRef CAS Google Scholar
First citationRigaku OD. (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTenailleau, C., Aharon, S., Cohen, B.-E. & Etgar, L. (2019). Nanoscale Adv. 1, 147–153.  CrossRef CAS PubMed Google Scholar
First citationWakamiya, A., Endo, M., Sasamori, T., Tokitoh, N., Ogomi, Y., Hayase, S. & Murata, Y. (2014). Chem. Lett. 43, 711–713.  CrossRef CAS Google Scholar
First citationWang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297–5302.  CSD CrossRef CAS Web of Science Google Scholar
First citationXiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y. & Huang, J. (2014). Adv. Mater. 26, 6503–6509.  CrossRef CAS PubMed Google Scholar
First citationZhang, J., Meng, S., Song, Y., Yang, J., Wei, H., Huang, W., Cifuentes, M. P., Humphrey, M. G. & Zhang, C. (2011). New J. Chem. 35, 328–338.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds