research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of four 4-(4-meth­­oxy­phen­yl)piperazin-1-ium salts: tri­fluoro­acetate, 2,3,4,5,6-penta­fluoro­benzoate, 4-iodo­benzoate, and a polymorph with 4-methyl­benzoate

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and bDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: ybb2706@gmail.com, yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 9 March 2023; accepted 14 March 2023; online 23 March 2023)

Syntheses and X-ray crystal structures of four 4-(4-meth­oxy­phen­yl)piperazin-1-ium (MeOPP) salts, with 2,2,2-tri­fluoro­acetate, C11H17N2O+·C2F3O2 (I), 2,3,4,5,6-penta­fluoro­benzoate, C11H17N2O+·C7F5O2·H2O (II), 4-iodo­benzoate C11H17N2O+·C7H4IO2·H2O (III), and 4-methyl­benzoate, C11H17N2O+·C8H7O2·H2O (IV) anions are presented. The salts form directly from equimolar qu­anti­ties of N-(4-meth­oxy­phen­yl)piperazine and the corresponding organic acid in methanol and crystallize from 1:1 methanol/ethyl acetate. Salt I is anhydrous whereas II, III, and IV are all monohydrates. In all cases, the MeOPP cation conformation is determined by the torsion about the N—C bond between the piperazinium and 4-meth­oxy­benzene rings. Crystal packing in each structure is largely dictated by N—H⋯O and (in II, III, and IV) O—H⋯O hydrogen bonds, although each also features weak C—H⋯O-type hydrogen bonds. Salt II also has ππ-stacking inter­actions between cation and anion arene rings, and III exhibits I⋯I close contacts.

1. Chemical context

In recent years, N-(4-meth­oxy­phen­yl)piperazine (MeOPP) has emerged as an addition to the range of designer recreational drugs. As such, considerable effort has been invested in the development of methods for the detection both of MeOPP itself and of its metabolites; N-(4-hy­droxy­phen­yl)piperazine and 4-hy­droxy­aniline (Arbo et al., 2012[Arbo, M. D., Bastos, M. L. & Carmo, H. F. (2012). Drug Alcohol Depend. 122, 174-185.]) in human fluids (Staack & Maurer, 2003[Staack, R. F. & Maurer, H. H. (2003). J. Chromatogr. B, 798, 333-342.]; Staack et al., 2004[Staack, R. F., Theobald, D. S., Paul, D., Springer, D., Kraemer, T. & Maurer, H. H. (2004). Xenobiotica, 34, 179-192.]). MeOPP imparts euphoric stimulant properties, its actions on human physiology being similar to those of amphetamines (Staack & Maurer, 2005[Staack, R. F. & Maurer, H. H. (2005). Curr. Drug Metab. 6, 259-274.]; Wohlfarth et al., 2010[Wohlfarth, A., Weinmann, W. & Dresen, S. (2010). Anal. Bioanal. Chem. 396, 2403-2414.]), but it has a significantly lower potential for abuse (Nagai et al., 2007[Nagai, F., Nonaka, R. & Satoh Hisashi Kamimura, K. (2007). Eur. J. Pharmacol. 559, 132-137.]). However, no therapeutic applications of MeOPP have been reported to date. In view of the reported psychoactive properties of MeOPP, coupled with the broad range of biological activities exhibited by piperazine derivatives in general (Asif, 2015[Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05.]; Brito et al., 2019[Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13-24.]), we recently initiated a programme of study centred on N-(4-meth­oxy­phen­yl)piperazine derivatives. Thus far, we have reported the synthesis and structures of a series of 1-aroyl-4-(4-meth­oxy­phen­yl) piperazines (Kiran Kumar et al., 2019a[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1253-1260.]). We have also reported a series of 4-meth­oxy­phenyl piperazin-1-ium salts formed with simple organic acids (Kiran Kumar et al., 2019b[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019b). Acta Cryst. E75, 1494-1506.]), and also reported crystal structures of the free-base compound N-(4-meth­oxy­phen­yl)piperazine (MeOPP) and three of its salts (Kiran Kumar et al., 2020a[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020a). Acta Cryst. E76, 488-495.]). More recently, we reported the crystal structures of 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-methyl­benzoate monohydrate and bis-[4-(4-meth­oxy­phen­yl)piperazin-1-ium] benzene-1,2-di­carb­oxyl­ate (Shankara Prasad et al., 2022[Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 947-952.]).

[Scheme 1]

In view of the pharmacological importance of piperazines and the use of N-(4-meth­oxy­phen­yl)piperazine in particular, this paper presents the syntheses and crystal structures of N-(4-meth­oxy­phen­yl)piperazin-1-ium tri­fluoro­acetate, C11H17N2O+·C2F3O2 (I), N-(4-meth­oxy­phen­yl)piperazin-1-ium 2,3,4,5,6-penta­fluoro­benzoate monohydrate, C11H17N2O+·C7F5O2·H2O (II), N-(4-meth­oxy­phen­yl)piper­azin-1-ium 4-iodo­benzoate monohydrate, C11H17N2O+·C7H4IO2·H2O (III) and a polymorph of N-(4-meth­oxy­phen­yl)piperazin-1-ium 4-methyl­benzoate monohydrate, C11H17N2O+·C8H7O2·H2O (IV).

2. Structural commentary

Three of the four salts (see Figs. 1[link]–4[link][link][link]) crystallized as monohydrates; only I is anhydrous. Structure III, which is a much higher quality, low-temperature re-investigation of CSD entry KUJPUD [Kiran Kumar et al., 2020b[Kiran Kumar, H., Yathirajan, H. S., Harish Chintal, C., Foro, S. & Glidewell, C. (2020b). CSD Communication (refcode KUJPUD). CCDC, Cambridge, England.]; CSD = Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])] contains three copies of the cation, anion, and water within its asymmetric unit (i.e. Z′ = 3), all others have Z′ = 1. Structure IV is a polymorph of CSD entry XEMCIF (Shankara Prasad et al., 2022[Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 947-952.]). The asymmetric units were chosen so as to make the N—H⋯O hydrogen-bond geometry between the cation and anion as similar as possible, i.e. with the equatorial H atom of the NH2+ group as donor (see section 3: Supra­molecular features). The overall conformations of the cations in IIV are determined, in large part, by the twist of the N2—C5 bonds that connect the 4-meth­oxy­phenyl and piperazinium groups (Figs. 1[link]–4[link][link][link]). These twists, qu­anti­fied for example by the dihedral angle between the mean planes of the benzene ring (C5–C10) and the four carbon atoms (C1–C4) of the piperazinium rings, are 40.63 (5)° (I), 36.05 (4)° (II), 25.28 (13), 26.59 (12), and 24.82 (11)° (for IIIa,b,c, respectively), and 7.57 (8)° (IV), showing moderate variability across the four structures (Fig. 5[link]). The geometry of the N2 atoms in each cation is non-planar; the sums of bond angles about N2 ranging from 337.46 (16)° in I to 342.4 (3)° for N2C in IIIc. In each structure, the 4-meth­oxy groups are close to coplanar with their attached benzene rings, the largest deviation out of plane being only 0.188 (4) Å for C11C in IIIc, which corresponds to a C9C—C8C—O1C—C11C torsion angle of 172.3 (2)°.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of I. The dashed line denotes an N—H⋯O hydrogen bond. Hydrogen atoms are drawn as arbitrary circles.
[Figure 2]
Figure 2
An ellipsoid plot (50% probability) of II. The solid dashed line denotes an N—H⋯O hydrogen bond, while the open dashed line shows an O—H⋯O hydrogen bond. Hydrogen atoms are drawn as arbitrary circles.
[Figure 3]
Figure 3
An ellipsoid plot (50% probability) of III. The solid dashed lines denote N—H⋯O hydrogen bonds, while the open dashed lines represent O—H⋯O hydrogen bonds. Hydrogen atoms are drawn as arbitrary circles.
[Figure 4]
Figure 4
An ellipsoid plot (50% probability) of IV. The solid dashed line denotes an N—H⋯O hydrogen bond, while the open dashed line shows an O—H⋯O hydrogen bond. Hydrogen atoms are drawn as arbitrary circles.
[Figure 5]
Figure 5
An overlay of six 4-MeOPP cations (least-squares fit of piperazinium ring atoms), showing the variability of MeOPP conformation across structures IIV.

The conformation of the tri­fluoro­acetate anion in I, is largely unremarkable, having a dihedral angle between the plane of the carboxyl­ate group and the plane formed by atoms C12, C13, and F3 of 89.29 (12)°. In the substituted benzoate anions of II, III, and IV, the dihedral angles between the carboxyl­ate groups and the benzene rings are 43.28 (5)° (II), 3.8 (2)°, 7.46 (19)°, and 23.6 (2)° (IIIa,b,c, respectively) and 8.60 (11)° (IV).

3. Supra­molecular features

Strong hydrogen bonds are the dominant inter­molecular inter­actions in each of the four salts. All other hydrogen-bond-type inter­actions are weak. Salt II has weak ππ inter­actions and III has I⋯I contacts, as described below.

The hydrogen bonding in I is the simplest of the four salts. There are only two N—H⋯O hydrogen bonds, the shortest being N1—H1NA⋯O2, at dD⋯A = 2.7084 (13) Å. In addition, N1—H1NB⋯O3i (symmetry code as per Table 1[link]) at dD⋯A = 2.8329 (14) Å, connects cations and anions into chains that extend parallel to its crystallographic b axis, with inversion-related chains running anti-parallel (Fig. 6[link]). Other than a few C—H⋯O and C—H⋯F close contacts (also listed in Table 1[link]), there are no other significant inter-species inter­actions.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.937 (16) 1.777 (16) 2.7084 (13) 172.1 (15)
N1—H1B⋯O3i 0.901 (16) 1.982 (16) 2.8329 (14) 156.7 (13)
C3—H3B⋯O1ii 0.99 2.55 3.2230 (14) 125
C4—H4B⋯F1iii 0.99 2.62 3.3162 (14) 127
C4—H4B⋯O2iv 0.99 2.51 3.1709 (14) 124
C11—H11A⋯F3v 0.98 2.59 3.2796 (15) 128
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y, -z+1]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 6]
Figure 6
A partial packing plot of I showing hydrogen-bonded chains (solid dashed lines) parallel to the b-axis. Hydrogen atoms not involved in hydrogen bonds are omitted.

In II, the chosen asymmetric unit includes N1—H1NA⋯O2 as the shortest hydrogen bond, at 2.7464 (12) Å. The cation also hydrogen bonds to an inversion-related anion via N1—H1NB⋯O3i (symmetry operator as per Table 2[link]), dD⋯A = 2.7692 (12) Å. The water mol­ecule acts as donor in two strong O1W—H1W1⋯O3 (same asymmetric unit) and O1W—H2W1⋯O2ii (21 screw-related, as per Table 2[link]) hydrogen bonds, and as acceptor in two weak C—H⋯Owater inter­actions, as listed in Table 2[link]. There are a few much weaker C—H⋯F close contacts (Table 2[link]). The hydrogen bonding in II is augmented by ππ stacking of the cation benzene ring with 21 screw (−x + 1, y − [{1\over 2}], −z + [{1\over 2}]) and inversion-related (1 − x, 1 − y, 1 − z) anion penta­fluoro­benzene rings. However, the fluorinated rings are 6.03 (3)° out of co-planarity with the MeOPP arene ring and the stacking is offset, leading to centroid–centroid distances of 3.567 (2) Å. The net result is a complicated double-layered structure that extends parallel to the bc plane, a slice through which is shown in Fig. 7[link].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.912 (16) 1.886 (16) 2.7464 (12) 156.5 (14)
N1—H1B⋯O3i 0.882 (15) 1.909 (15) 2.7692 (12) 164.9 (13)
C1—H1C⋯F5ii 0.99 2.62 3.2261 (12) 119
C3—H3B⋯O1Wiii 0.99 2.65 3.5235 (14) 148
C4—H4A⋯O2iv 0.99 2.57 3.4812 (13) 153
C10—H10⋯O1Wiii 0.95 2.41 3.3581 (14) 177
C11—H11A⋯F3v 0.98 2.55 3.3961 (15) 144
C11—H11B⋯F2vi 0.98 2.51 3.2436 (15) 131
O1W—H1W⋯O3 0.854 (19) 1.978 (19) 2.8222 (12) 170.0 (17)
O1W—H2W⋯O2ii 0.899 (18) 1.936 (19) 2.8319 (12) 173.7 (16)
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, y-1, z]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 7]
Figure 7
A partial packing plot of II viewed down the b-axis showing a slice through the N—H⋯O (solid dashed lines) and O—H⋯O (open dashed lines) hydrogen-bonded double layers. Thin dashed lines indicate ππ stacking of cation and anion arene rings. Hydrogen atoms not participating in hydrogen bonds are omitted.

The asymmetric unit of III contains three crystallographically inequivalent groups of cation, anion, and water mol­ecules (Fig. 3[link]). Within each group, the species are hydrogen bonded in a similar pattern to the asymmetric unit of II, and the cation–anion pairs are linked by the water mol­ecules. The asymmetric units are linked by O—H⋯Owater hydrogen bonds to glide-related (x, [{1\over 2}] − y, [{1\over 2}] + z and x, −[{1\over 2}] − y, [{1\over 2}] + z) equivalents parallel to c (Figs. 3[link] and 8[link]). These connections lead to double layers parallel to the ac plane. Details of the hydrogen-bonding inter­actions are given in Table 3[link]. The double-layers are themselves connected by I⋯I close contacts to an inversion-related asymmetric unit [dI⋯I = 3.8586 (4) Å for I1B⋯I1Binv and 4.0444 (4) Å for I1A⋯I1Cinv and I1C⋯I1Ainv (inv = −x, −y, 1 − z)], also depicted in Fig. 8[link].

Table 3
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3Ci 0.77 (2) 1.93 (2) 2.696 (3) 173 (3)
O1W—H2W1⋯O2A 0.77 (2) 1.96 (2) 2.700 (3) 162 (3)
O2W—H1W2⋯O3A 0.77 (1) 1.86 (2) 2.626 (2) 170 (3)
O2W—H2W2⋯O2B 0.77 (2) 1.97 (2) 2.733 (3) 168 (3)
O3W—H1W3⋯O3B 0.77 (2) 1.87 (2) 2.636 (2) 172 (3)
O3W—H2W3⋯O2C 0.78 (1) 1.94 (2) 2.706 (3) 172 (3)
N1A—H1AB⋯O3Wii 0.94 (3) 1.82 (3) 2.754 (3) 172 (3)
N1A—H1AA⋯O2A 0.90 (3) 1.89 (3) 2.776 (3) 168 (3)
C1A—H1AC⋯O2W 0.99 2.57 3.362 (3) 136
C2A—H2AB⋯O3Bii 0.99 2.51 3.498 (3) 175
C4A—H4AA⋯O2Ciii 0.99 2.47 3.441 (3) 166
C7A—H7A⋯I1Biii 0.95 3.32 4.212 (2) 156
C11A—H11A⋯O1Biv 0.98 2.51 3.225 (4) 130
N1B—H1BA⋯O2B 0.91 (3) 1.87 (3) 2.780 (3) 174 (3)
N1B—H1BB⋯O2Wii 0.92 (3) 1.85 (3) 2.768 (3) 176 (2)
C1B—H1BC⋯O3W 0.99 2.44 3.229 (3) 136
C2B—H2BB⋯O3Aii 0.99 2.63 3.619 (3) 174
C4B—H4BA⋯O2Biii 0.99 2.51 3.491 (3) 170
C4B—H4BB⋯O2W 0.99 2.52 3.260 (3) 131
C9B—H9B⋯I1Bii 0.95 3.25 4.020 (3) 139
N1C—H1CA⋯O2C 0.96 (3) 1.78 (3) 2.732 (3) 172 (3)
N1C—H1CA⋯O3C 0.96 (3) 2.64 (3) 3.297 (3) 126 (2)
N1C—H1CB⋯O1Wii 0.83 (3) 1.96 (3) 2.781 (3) 172 (3)
C1C—H1CC⋯O1Wv 0.99 2.39 3.299 (3) 152
C4C—H4CA⋯O2Aiii 0.99 2.45 3.438 (3) 174
C9C—H9C⋯I1Aii 0.95 3.29 4.013 (3) 135
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [-x+2, -y+1, -z+1]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 8]
Figure 8
A partial packing plot of III viewed approximately down the b-axis showing a slice through the N—H⋯O (solid dashed lines) and O—H⋯O (open dashed lines) hydrogen-bonded double layers, which stack along the b-axis direction via I⋯I close contacts (dotted lines). Hydrogen atoms not involved in hydrogen bonds are omitted.

In the structure of IV, a strong N1—H1NA⋯O2 [dD⋯A = 2.7391 (15) Å] hydrogen bond links the cation and anion. In combination with hydrogen bonds N1—H1NB⋯O1Wi, O1W—H1W⋯O3, and O1W—H2W⋯O2iv (symmetry codes as per Table 4[link]) involving water mol­ecules, bi-layered tapes in the ac plane extend along the a-axis direction (Fig. 9[link]). There are no other noteworthy inter­actions other than a few C—H⋯O contacts, which are also listed in Table 4[link].

Table 4
Hydrogen-bond geometry (Å, °) for IV[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 1.028 (17) 1.714 (17) 2.7391 (15) 174.1 (15)
N1—H1B⋯O1Wi 0.939 (16) 1.873 (17) 2.7977 (16) 167.8 (14)
C1—H1C⋯O1W 0.99 2.46 3.2617 (17) 138
C2—H2B⋯O3i 0.99 2.52 3.5088 (17) 174
C4—H4A⋯O2ii 0.99 2.55 3.5294 (17) 169
C4—H4B⋯O1Wiii 0.99 2.54 3.3184 (17) 135
O1W—H1W⋯O3 0.97 (2) 1.67 (2) 2.6418 (14) 176.5 (18)
O1W—H2W⋯O2iv 0.94 (2) 1.83 (2) 2.7626 (15) 170.5 (17)
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [x-1, y, z]; (iv) x+1, y, z.
[Figure 9]
Figure 9
A packing plot of IV viewed down the b-axis, showing N—H⋯O (solid dashes) and O—H⋯O (open dashes) hydrogen bonds, which form bi-layered tapes in the ac plane that extend parallel to a. Hydrogen atoms not involved in hydrogen bonds are omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD, v5.43 plus updates to November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a search fragment consisting of 1-phenyl­piperazine (without substituents) gave 1871 hits. With `any non-H atom' substituted at the 4-position of the benzene ring, but all other carbons bearing hydrogen, a search found 225 matches, 46 of which had the R2H2+ piperazinium cation. This search fragment, but with a meth­oxy group added at the 4-position of the benzene ring, returned 20 structures. The parent mol­ecule, 4-MeOPP, is present as CSD entry IHILOD (Kiran Kumar et al., 2020a[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020a). Acta Cryst. E76, 488-495.]). CSD code EGUROO (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.]) is the chloride salt of the 4-MeOPP cation and OMUXIG (Gharbi et al., 2021[Gharbi, C., Fujita, W., Lefebvre, F., Kaminsky, W., Jelsch, C., Ben Nasr, C. & Khedhiri, L. (2021). J. Mol. Struct. 1230, 12929.]) is a 4-MeOPP salt with Co(NCS)42– as its anion. The rest are all salts with a variety of organic anions: FOVPEO, FOVPOY, FOVPUE, FOVQAL, FOVQEP, FOVQIT, FOVQOZ, FOVQUF, FOVRAM, FOVREQ, FOVRIU, and FOVROA having been published by Kiran Kumar et al. (2019a[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1253-1260.]). Structures IHILUJ, IHIMAQ, & IHIMEU (along with IHILOD) were also published by Kiran Kumar et al. (2020a[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020a). Acta Cryst. E76, 488-495.]), and XEMCIF and XEMCOL by Shankara Prasad et al. (2022[Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 947-952.]). Entry KUJPUD, present as a CSD Communication (Kiran Kumar et al., 2020b[Kiran Kumar, H., Yathirajan, H. S., Harish Chintal, C., Foro, S. & Glidewell, C. (2020b). CSD Communication (refcode KUJPUD). CCDC, Cambridge, England.]), is a poor-quality room-temperature structure of the 4-iodo­benzoate, III. Similar related structures include the 1-aroyl-4-(4-meth­oxy­phen­yl) piperazines VONFOW, VONGAJ, VONGEN, VONGIR, VONGOX, & VONGUD (Kiran Kumar et al., 2019b[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019b). Acta Cryst. E75, 1494-1506.]).

5. Synthesis and crystallization

All reagents were obtained commercially and were used as received. For the synthesis of the salts, equimolar qu­anti­ties (0.52 mmol of each component) of N-(4-meth­oxy­phen­yl)piperazine (100 mg) (from Sigma-Aldrich) and either tri­fluoro­acetic acid (60 mg, I), penta­fluoro­benzoic acid (110 mg, II), 4-iodo­benzoic acid (129 mg, III), or 4-methyl­benzoic acid (71 mg, IV) were separately dissolved in methanol (10 ml). The two solutions were mixed and stirred briefly at 333 K and then set aside to crystallize, giving the solid products I to IV after a few days. The products were collected by filtration and then dried in air (I: yield 80%, m.p. 390–392 K; II: yield 75%, m.p. 375–377 K; III: yield 85%, m.p. 426–428 K; IV: yield 70%, m.p. 406–408 K). Crystals of compounds I to IV suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in methanol:ethyl acetate (initial composition 1:1, v/v).

6. Refinement

Crystal data, data collection, and refinement statistics are given in Table 5[link]. All hydrogen atoms were located in difference-Fourier maps. Those bound to nitro­gen or oxygen were refined freely, while carbon-bound hydrogens were included in the refinement using riding models with constrained distances set to 0.95 Å (Csp2H), 0.99 Å (R2CH2), and 0.98 Å (RCH3) using Uiso(H) values constrained to 1.2Ueq or 1.5Ueq (methyl only) of the attached carbon atom.

Table 5
Experimental details

  I II III IV
Crystal data
Chemical formula C11H17N2O+·C2F3O2 C11H17N2O+·C7F5O2·H2O C11H17N2O+·C7H4IO2·H2O C11H17N2O+·C8H7O2·H2O
Mr 306.28 422.35 458.28 346.42
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/c Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 90 90 90 90
a, b, c (Å) 16.2967 (9), 6.0887 (2), 28.4139 (15) 16.9733 (7), 8.3512 (4), 13.2980 (4) 20.4117 (18), 7.4255 (6), 36.796 (3) 6.1481 (13), 7.3467 (12), 19.980 (4)
α, β, γ (°) 90, 90, 90 90, 101.494 (1), 90 90, 92.970 (3), 90 80.190 (6), 86.089 (5), 82.843 (6)
V3) 2819.4 (2) 1847.16 (13) 5569.6 (8) 881.3 (3)
Z 8 4 12 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.13 0.14 1.75 0.09
Crystal size (mm) 0.24 × 0.18 × 0.11 0.30 × 0.29 × 0.14 0.30 × 0.13 × 0.03 0.29 × 0.21 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture dual source Bruker D8 Venture dual source Bruker D8 Venture dual source Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.847, 0.958 0.919, 0.971 0.726, 0.862 0.877, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 26032, 3243, 2802 30724, 4238, 3793 72181, 12876, 10003 23917, 4059, 3137
Rint 0.038 0.031 0.056 0.041
(sin θ/λ)max−1) 0.651 0.650 0.653 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.05 0.031, 0.083, 1.03 0.033, 0.069, 1.03 0.038, 0.080, 1.07
No. of reflections 3243 4238 12876 4059
No. of parameters 200 280 729 245
No. of restraints 0 0 12 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.22 0.34, −0.19 0.84, −0.81 0.19, −0.18
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).

4-(4-Methoxyphenyl)piperazin-1-ium 2,2,2-trifluoroacetate (I) top
Crystal data top
C11H17N2O+·C2F3O2Dx = 1.443 Mg m3
Mr = 306.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9961 reflections
a = 16.2967 (9) Åθ = 2.5–27.5°
b = 6.0887 (2) ŵ = 0.13 mm1
c = 28.4139 (15) ÅT = 90 K
V = 2819.4 (2) Å3Solvent-rounded block, colourless
Z = 80.24 × 0.18 × 0.11 mm
F(000) = 1280
Data collection top
Bruker D8 Venture dual source
diffractometer
3243 independent reflections
Radiation source: microsource2802 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.038
φ and ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2021
Tmin = 0.847, Tmax = 0.958k = 77
26032 measured reflectionsl = 3637
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.3982P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3243 reflectionsΔρmax = 0.39 e Å3
200 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (7)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64348 (5)0.88138 (14)0.84741 (3)0.01761 (19)
N10.57880 (6)0.57351 (17)0.56220 (3)0.0147 (2)
H1A0.5746 (10)0.487 (3)0.5350 (6)0.029 (4)*
H1B0.5680 (9)0.713 (3)0.5535 (5)0.023 (4)*
N20.61770 (6)0.60018 (16)0.66037 (3)0.0155 (2)
C10.66484 (7)0.5639 (2)0.57944 (4)0.0179 (2)
H1C0.7020910.6267140.5554360.022*
H1D0.6808350.4089850.5847470.022*
C20.67297 (7)0.6921 (2)0.62512 (4)0.0172 (2)
H2A0.7302610.6842430.6365750.021*
H2B0.6591900.8483500.6195800.021*
C30.53255 (7)0.6192 (2)0.64390 (4)0.0179 (2)
H3A0.5190510.7759470.6387510.022*
H3B0.4949670.5612120.6682810.022*
C40.52025 (7)0.4935 (2)0.59861 (4)0.0181 (2)
H4A0.5292550.3348800.6042560.022*
H4B0.4632420.5135950.5873690.022*
C50.62749 (7)0.68174 (19)0.70730 (4)0.0155 (2)
C60.67365 (7)0.8657 (2)0.71851 (4)0.0186 (3)
H60.7007150.9440710.6941260.022*
C70.68114 (7)0.9382 (2)0.76507 (4)0.0186 (2)
H70.7135641.0635140.7721710.022*
C80.64107 (7)0.82630 (19)0.80068 (4)0.0154 (2)
C90.59454 (7)0.6405 (2)0.78982 (4)0.0176 (2)
H90.5670390.5631750.8142010.021*
C100.58821 (7)0.5683 (2)0.74383 (4)0.0182 (2)
H100.5569490.4406040.7369300.022*
C110.68848 (8)1.0742 (2)0.85963 (4)0.0216 (3)
H11A0.6835181.1008950.8935190.032*
H11B0.6664231.2001900.8423010.032*
H11C0.7464041.0537950.8514550.032*
F10.62003 (5)0.25022 (11)0.46795 (3)0.02609 (19)
F20.60056 (6)0.00973 (14)0.41859 (3)0.0388 (2)
F30.71197 (5)0.00256 (16)0.45876 (4)0.0485 (3)
O20.57475 (6)0.29613 (14)0.48772 (3)0.0226 (2)
O30.59231 (7)0.02571 (15)0.54005 (3)0.0290 (2)
C120.59453 (7)0.10857 (19)0.50037 (4)0.0151 (2)
C130.63112 (8)0.0358 (2)0.46090 (4)0.0198 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (4)0.0216 (4)0.0124 (4)0.0011 (3)0.0001 (3)0.0024 (3)
N10.0180 (5)0.0138 (5)0.0124 (4)0.0007 (4)0.0012 (4)0.0000 (4)
N20.0148 (5)0.0202 (5)0.0114 (4)0.0027 (4)0.0008 (3)0.0002 (4)
C10.0156 (5)0.0232 (6)0.0150 (5)0.0022 (5)0.0001 (4)0.0000 (4)
C20.0146 (5)0.0231 (6)0.0138 (5)0.0026 (4)0.0002 (4)0.0011 (4)
C30.0145 (5)0.0252 (6)0.0141 (5)0.0023 (4)0.0008 (4)0.0013 (4)
C40.0178 (5)0.0228 (6)0.0137 (5)0.0044 (5)0.0009 (4)0.0002 (4)
C50.0151 (5)0.0184 (5)0.0128 (5)0.0001 (4)0.0015 (4)0.0003 (4)
C60.0195 (6)0.0218 (6)0.0147 (5)0.0048 (5)0.0004 (4)0.0024 (4)
C70.0199 (6)0.0188 (6)0.0169 (5)0.0050 (5)0.0019 (4)0.0008 (4)
C80.0145 (5)0.0186 (6)0.0130 (5)0.0028 (4)0.0016 (4)0.0009 (4)
C90.0169 (5)0.0209 (6)0.0150 (5)0.0020 (5)0.0007 (4)0.0027 (4)
C100.0191 (6)0.0185 (6)0.0170 (5)0.0044 (5)0.0012 (4)0.0002 (4)
C110.0234 (6)0.0235 (6)0.0181 (5)0.0025 (5)0.0022 (5)0.0047 (5)
F10.0437 (5)0.0128 (4)0.0218 (4)0.0006 (3)0.0057 (3)0.0020 (3)
F20.0776 (7)0.0254 (4)0.0134 (4)0.0096 (4)0.0024 (4)0.0011 (3)
F30.0268 (5)0.0461 (6)0.0725 (7)0.0087 (4)0.0245 (4)0.0251 (5)
O20.0341 (5)0.0161 (4)0.0174 (4)0.0053 (4)0.0032 (4)0.0013 (3)
O30.0552 (7)0.0175 (4)0.0144 (4)0.0027 (4)0.0036 (4)0.0009 (3)
C120.0155 (5)0.0144 (5)0.0154 (5)0.0020 (4)0.0001 (4)0.0018 (4)
C130.0247 (6)0.0155 (6)0.0192 (6)0.0020 (5)0.0054 (5)0.0002 (4)
Geometric parameters (Å, º) top
O1—C81.3701 (13)C5—C61.3862 (16)
O1—C111.4269 (15)C5—C101.4015 (16)
N1—C11.4864 (15)C6—C71.3998 (16)
N1—C41.4893 (14)C6—H60.9500
N1—H1A0.937 (16)C7—C81.3835 (16)
N1—H1B0.901 (16)C7—H70.9500
N2—C51.4318 (14)C8—C91.3964 (17)
N2—C21.4587 (14)C9—C101.3824 (16)
N2—C31.4692 (14)C9—H90.9500
C1—C21.5205 (16)C10—H100.9500
C1—H1C0.9900C11—H11A0.9800
C1—H1D0.9900C11—H11B0.9800
C2—H2A0.9900C11—H11C0.9800
C2—H2B0.9900F1—C131.3333 (14)
C3—C41.5106 (15)F2—C131.3306 (14)
C3—H3A0.9900F3—C131.3343 (15)
C3—H3B0.9900O2—C121.2399 (14)
C4—H4A0.9900O3—C121.2356 (14)
C4—H4B0.9900C12—C131.5445 (16)
C8—O1—C11116.87 (9)C6—C5—C10118.42 (10)
C1—N1—C4111.25 (9)C6—C5—N2123.69 (10)
C1—N1—H1A108.6 (10)C10—C5—N2117.9 (1)
C4—N1—H1A110 (1)C5—C6—C7121.28 (11)
C1—N1—H1B108.1 (9)C5—C6—H6119.4
C4—N1—H1B111.9 (9)C7—C6—H6119.4
H1A—N1—H1B106.9 (13)C8—C7—C6119.65 (11)
C5—N2—C2115.95 (9)C8—C7—H7120.2
C5—N2—C3112.00 (9)C6—C7—H7120.2
C2—N2—C3109.51 (9)O1—C8—C7125.08 (11)
N1—C1—C2110.07 (9)O1—C8—C9115.34 (10)
N1—C1—H1C109.6C7—C8—C9119.57 (10)
C2—C1—H1C109.6C10—C9—C8120.46 (11)
N1—C1—H1D109.6C10—C9—H9119.8
C2—C1—H1D109.6C8—C9—H9119.8
H1C—C1—H1D108.2C9—C10—C5120.61 (11)
N2—C2—C1109.59 (9)C9—C10—H10119.7
N2—C2—H2A109.8C5—C10—H10119.7
C1—C2—H2A109.8O1—C11—H11A109.5
N2—C2—H2B109.8O1—C11—H11B109.5
C1—C2—H2B109.8H11A—C11—H11B109.5
H2A—C2—H2B108.2O1—C11—H11C109.5
N2—C3—C4110.90 (9)H11A—C11—H11C109.5
N2—C3—H3A109.5H11B—C11—H11C109.5
C4—C3—H3A109.5O3—C12—O2129.27 (11)
N2—C3—H3B109.5O3—C12—C13116.19 (10)
C4—C3—H3B109.5O2—C12—C13114.45 (10)
H3A—C3—H3B108.0F2—C13—F1106.79 (10)
N1—C4—C3109.93 (9)F2—C13—F3107.26 (11)
N1—C4—H4A109.7F1—C13—F3106.81 (11)
C3—C4—H4A109.7F2—C13—C12113.14 (10)
N1—C4—H4B109.7F1—C13—C12113.32 (9)
C3—C4—H4B109.7F3—C13—C12109.16 (10)
H4A—C4—H4B108.2
C4—N1—C1—C255.67 (12)C11—O1—C8—C72.48 (16)
C5—N2—C2—C1170.74 (9)C11—O1—C8—C9178.21 (10)
C3—N2—C2—C161.35 (12)C6—C7—C8—O1179.82 (11)
N1—C1—C2—N258.98 (12)C6—C7—C8—C90.89 (18)
C5—N2—C3—C4168.97 (9)O1—C8—C9—C10179.47 (10)
C2—N2—C3—C460.94 (12)C7—C8—C9—C100.12 (18)
C1—N1—C4—C354.44 (12)C8—C9—C10—C50.80 (18)
N2—C3—C4—N156.90 (12)C6—C5—C10—C90.91 (18)
C2—N2—C5—C612.65 (16)N2—C5—C10—C9179.22 (11)
C3—N2—C5—C6114.02 (12)O3—C12—C13—F2151.49 (11)
C2—N2—C5—C10167.21 (10)O2—C12—C13—F231.49 (15)
C3—N2—C5—C1066.12 (13)O3—C12—C13—F129.73 (16)
C10—C5—C6—C70.13 (18)O2—C12—C13—F1153.24 (11)
N2—C5—C6—C7179.99 (11)O3—C12—C13—F389.16 (13)
C5—C6—C7—C80.78 (18)O2—C12—C13—F387.86 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.937 (16)1.777 (16)2.7084 (13)172.1 (15)
N1—H1B···O3i0.901 (16)1.982 (16)2.8329 (14)156.7 (13)
C3—H3B···O1ii0.992.553.2230 (14)125
C4—H4B···F1iii0.992.623.3162 (14)127
C4—H4B···O2iv0.992.513.1709 (14)124
C11—H11A···F3v0.982.593.2796 (15)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x+3/2, y+1, z+1/2.
4-(4-Methoxyphenyl)piperazin-1-ium 2,3,4,5,6-pentafluorobenzoate monohydrate (II) top
Crystal data top
C11H17N2O+·C7F5O2·H2OF(000) = 872
Mr = 422.35Dx = 1.519 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.9733 (7) ÅCell parameters from 9821 reflections
b = 8.3512 (4) Åθ = 2.9–27.5°
c = 13.2980 (4) ŵ = 0.14 mm1
β = 101.494 (1)°T = 90 K
V = 1847.16 (13) Å3Colourless block, colourless
Z = 40.30 × 0.29 × 0.14 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
4238 independent reflections
Radiation source: microsource3793 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.031
φ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2222
Tmin = 0.919, Tmax = 0.971k = 1010
30724 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.7353P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4238 reflectionsΔρmax = 0.34 e Å3
280 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (14)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58113 (6)0.83766 (11)0.41244 (7)0.01666 (19)
H1A0.5398 (10)0.8859 (19)0.3686 (12)0.031 (4)*
H1B0.5880 (8)0.8844 (17)0.4730 (11)0.022 (3)*
N20.70053 (5)0.59211 (11)0.44294 (7)0.01513 (19)
C10.65689 (6)0.85334 (13)0.37269 (8)0.0179 (2)
H1C0.6722330.9676440.3719870.021*
H1D0.6482150.8126620.3014050.021*
C20.72406 (6)0.75953 (13)0.43956 (8)0.0167 (2)
H2A0.7736540.7678570.4113340.020*
H2B0.7353040.8045900.5098290.020*
C30.62849 (6)0.57710 (13)0.48786 (8)0.0169 (2)
H3A0.6395530.6215410.5582940.020*
H3B0.6143040.4626360.4920070.020*
C40.55894 (6)0.66628 (13)0.42271 (8)0.0180 (2)
H4A0.5450820.6164030.3539110.022*
H4B0.5112360.6596000.4549070.022*
C50.76277 (6)0.48023 (13)0.48036 (8)0.0148 (2)
C60.84193 (6)0.52426 (13)0.51938 (8)0.0177 (2)
H60.8552360.6346580.5272250.021*
C70.90243 (6)0.40977 (14)0.54733 (8)0.0188 (2)
H70.9563190.4424530.5728250.023*
C80.88343 (6)0.24844 (13)0.53767 (8)0.0172 (2)
C90.80383 (6)0.20298 (13)0.50119 (8)0.0167 (2)
H90.7903980.0924630.4956950.020*
C100.74434 (6)0.31594 (13)0.47297 (8)0.0161 (2)
H100.6904450.2825470.4483330.019*
O10.93660 (5)0.1247 (1)0.56258 (7)0.02279 (19)
C111.01917 (7)0.16511 (16)0.59700 (11)0.0303 (3)
H11A1.0515930.0671270.6057060.045*
H11B1.0259290.2215830.6627670.045*
H11C1.0367510.2343840.5462090.045*
F10.24103 (4)1.14509 (8)0.27860 (5)0.02317 (16)
O20.43941 (5)0.89873 (9)0.27760 (6)0.01884 (17)
O30.39764 (5)1.07117 (10)0.38371 (6)0.02156 (18)
C120.38699 (6)0.95869 (13)0.32036 (8)0.0156 (2)
C130.30287 (6)0.88933 (13)0.29215 (8)0.0154 (2)
C140.23480 (7)0.98503 (13)0.27223 (8)0.0177 (2)
C150.15862 (7)0.92190 (15)0.24210 (8)0.0209 (2)
C160.14848 (7)0.75875 (15)0.23275 (8)0.0216 (2)
C170.21451 (7)0.65934 (14)0.25387 (8)0.0197 (2)
C180.29016 (6)0.72513 (13)0.28256 (8)0.0167 (2)
F20.09439 (4)1.01803 (10)0.22123 (6)0.02973 (18)
F30.07470 (4)0.69754 (10)0.20350 (6)0.03065 (18)
F40.20518 (4)0.50048 (8)0.24420 (6)0.02718 (17)
F50.35283 (4)0.62368 (8)0.30265 (5)0.02060 (15)
O1W0.55228 (5)1.20201 (11)0.39344 (7)0.02363 (19)
H1W0.5037 (11)1.169 (2)0.3840 (13)0.044 (5)*
H2W0.5556 (10)1.258 (2)0.3366 (14)0.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0179 (4)0.0149 (5)0.0171 (4)0.0024 (3)0.0031 (3)0.0009 (4)
N20.0149 (4)0.0126 (4)0.0183 (4)0.0000 (3)0.0044 (3)0.0013 (3)
C10.0185 (5)0.0161 (5)0.0196 (5)0.0011 (4)0.0054 (4)0.0026 (4)
C20.0167 (5)0.0139 (5)0.0196 (5)0.0015 (4)0.0037 (4)0.0011 (4)
C30.0175 (5)0.0156 (5)0.0191 (5)0.0003 (4)0.0068 (4)0.0010 (4)
C40.0171 (5)0.0154 (5)0.0220 (5)0.0008 (4)0.0053 (4)0.0015 (4)
C50.0170 (5)0.0152 (5)0.0129 (4)0.0009 (4)0.0044 (4)0.0010 (4)
C60.0181 (5)0.0142 (5)0.0208 (5)0.0013 (4)0.0042 (4)0.0009 (4)
C70.0155 (5)0.0187 (5)0.0219 (5)0.0014 (4)0.0026 (4)0.0009 (4)
C80.0192 (5)0.0167 (5)0.0162 (5)0.0035 (4)0.0048 (4)0.0018 (4)
C90.0219 (5)0.0133 (5)0.0148 (5)0.0012 (4)0.0038 (4)0.0007 (4)
C100.0175 (5)0.0165 (5)0.0142 (5)0.0013 (4)0.0032 (4)0.0009 (4)
O10.0184 (4)0.0174 (4)0.0313 (4)0.0037 (3)0.0018 (3)0.0020 (3)
C110.0179 (6)0.0245 (6)0.0469 (8)0.0051 (5)0.0026 (5)0.0027 (6)
F10.0273 (4)0.0147 (3)0.0285 (4)0.0039 (3)0.0082 (3)0.0034 (3)
O20.0170 (4)0.0195 (4)0.0199 (4)0.0015 (3)0.0034 (3)0.0017 (3)
O30.0245 (4)0.0205 (4)0.0205 (4)0.0054 (3)0.0062 (3)0.0059 (3)
C120.0187 (5)0.0140 (5)0.0139 (5)0.0003 (4)0.0025 (4)0.0026 (4)
C130.0187 (5)0.0161 (5)0.0117 (4)0.0004 (4)0.0037 (4)0.0007 (4)
C140.0228 (5)0.0154 (5)0.0156 (5)0.0004 (4)0.0057 (4)0.0020 (4)
C150.0180 (5)0.0270 (6)0.0179 (5)0.0041 (4)0.0040 (4)0.0034 (4)
C160.0183 (5)0.0306 (6)0.0160 (5)0.0073 (5)0.0035 (4)0.0019 (4)
C170.0264 (6)0.0177 (5)0.0161 (5)0.0063 (4)0.0070 (4)0.0030 (4)
C180.0209 (5)0.0173 (5)0.0126 (5)0.0016 (4)0.0048 (4)0.0004 (4)
F20.0194 (3)0.0367 (4)0.0325 (4)0.0090 (3)0.0037 (3)0.0066 (3)
F30.0199 (3)0.0418 (5)0.0297 (4)0.0113 (3)0.0036 (3)0.0063 (3)
F40.0343 (4)0.0184 (4)0.0309 (4)0.0098 (3)0.0116 (3)0.0072 (3)
F50.0246 (3)0.0146 (3)0.0230 (3)0.0033 (3)0.0056 (3)0.0009 (2)
O1W0.0209 (4)0.0256 (5)0.0233 (4)0.0050 (3)0.0019 (3)0.0035 (3)
Geometric parameters (Å, º) top
N1—C11.4903 (14)C8—C91.3941 (15)
N1—C41.4932 (14)C9—C101.3782 (15)
N1—H1A0.912 (16)C9—H90.9500
N1—H1B0.882 (15)C10—H100.9500
N2—C51.4237 (13)O1—C111.4254 (14)
N2—C21.4573 (13)C11—H11A0.9800
N2—C31.4693 (13)C11—H11B0.9800
C1—C21.5167 (15)C11—H11C0.9800
C1—H1C0.9900F1—C141.3422 (13)
C1—H1D0.9900O2—C121.2519 (13)
C2—H2A0.9900O3—C121.2506 (13)
C2—H2B0.9900C12—C131.5169 (15)
C3—C41.5137 (15)C13—C141.3863 (15)
C3—H3A0.9900C13—C181.3900 (15)
C3—H3B0.9900C14—C151.3798 (16)
C4—H4A0.9900C15—F21.3377 (13)
C4—H4B0.9900C15—C161.3758 (17)
C5—C61.3900 (15)C16—F31.3366 (13)
C5—C101.4064 (15)C16—C171.3780 (17)
C6—C71.3981 (15)C17—F41.3392 (13)
C6—H60.9500C17—C181.3788 (15)
C7—C81.3853 (16)C18—F51.3444 (12)
C7—H70.9500O1W—H1W0.854 (19)
C8—O11.3686 (13)O1W—H2W0.899 (18)
C1—N1—C4111.58 (8)C8—C7—H7120.2
C1—N1—H1A110.1 (10)C6—C7—H7120.2
C4—N1—H1A107.8 (10)O1—C8—C7125.57 (10)
C1—N1—H1B108.6 (9)O1—C8—C9115.16 (10)
C4—N1—H1B109.3 (9)C7—C8—C9119.25 (10)
H1A—N1—H1B109.5 (13)C10—C9—C8121.0 (1)
C5—N2—C2116.85 (8)C10—C9—H9119.5
C5—N2—C3114.93 (8)C8—C9—H9119.5
C2—N2—C3110.47 (8)C9—C10—C5120.54 (10)
N1—C1—C2110.35 (9)C9—C10—H10119.7
N1—C1—H1C109.6C5—C10—H10119.7
C2—C1—H1C109.6C8—O1—C11117.24 (9)
N1—C1—H1D109.6O1—C11—H11A109.5
C2—C1—H1D109.6O1—C11—H11B109.5
H1C—C1—H1D108.1H11A—C11—H11B109.5
N2—C2—C1109.57 (9)O1—C11—H11C109.5
N2—C2—H2A109.8H11A—C11—H11C109.5
C1—C2—H2A109.8H11B—C11—H11C109.5
N2—C2—H2B109.8O3—C12—O2125.87 (10)
C1—C2—H2B109.8O3—C12—C13117.13 (9)
H2A—C2—H2B108.2O2—C12—C13117.00 (9)
N2—C3—C4110.04 (8)C14—C13—C18116.3 (1)
N2—C3—H3A109.7C14—C13—C12122.31 (10)
C4—C3—H3A109.7C18—C13—C12121.37 (10)
N2—C3—H3B109.7F1—C14—C15117.15 (10)
C4—C3—H3B109.7F1—C14—C13120.66 (10)
H3A—C3—H3B108.2C15—C14—C13122.16 (10)
N1—C4—C3109.99 (9)F2—C15—C16119.56 (10)
N1—C4—H4A109.7F2—C15—C14120.58 (11)
C3—C4—H4A109.7C16—C15—C14119.86 (11)
N1—C4—H4B109.7F3—C16—C15119.88 (11)
C3—C4—H4B109.7F3—C16—C17120.37 (11)
H4A—C4—H4B108.2C15—C16—C17119.74 (10)
C6—C5—C10117.98 (10)F4—C17—C16120.1 (1)
C6—C5—N2123.48 (10)F4—C17—C18120.47 (10)
C10—C5—N2118.47 (9)C16—C17—C18119.41 (11)
C5—C6—C7121.5 (1)F5—C18—C17117.4 (1)
C5—C6—H6119.2F5—C18—C13120.09 (10)
C7—C6—H6119.2C17—C18—C13122.51 (10)
C8—C7—C6119.69 (10)H1W—O1W—H2W105.2 (15)
C4—N1—C1—C254.78 (11)O3—C12—C13—C18137.95 (11)
C5—N2—C2—C1164.82 (8)O2—C12—C13—C1842.46 (14)
C3—N2—C2—C161.29 (11)C18—C13—C14—F1179.42 (9)
N1—C1—C2—N257.64 (11)C12—C13—C14—F10.87 (15)
C5—N2—C3—C4163.83 (9)C18—C13—C14—C151.53 (15)
C2—N2—C3—C461.33 (11)C12—C13—C14—C15177.02 (10)
C1—N1—C4—C354.36 (11)F1—C14—C15—F20.50 (15)
N2—C3—C4—N156.94 (11)C13—C14—C15—F2178.46 (9)
C2—N2—C5—C64.50 (14)F1—C14—C15—C16179.1 (1)
C3—N2—C5—C6127.38 (11)C13—C14—C15—C161.14 (16)
C2—N2—C5—C10172.24 (9)F2—C15—C16—F30.35 (16)
C3—N2—C5—C1055.87 (12)C14—C15—C16—F3179.95 (9)
C10—C5—C6—C72.19 (15)F2—C15—C16—C17179.80 (9)
N2—C5—C6—C7174.57 (10)C14—C15—C16—C170.20 (17)
C5—C6—C7—C81.00 (16)F3—C16—C17—F40.66 (16)
C6—C7—C8—O1179.7 (1)C15—C16—C17—F4179.49 (10)
C6—C7—C8—C90.72 (16)F3—C16—C17—C18179.11 (9)
O1—C8—C9—C10179.72 (9)C15—C16—C17—C181.04 (16)
C7—C8—C9—C101.19 (16)F4—C17—C18—F51.69 (15)
C8—C9—C10—C50.04 (16)C16—C17—C18—F5179.86 (9)
C6—C5—C10—C91.71 (15)F4—C17—C18—C13179.05 (10)
N2—C5—C10—C9175.22 (9)C16—C17—C18—C130.60 (16)
C7—C8—O1—C113.02 (16)C14—C13—C18—F5178.58 (9)
C9—C8—O1—C11177.96 (10)C12—C13—C18—F52.86 (15)
O3—C12—C13—C1443.57 (14)C14—C13—C18—C170.66 (15)
O2—C12—C13—C14136.02 (11)C12—C13—C18—C17177.91 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.912 (16)1.886 (16)2.7464 (12)156.5 (14)
N1—H1B···O3i0.882 (15)1.909 (15)2.7692 (12)164.9 (13)
C1—H1C···F5ii0.992.623.2261 (12)119
C3—H3B···O1Wiii0.992.653.5235 (14)148
C4—H4A···O2iv0.992.573.4812 (13)153
C10—H10···O1Wiii0.952.413.3581 (14)177
C11—H11A···F3v0.982.553.3961 (15)144
C11—H11B···F2vi0.982.513.2436 (15)131
O1W—H1W···O30.854 (19)1.978 (19)2.8222 (12)170.0 (17)
O1W—H2W···O2ii0.899 (18)1.936 (19)2.8319 (12)173.7 (16)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+3/2, z+1/2.
4-(4-Methoxyphenyl)piperazin-1-ium 4-iodobenzoate monohydrate (III) top
Crystal data top
C11H17N2O+·C7H4IO2·H2OF(000) = 2760
Mr = 458.28Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.4117 (18) ÅCell parameters from 9052 reflections
b = 7.4255 (6) Åθ = 2.3–27.5°
c = 36.796 (3) ŵ = 1.75 mm1
β = 92.970 (3)°T = 90 K
V = 5569.6 (8) Å3Plate, colourless
Z = 120.30 × 0.13 × 0.03 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
12876 independent reflections
Radiation source: microsource10003 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.056
φ and ω scansθmax = 27.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2626
Tmin = 0.726, Tmax = 0.862k = 96
72181 measured reflectionsl = 4747
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0216P)2 + 1.7628P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
12876 reflectionsΔρmax = 0.84 e Å3
729 parametersΔρmin = 0.80 e Å3
12 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00017 (3)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.43969 (10)0.2205 (3)0.70712 (5)0.0221 (4)
H1W10.4236 (15)0.181 (4)0.7238 (6)0.043 (10)*
H2W10.4260 (15)0.166 (4)0.6906 (6)0.043 (10)*
O2W0.46521 (10)0.3419 (3)0.54225 (5)0.0203 (4)
H1W20.4460 (12)0.310 (4)0.5585 (5)0.024 (8)*
H2W20.4469 (14)0.300 (4)0.5253 (5)0.046 (10)*
O3W0.47153 (9)0.4637 (3)0.38524 (5)0.0189 (4)
H1W30.4493 (13)0.439 (4)0.4008 (6)0.039 (9)*
H2W30.4552 (13)0.417 (4)0.3683 (5)0.031 (9)*
N1A0.53728 (11)0.1701 (3)0.62582 (6)0.0169 (5)
H1AA0.4979 (16)0.123 (4)0.6303 (8)0.039 (9)*
H1AB0.5305 (15)0.293 (4)0.6212 (8)0.036 (9)*
N2A0.67722 (10)0.1578 (3)0.61970 (5)0.0153 (5)
C1A0.56652 (12)0.0802 (3)0.59424 (7)0.0166 (6)
H1AC0.5365260.0916930.5723420.020*
H1AD0.5730590.0495710.5994610.020*
C2A0.63171 (12)0.1678 (3)0.58741 (6)0.0155 (5)
H2AA0.6516150.1069300.5667290.019*
H2AB0.6243850.2955730.5806910.019*
C3A0.64855 (13)0.2351 (4)0.65186 (6)0.0173 (6)
H3A10.6432100.3666080.6484680.021*
H3A20.6787520.2151510.6734120.021*
C4A0.58240 (13)0.1516 (4)0.65859 (7)0.0190 (6)
H4AA0.5882280.0224770.6646600.023*
H4AB0.5631210.2119220.6795200.023*
C5A0.74157 (13)0.2193 (3)0.61344 (6)0.0150 (5)
C6A0.77415 (13)0.1533 (3)0.58374 (7)0.0175 (6)
H6A0.7521730.0702530.5676950.021*
C7A0.83727 (13)0.2051 (3)0.57702 (7)0.0186 (6)
H7A0.8579010.1585250.5564580.022*
C8A0.87077 (13)0.3250 (3)0.60019 (7)0.0172 (6)
C9A0.83902 (13)0.3916 (4)0.62985 (7)0.0187 (6)
H9A0.8612720.4739540.6459260.022*
C10A0.77587 (13)0.3404 (3)0.63637 (7)0.0181 (6)
H10A0.7552740.3882620.6568290.022*
O1A0.93324 (9)0.3865 (3)0.59612 (5)0.0246 (5)
C11A0.96791 (14)0.3085 (4)0.56715 (7)0.0277 (7)
H11A1.0123520.3585050.5673750.042*
H11B0.9447230.3358950.5438190.042*
H11C0.9703660.1776280.5704340.042*
I1A0.07054 (2)0.22414 (3)0.65985 (2)0.03241 (6)
O2A0.41019 (9)0.0741 (2)0.64110 (4)0.0182 (4)
O3A0.38729 (10)0.2563 (3)0.59416 (5)0.0327 (5)
C12A0.37115 (13)0.1708 (3)0.62136 (7)0.0177 (6)
C13A0.30062 (13)0.1839 (3)0.63110 (6)0.0155 (6)
C14A0.25598 (14)0.2798 (3)0.60871 (7)0.0202 (6)
H14A0.2707790.3376330.5876180.024*
C15A0.19067 (14)0.2927 (4)0.61649 (7)0.0235 (6)
H15A0.1606410.3576750.6008630.028*
C16A0.16966 (13)0.2086 (3)0.64770 (7)0.0189 (6)
C17A0.21308 (13)0.1131 (3)0.67042 (7)0.0185 (6)
H17A0.1982220.0560990.6916010.022*
C18A0.27842 (13)0.1008 (3)0.66215 (6)0.0150 (5)
H18A0.3083160.0352720.6777570.018*
N1B0.54528 (11)0.2872 (3)0.46279 (6)0.0157 (5)
H1BA0.5047 (15)0.247 (4)0.4678 (8)0.032 (9)*
H1BB0.5413 (13)0.410 (4)0.4599 (7)0.019 (7)*
N2B0.68341 (10)0.2390 (3)0.45357 (5)0.0145 (5)
C1B0.57009 (12)0.1948 (3)0.43022 (6)0.0156 (6)
H1BC0.5393790.2153590.4089060.019*
H1BD0.5729190.0635240.4347000.019*
C2B0.63691 (12)0.2675 (3)0.42252 (6)0.0151 (5)
H2BA0.6531830.2065380.4008220.018*
H2BB0.6335150.3978820.4171750.018*
C3B0.66000 (12)0.3265 (3)0.48621 (6)0.0161 (6)
H3B10.6585960.4585000.4824080.019*
H3B20.6910650.3014790.5071550.019*
C4B0.59236 (13)0.2603 (4)0.49477 (6)0.0173 (6)
H4BA0.5945220.1307500.5011130.021*
H4BB0.5768080.3267800.5159850.021*
C5B0.75017 (12)0.2699 (3)0.44638 (6)0.0134 (5)
C6B0.77627 (13)0.1969 (3)0.41512 (7)0.0166 (6)
H6B0.7478070.1357040.3980020.020*
C7B0.84192 (13)0.2109 (3)0.40838 (7)0.0181 (6)
H7B0.8578750.1604250.3868300.022*
C8B0.88469 (13)0.2985 (3)0.43297 (7)0.0185 (6)
C9B0.85954 (13)0.3744 (4)0.46404 (7)0.0208 (6)
H9B0.8880960.4359360.4810450.025*
C10B0.79355 (13)0.3610 (3)0.47032 (7)0.0182 (6)
H10B0.7774310.4151770.4914720.022*
O1B0.95052 (9)0.3195 (3)0.42936 (5)0.0280 (5)
C11B0.97811 (14)0.2421 (4)0.39805 (8)0.0303 (7)
H11D1.0251830.2686150.3984860.045*
H11E0.9565580.2932960.3759850.045*
H11F0.9715280.1114100.3982210.045*
I1B0.07478 (2)0.15453 (3)0.49437 (2)0.02872 (6)
O2B0.41837 (9)0.1894 (2)0.47849 (5)0.0198 (4)
O3B0.38573 (10)0.3743 (3)0.43324 (5)0.0298 (5)
C12B0.37472 (13)0.2739 (3)0.45938 (7)0.0178 (6)
C13B0.30402 (13)0.2499 (3)0.46834 (6)0.0145 (5)
C14B0.25389 (13)0.3216 (3)0.44580 (7)0.0179 (6)
H14B0.2645960.3895360.4250540.022*
C15B0.18860 (14)0.2958 (4)0.45298 (7)0.0201 (6)
H15B0.1546970.3439370.4371900.024*
C16B0.17363 (13)0.1985 (3)0.48365 (7)0.0186 (6)
C17B0.22246 (13)0.1289 (3)0.50692 (7)0.0186 (6)
H17B0.2114640.0643350.5280470.022*
C18B0.28755 (13)0.1538 (3)0.49930 (6)0.0163 (6)
H18B0.3212540.1053540.5151870.020*
N1C0.54732 (11)0.4096 (3)0.30188 (6)0.0151 (5)
H1CA0.5039 (15)0.382 (4)0.3092 (8)0.036 (9)*
H1CB0.5487 (13)0.519 (4)0.2976 (7)0.012 (7)*
N2C0.67789 (10)0.2903 (3)0.28952 (5)0.0140 (5)
C1C0.56203 (13)0.3023 (4)0.26914 (7)0.0183 (6)
H1CC0.5315490.3370520.2485270.022*
H1CD0.5555250.1726790.2741440.022*
C2C0.63187 (12)0.3341 (4)0.25908 (6)0.0168 (6)
H2CA0.6414940.2585990.2378280.020*
H2CB0.6373430.4618520.2521660.020*
C3C0.66487 (13)0.3992 (4)0.32146 (6)0.0164 (6)
H3C10.6713540.5281550.3158260.020*
H3C20.6961460.3661460.3418380.020*
C4C0.59550 (12)0.3697 (4)0.33264 (6)0.0164 (6)
H4CA0.5902830.2432140.3404870.020*
H4CB0.5867980.4487620.3535110.020*
C5C0.74472 (12)0.2758 (3)0.28062 (6)0.0141 (5)
C6C0.76069 (13)0.1706 (3)0.25095 (7)0.0177 (6)
H6C0.7264960.1184940.2359300.021*
C7C0.82550 (13)0.1404 (4)0.24290 (7)0.0186 (6)
H7C0.8350370.0702930.2222300.022*
C8C0.87656 (13)0.2121 (4)0.26487 (7)0.0196 (6)
C9C0.86090 (13)0.3184 (4)0.29422 (7)0.0204 (6)
H9C0.8951870.3694080.3093460.025*
C10C0.79633 (13)0.3517 (3)0.30189 (7)0.0177 (6)
H10C0.7869770.4270060.3218390.021*
O1C0.94180 (9)0.1861 (3)0.26005 (5)0.0250 (4)
C11C0.95839 (14)0.0599 (4)0.23304 (8)0.0314 (7)
H11G1.0061830.0469670.2332070.047*
H11H0.9418600.1024140.2090730.047*
H11I0.9385580.0569850.2381930.047*
I1C0.09042 (2)0.06781 (3)0.31910 (2)0.03020 (6)
O2C0.42707 (9)0.3016 (2)0.32290 (5)0.0202 (4)
O3C0.39400 (9)0.4141 (2)0.26896 (5)0.0235 (4)
C12C0.38327 (13)0.3315 (3)0.29758 (7)0.0167 (6)
C13C0.31525 (13)0.2627 (3)0.30286 (7)0.0155 (6)
C14C0.27202 (13)0.2325 (4)0.27301 (7)0.0192 (6)
H14C0.2862240.2540500.2492160.023*
C15C0.20884 (14)0.1719 (4)0.27722 (7)0.0212 (6)
H15C0.1801020.1484830.2566200.025*
C16C0.18836 (13)0.1459 (3)0.31218 (7)0.0198 (6)
C17C0.23004 (13)0.1737 (3)0.34227 (7)0.0204 (6)
H17C0.2152620.1543750.3660230.024*
C18C0.29359 (13)0.2299 (3)0.33759 (7)0.0172 (6)
H18C0.3228530.2463850.3582530.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0265 (12)0.0229 (11)0.0167 (10)0.0040 (9)0.0009 (9)0.0004 (9)
O2W0.0214 (11)0.0235 (11)0.0165 (10)0.0031 (9)0.0052 (9)0.0010 (9)
O3W0.0203 (11)0.0206 (11)0.0162 (10)0.0003 (9)0.0046 (9)0.0003 (9)
N1A0.0159 (13)0.0171 (12)0.0181 (11)0.0011 (10)0.0039 (9)0.0005 (10)
N2A0.0131 (11)0.0181 (11)0.0149 (10)0.0004 (9)0.0023 (9)0.0008 (9)
C1A0.0151 (14)0.0154 (13)0.0195 (13)0.0004 (11)0.0023 (11)0.0022 (11)
C2A0.0143 (14)0.0174 (13)0.0148 (12)0.0001 (11)0.0021 (10)0.0003 (11)
C3A0.0176 (14)0.0226 (14)0.0118 (12)0.0011 (12)0.0027 (10)0.0008 (11)
C4A0.0172 (14)0.0234 (15)0.0169 (13)0.0007 (12)0.0045 (11)0.0036 (11)
C5A0.0144 (14)0.0156 (13)0.0151 (12)0.0021 (11)0.002 (1)0.002 (1)
C6A0.0169 (14)0.0176 (14)0.0178 (13)0.0018 (11)0.0005 (11)0.0041 (11)
C7A0.0190 (15)0.0186 (14)0.0184 (13)0.0003 (12)0.0037 (11)0.0044 (11)
C8A0.0135 (14)0.0154 (13)0.0227 (13)0.0011 (11)0.0023 (11)0.0019 (11)
C9A0.0188 (15)0.0187 (14)0.0184 (13)0.0014 (12)0.0022 (11)0.0046 (11)
C10A0.0192 (15)0.0209 (14)0.0144 (12)0.0023 (12)0.0023 (11)0.0048 (11)
O1A0.0158 (10)0.0288 (11)0.0298 (11)0.0064 (9)0.0071 (8)0.0099 (9)
C11A0.0202 (16)0.0354 (18)0.0285 (15)0.0036 (14)0.0106 (13)0.0057 (13)
I1A0.01674 (11)0.02892 (11)0.05171 (13)0.00099 (9)0.00330 (9)0.01156 (10)
O2A0.0175 (10)0.0203 (10)0.0172 (9)0.0023 (8)0.0037 (8)0.0022 (8)
O3A0.0343 (13)0.0381 (13)0.0272 (11)0.0018 (10)0.0153 (10)0.0115 (9)
C12A0.0219 (15)0.0157 (13)0.0161 (13)0.0048 (12)0.0049 (11)0.0050 (11)
C13A0.0187 (14)0.0117 (13)0.0163 (12)0.0049 (11)0.0036 (11)0.0033 (10)
C14A0.0309 (17)0.0133 (13)0.0165 (13)0.0043 (12)0.0016 (12)0.0018 (11)
C15A0.0240 (16)0.0169 (14)0.0289 (15)0.0013 (12)0.0063 (13)0.0009 (12)
C16A0.0144 (14)0.0157 (13)0.0266 (14)0.0033 (11)0.0008 (11)0.0078 (11)
C17A0.0194 (15)0.0163 (13)0.0202 (13)0.0021 (12)0.0054 (11)0.0001 (11)
C18A0.0183 (14)0.0118 (12)0.0150 (12)0.0017 (11)0.0014 (10)0.0003 (10)
N1B0.0149 (12)0.0150 (12)0.0173 (11)0.0009 (10)0.0026 (9)0.0006 (9)
N2B0.0153 (12)0.0160 (11)0.0122 (10)0.0009 (9)0.0012 (9)0.0021 (9)
C1B0.0146 (14)0.0169 (13)0.0156 (12)0.0003 (11)0.0018 (10)0.0011 (10)
C2B0.0160 (14)0.0181 (13)0.0112 (12)0.0007 (11)0.0017 (10)0.0018 (10)
C3B0.0172 (14)0.0200 (14)0.0113 (12)0.0013 (11)0.0015 (10)0.002 (1)
C4B0.0186 (14)0.0197 (14)0.0137 (12)0.0005 (12)0.0018 (11)0.0003 (11)
C5B0.0164 (14)0.0098 (12)0.0137 (12)0.0006 (11)0.0013 (10)0.0015 (10)
C6B0.0187 (14)0.0145 (13)0.0163 (13)0.0023 (11)0.0005 (11)0.0029 (10)
C7B0.0201 (15)0.0158 (13)0.0186 (13)0.0015 (12)0.0026 (11)0.0044 (11)
C8B0.0141 (14)0.0169 (14)0.0247 (14)0.0006 (11)0.0020 (11)0.0000 (11)
C9B0.0206 (15)0.0222 (15)0.0193 (13)0.0040 (12)0.0032 (11)0.0065 (11)
C10B0.0218 (15)0.0182 (14)0.0147 (12)0.0024 (12)0.0019 (11)0.0032 (11)
O1B0.0137 (10)0.0354 (12)0.0351 (11)0.0036 (9)0.0042 (9)0.0124 (9)
C11B0.0209 (16)0.0357 (18)0.0352 (17)0.0038 (14)0.0105 (13)0.0099 (14)
I1B0.01675 (10)0.02811 (11)0.04205 (12)0.00272 (8)0.00875 (8)0.00998 (9)
O2B0.0172 (10)0.0225 (10)0.0201 (9)0.0013 (8)0.0046 (8)0.0032 (8)
O3B0.0288 (12)0.0302 (12)0.0318 (11)0.0017 (10)0.0138 (9)0.0118 (9)
C12B0.0227 (15)0.0143 (13)0.0168 (13)0.0043 (12)0.0061 (11)0.0069 (11)
C13B0.0195 (14)0.0099 (12)0.0142 (12)0.0023 (11)0.0042 (11)0.0035 (10)
C14B0.0244 (15)0.0155 (13)0.0139 (12)0.0051 (12)0.0003 (11)0.0001 (10)
C15B0.0212 (15)0.0175 (14)0.0212 (14)0.0001 (12)0.0036 (11)0.0016 (11)
C16B0.0151 (14)0.0159 (13)0.0254 (14)0.0006 (11)0.0063 (11)0.0054 (11)
C17B0.0226 (15)0.0139 (13)0.0200 (13)0.0004 (12)0.0078 (11)0.0017 (11)
C18B0.0193 (14)0.0153 (13)0.0143 (12)0.0017 (11)0.0020 (11)0.0010 (11)
N1C0.0162 (13)0.0145 (12)0.0147 (11)0.0014 (10)0.0001 (9)0.0002 (9)
N2C0.0143 (11)0.0166 (11)0.0111 (10)0.0006 (9)0.0010 (9)0.0015 (8)
C1C0.0172 (14)0.0209 (14)0.0169 (13)0.0001 (12)0.0005 (11)0.0040 (11)
C2C0.0158 (14)0.0212 (14)0.0132 (12)0.0010 (11)0.0005 (10)0.0002 (11)
C3C0.0177 (14)0.0198 (14)0.0116 (12)0.0000 (11)0.0003 (10)0.0012 (10)
C4C0.0195 (14)0.0181 (14)0.0116 (12)0.0016 (12)0.0002 (10)0.0009 (10)
C5C0.0149 (14)0.0127 (12)0.0146 (12)0.0019 (11)0.0001 (10)0.0027 (10)
C6C0.0163 (14)0.0201 (14)0.0166 (13)0.0025 (12)0.0015 (11)0.0024 (11)
C7C0.0173 (14)0.0208 (14)0.0182 (13)0.0001 (12)0.0038 (11)0.0027 (11)
C8C0.0181 (15)0.0165 (13)0.0245 (14)0.0009 (12)0.0045 (12)0.0057 (11)
C9C0.0190 (15)0.0197 (14)0.0222 (14)0.0047 (12)0.0031 (11)0.0014 (11)
C10C0.0213 (15)0.0135 (13)0.0183 (13)0.0012 (12)0.0006 (11)0.0013 (11)
O1C0.0143 (10)0.0282 (11)0.0330 (11)0.0004 (9)0.0054 (8)0.0037 (9)
C11C0.0221 (17)0.0376 (18)0.0352 (17)0.0049 (14)0.0083 (13)0.0043 (15)
I1C0.01743 (10)0.02945 (11)0.04390 (12)0.00327 (8)0.00347 (8)0.00136 (9)
O2C0.0165 (10)0.0249 (11)0.0194 (9)0.0022 (8)0.0017 (8)0.0013 (8)
O3C0.0266 (11)0.0239 (10)0.0208 (10)0.0009 (9)0.0075 (8)0.0070 (8)
C12C0.0204 (15)0.0119 (13)0.0184 (13)0.0016 (11)0.0061 (11)0.0043 (11)
C13C0.0203 (15)0.0090 (12)0.0175 (13)0.0026 (11)0.0026 (11)0.0012 (10)
C14C0.0201 (15)0.0206 (14)0.0172 (13)0.0042 (12)0.0030 (11)0.0018 (11)
C15C0.0216 (15)0.0200 (14)0.0215 (14)0.0033 (12)0.0030 (12)0.0060 (12)
C16C0.0134 (14)0.0149 (13)0.0311 (15)0.0027 (11)0.0031 (12)0.0010 (12)
C17C0.0224 (15)0.0179 (14)0.0213 (13)0.0026 (12)0.0050 (12)0.0033 (11)
C18C0.0188 (15)0.0160 (13)0.0168 (13)0.0009 (11)0.0001 (11)0.0013 (11)
Geometric parameters (Å, º) top
O1W—H1W10.769 (15)C6B—H6B0.9500
O1W—H2W10.768 (15)C7B—C8B1.386 (4)
O2W—H1W20.770 (14)C7B—H7B0.9500
O2W—H2W20.774 (15)C8B—O1B1.366 (3)
O3W—H1W30.771 (15)C8B—C9B1.396 (3)
O3W—H2W30.775 (14)C9B—C10B1.382 (4)
N1A—C4A1.486 (3)C9B—H9B0.9500
N1A—C1A1.491 (3)C10B—H10B0.9500
N1A—H1AA0.90 (3)O1B—C11B1.429 (3)
N1A—H1AB0.94 (3)C11B—H11D0.9800
N2A—C5A1.421 (3)C11B—H11E0.9800
N2A—C3A1.464 (3)C11B—H11F0.9800
N2A—C2A1.472 (3)I1B—C16B2.101 (3)
C1A—C2A1.514 (3)O2B—C12B1.272 (3)
C1A—H1AC0.9900O3B—C12B1.246 (3)
C1A—H1AD0.9900C12B—C13B1.507 (3)
C2A—H2AA0.9900C13B—C14B1.389 (4)
C2A—H2AB0.9900C13B—C18B1.400 (3)
C3A—C4A1.518 (3)C14B—C15B1.385 (4)
C3A—H3A10.9900C14B—H14B0.9500
C3A—H3A20.9900C15B—C16B1.388 (4)
C4A—H4AA0.9900C15B—H15B0.9500
C4A—H4AB0.9900C16B—C17B1.380 (4)
C5A—C10A1.396 (4)C17B—C18B1.384 (3)
C5A—C6A1.397 (3)C17B—H17B0.9500
C6A—C7A1.379 (3)C18B—H18B0.9500
C6A—H6A0.9500N1C—C1C1.488 (3)
C7A—C8A1.388 (4)N1C—C4C1.490 (3)
C7A—H7A0.9500N1C—H1CA0.96 (3)
C8A—O1A1.370 (3)N1C—H1CB0.83 (3)
C8A—C9A1.389 (3)N2C—C5C1.424 (3)
C9A—C10A1.377 (4)N2C—C2C1.461 (3)
C9A—H9A0.9500N2C—C3C1.462 (3)
C10A—H10A0.9500C1C—C2C1.510 (3)
O1A—C11A1.432 (3)C1C—H1CC0.9900
C11A—H11A0.9800C1C—H1CD0.9900
C11A—H11B0.9800C2C—H2CA0.9900
C11A—H11C0.9800C2C—H2CB0.9900
I1A—C16A2.098 (3)C3C—C4C1.511 (3)
O2A—C12A1.272 (3)C3C—H3C10.9900
O3A—C12A1.244 (3)C3C—H3C20.9900
C12A—C13A1.505 (3)C4C—H4CA0.9900
C13A—C14A1.392 (4)C4C—H4CB0.9900
C13A—C18A1.394 (3)C5C—C6C1.395 (3)
C14A—C15A1.381 (4)C5C—C10C1.398 (4)
C14A—H14A0.9500C6C—C7C1.389 (3)
C15A—C16A1.394 (4)C6C—H6C0.9500
C15A—H15A0.9500C7C—C8C1.392 (4)
C16A—C17A1.383 (4)C7C—H7C0.9500
C17A—C18A1.386 (3)C8C—O1C1.366 (3)
C17A—H17A0.9500C8C—C9C1.388 (4)
C18A—H18A0.9500C9C—C10C1.384 (4)
N1B—C1B1.492 (3)C9C—H9C0.9500
N1B—C4B1.494 (3)C10C—H10C0.9500
N1B—H1BA0.91 (3)O1C—C11C1.420 (3)
N1B—H1BB0.92 (3)C11C—H11G0.9800
N2B—C5B1.420 (3)C11C—H11H0.9800
N2B—C2B1.462 (3)C11C—H11I0.9800
N2B—C3B1.467 (3)I1C—C16C2.110 (3)
C1B—C2B1.507 (3)O2C—C12C1.277 (3)
C1B—H1BC0.9900O3C—C12C1.248 (3)
C1B—H1BD0.9900C12C—C13C1.501 (4)
C2B—H2BA0.9900C13C—C14C1.391 (4)
C2B—H2BB0.9900C13C—C18C1.395 (3)
C3B—C4B1.514 (3)C14C—C15C1.382 (4)
C3B—H3B10.9900C14C—H14C0.9500
C3B—H3B20.9900C15C—C16C1.387 (3)
C4B—H4BA0.9900C15C—H15C0.9500
C4B—H4BB0.9900C16C—C17C1.376 (4)
C5B—C10B1.392 (4)C17C—C18C1.382 (4)
C5B—C6B1.402 (3)C17C—H17C0.9500
C6B—C7B1.379 (3)C18C—H18C0.9500
H1W1—O1W—H2W1106 (2)C5B—C6B—H6B118.9
H1W2—O2W—H2W2105 (2)C6B—C7B—C8B120.2 (2)
H1W3—O3W—H2W3104 (2)C6B—C7B—H7B119.9
C4A—N1A—C1A109.6 (2)C8B—C7B—H7B119.9
C4A—N1A—H1AA110 (2)O1B—C8B—C7B125.4 (2)
C1A—N1A—H1AA111 (2)O1B—C8B—C9B116.0 (2)
C4A—N1A—H1AB108.4 (19)C7B—C8B—C9B118.6 (2)
C1A—N1A—H1AB110.9 (18)C10B—C9B—C8B120.7 (2)
H1AA—N1A—H1AB107 (3)C10B—C9B—H9B119.6
C5A—N2A—C3A114.6 (2)C8B—C9B—H9B119.6
C5A—N2A—C2A113.78 (19)C9B—C10B—C5B121.5 (2)
C3A—N2A—C2A111.8 (2)C9B—C10B—H10B119.2
N1A—C1A—C2A109.1 (2)C5B—C10B—H10B119.2
N1A—C1A—H1AC109.9C8B—O1B—C11B117.6 (2)
C2A—C1A—H1AC109.9O1B—C11B—H11D109.5
N1A—C1A—H1AD109.9O1B—C11B—H11E109.5
C2A—C1A—H1AD109.9H11D—C11B—H11E109.5
H1AC—C1A—H1AD108.3O1B—C11B—H11F109.5
N2A—C2A—C1A111.6 (2)H11D—C11B—H11F109.5
N2A—C2A—H2AA109.3H11E—C11B—H11F109.5
C1A—C2A—H2AA109.3O3B—C12B—O2B124.9 (2)
N2A—C2A—H2AB109.3O3B—C12B—C13B116.9 (2)
C1A—C2A—H2AB109.3O2B—C12B—C13B118.1 (2)
H2AA—C2A—H2AB108.0C14B—C13B—C18B118.7 (2)
N2A—C3A—C4A111.6 (2)C14B—C13B—C12B120.5 (2)
N2A—C3A—H3A1109.3C18B—C13B—C12B120.8 (2)
C4A—C3A—H3A1109.3C15B—C14B—C13B121.3 (2)
N2A—C3A—H3A2109.3C15B—C14B—H14B119.4
C4A—C3A—H3A2109.3C13B—C14B—H14B119.4
H3A1—C3A—H3A2108.0C14B—C15B—C16B118.8 (3)
N1A—C4A—C3A110.4 (2)C14B—C15B—H15B120.6
N1A—C4A—H4AA109.6C16B—C15B—H15B120.6
C3A—C4A—H4AA109.6C17B—C16B—C15B121.1 (2)
N1A—C4A—H4AB109.6C17B—C16B—I1B119.67 (18)
C3A—C4A—H4AB109.6C15B—C16B—I1B119.2 (2)
H4AA—C4A—H4AB108.1C16B—C17B—C18B119.6 (2)
C10A—C5A—C6A117.0 (2)C16B—C17B—H17B120.2
C10A—C5A—N2A123.2 (2)C18B—C17B—H17B120.2
C6A—C5A—N2A119.7 (2)C17B—C18B—C13B120.4 (3)
C7A—C6A—C5A122.0 (2)C17B—C18B—H18B119.8
C7A—C6A—H6A119.0C13B—C18B—H18B119.8
C5A—C6A—H6A119.0C1C—N1C—C4C110.8 (2)
C6A—C7A—C8A120.3 (2)C1C—N1C—H1CA110.1 (18)
C6A—C7A—H7A119.9C4C—N1C—H1CA109.0 (18)
C8A—C7A—H7A119.9C1C—N1C—H1CB111.1 (17)
O1A—C8A—C7A125.3 (2)C4C—N1C—H1CB108.2 (19)
O1A—C8A—C9A116.2 (2)H1CA—N1C—H1CB108 (3)
C7A—C8A—C9A118.4 (2)C5C—N2C—C2C115.22 (19)
C10A—C9A—C8A121.2 (2)C5C—N2C—C3C116.3 (2)
C10A—C9A—H9A119.4C2C—N2C—C3C110.9 (2)
C8A—C9A—H9A119.4N1C—C1C—C2C110.3 (2)
C9A—C10A—C5A121.1 (2)N1C—C1C—H1CC109.6
C9A—C10A—H10A119.4C2C—C1C—H1CC109.6
C5A—C10A—H10A119.4N1C—C1C—H1CD109.6
C8A—O1A—C11A116.4 (2)C2C—C1C—H1CD109.6
O1A—C11A—H11A109.5H1CC—C1C—H1CD108.1
O1A—C11A—H11B109.5N2C—C2C—C1C110.8 (2)
H11A—C11A—H11B109.5N2C—C2C—H2CA109.5
O1A—C11A—H11C109.5C1C—C2C—H2CA109.5
H11A—C11A—H11C109.5N2C—C2C—H2CB109.5
H11B—C11A—H11C109.5C1C—C2C—H2CB109.5
O3A—C12A—O2A124.3 (2)H2CA—C2C—H2CB108.1
O3A—C12A—C13A117.1 (2)N2C—C3C—C4C110.5 (2)
O2A—C12A—C13A118.6 (2)N2C—C3C—H3C1109.5
C14A—C13A—C18A118.7 (2)C4C—C3C—H3C1109.5
C14A—C13A—C12A119.8 (2)N2C—C3C—H3C2109.5
C18A—C13A—C12A121.5 (2)C4C—C3C—H3C2109.5
C15A—C14A—C13A121.5 (2)H3C1—C3C—H3C2108.1
C15A—C14A—H14A119.3N1C—C4C—C3C110.8 (2)
C13A—C14A—H14A119.3N1C—C4C—H4CA109.5
C14A—C15A—C16A118.7 (3)C3C—C4C—H4CA109.5
C14A—C15A—H15A120.6N1C—C4C—H4CB109.5
C16A—C15A—H15A120.6C3C—C4C—H4CB109.5
C17A—C16A—C15A120.9 (2)H4CA—C4C—H4CB108.1
C17A—C16A—I1A119.64 (19)C6C—C5C—C10C117.7 (2)
C15A—C16A—I1A119.5 (2)C6C—C5C—N2C119.2 (2)
C16A—C17A—C18A119.7 (2)C10C—C5C—N2C123.0 (2)
C16A—C17A—H17A120.2C7C—C6C—C5C121.4 (2)
C18A—C17A—H17A120.2C7C—C6C—H6C119.3
C17A—C18A—C13A120.5 (2)C5C—C6C—H6C119.3
C17A—C18A—H18A119.7C6C—C7C—C8C120.5 (2)
C13A—C18A—H18A119.7C6C—C7C—H7C119.8
C1B—N1B—C4B109.9 (2)C8C—C7C—H7C119.8
C1B—N1B—H1BA111.2 (18)O1C—C8C—C9C116.5 (2)
C4B—N1B—H1BA110.7 (18)O1C—C8C—C7C125.2 (2)
C1B—N1B—H1BB113.3 (16)C9C—C8C—C7C118.3 (2)
C4B—N1B—H1BB105.8 (17)C10C—C9C—C8C121.3 (3)
H1BA—N1B—H1BB106 (2)C10C—C9C—H9C119.3
C5B—N2B—C2B114.91 (19)C8C—C9C—H9C119.3
C5B—N2B—C3B115.9 (2)C9C—C10C—C5C120.8 (2)
C2B—N2B—C3B110.5 (2)C9C—C10C—H10C119.6
N1B—C1B—C2B109.5 (2)C5C—C10C—H10C119.6
N1B—C1B—H1BC109.8C8C—O1C—C11C117.0 (2)
C2B—C1B—H1BC109.8O1C—C11C—H11G109.5
N1B—C1B—H1BD109.8O1C—C11C—H11H109.5
C2B—C1B—H1BD109.8H11G—C11C—H11H109.5
H1BC—C1B—H1BD108.2O1C—C11C—H11I109.5
N2B—C2B—C1B111.0 (2)H11G—C11C—H11I109.5
N2B—C2B—H2BA109.4H11H—C11C—H11I109.5
C1B—C2B—H2BA109.4O3C—C12C—O2C123.7 (2)
N2B—C2B—H2BB109.4O3C—C12C—C13C118.7 (2)
C1B—C2B—H2BB109.4O2C—C12C—C13C117.6 (2)
H2BA—C2B—H2BB108.0C14C—C13C—C18C118.5 (2)
N2B—C3B—C4B111.4 (2)C14C—C13C—C12C120.4 (2)
N2B—C3B—H3B1109.3C18C—C13C—C12C121.1 (2)
C4B—C3B—H3B1109.3C15C—C14C—C13C121.4 (2)
N2B—C3B—H3B2109.3C15C—C14C—H14C119.3
C4B—C3B—H3B2109.3C13C—C14C—H14C119.3
H3B1—C3B—H3B2108.0C14C—C15C—C16C118.5 (3)
N1B—C4B—C3B110.4 (2)C14C—C15C—H15C120.8
N1B—C4B—H4BA109.6C16C—C15C—H15C120.8
C3B—C4B—H4BA109.6C17C—C16C—C15C121.5 (3)
N1B—C4B—H4BB109.6C17C—C16C—I1C119.61 (19)
C3B—C4B—H4BB109.6C15C—C16C—I1C118.9 (2)
H4BA—C4B—H4BB108.1C16C—C17C—C18C119.3 (2)
C10B—C5B—C6B116.8 (2)C16C—C17C—H17C120.3
C10B—C5B—N2B123.1 (2)C18C—C17C—H17C120.3
C6B—C5B—N2B120.0 (2)C17C—C18C—C13C120.7 (3)
C7B—C6B—C5B122.2 (2)C17C—C18C—H18C119.6
C7B—C6B—H6B118.9C13C—C18C—H18C119.6
C4A—N1A—C1A—C2A59.7 (3)C8B—C9B—C10B—C5B0.9 (4)
C5A—N2A—C2A—C1A173.1 (2)C6B—C5B—C10B—C9B1.7 (4)
C3A—N2A—C2A—C1A55.1 (3)N2B—C5B—C10B—C9B174.0 (2)
N1A—C1A—C2A—N2A58.0 (3)C7B—C8B—O1B—C11B1.3 (4)
C5A—N2A—C3A—C4A175.2 (2)C9B—C8B—O1B—C11B179.4 (2)
C2A—N2A—C3A—C4A53.5 (3)O3B—C12B—C13B—C14B6.7 (4)
C1A—N1A—C4A—C3A58.9 (3)O2B—C12B—C13B—C14B172.3 (2)
N2A—C3A—C4A—N1A55.7 (3)O3B—C12B—C13B—C18B173.8 (2)
C3A—N2A—C5A—C10A1.4 (3)O2B—C12B—C13B—C18B7.1 (3)
C2A—N2A—C5A—C10A131.8 (3)C18B—C13B—C14B—C15B1.6 (4)
C3A—N2A—C5A—C6A179.3 (2)C12B—C13B—C14B—C15B177.9 (2)
C2A—N2A—C5A—C6A50.3 (3)C13B—C14B—C15B—C16B0.9 (4)
C10A—C5A—C6A—C7A0.3 (4)C14B—C15B—C16B—C17B0.4 (4)
N2A—C5A—C6A—C7A178.3 (2)C14B—C15B—C16B—I1B178.92 (18)
C5A—C6A—C7A—C8A0.6 (4)C15B—C16B—C17B—C18B1.1 (4)
C6A—C7A—C8A—O1A179.6 (2)I1B—C16B—C17B—C18B178.25 (19)
C6A—C7A—C8A—C9A0.5 (4)C16B—C17B—C18B—C13B0.4 (4)
O1A—C8A—C9A—C10A179.3 (2)C14B—C13B—C18B—C17B0.9 (4)
C7A—C8A—C9A—C10A0.1 (4)C12B—C13B—C18B—C17B178.6 (2)
C8A—C9A—C10A—C5A0.2 (4)C4C—N1C—C1C—C2C55.2 (3)
C6A—C5A—C10A—C9A0.1 (4)C5C—N2C—C2C—C1C166.3 (2)
N2A—C5A—C10A—C9A177.8 (2)C3C—N2C—C2C—C1C59.0 (3)
C7A—C8A—O1A—C11A5.2 (4)N1C—C1C—C2C—N2C57.1 (3)
C9A—C8A—O1A—C11A175.6 (2)C5C—N2C—C3C—C4C167.4 (2)
O3A—C12A—C13A—C14A3.8 (4)C2C—N2C—C3C—C4C58.4 (3)
O2A—C12A—C13A—C14A176.1 (2)C1C—N1C—C4C—C3C55.1 (3)
O3A—C12A—C13A—C18A176.6 (2)N2C—C3C—C4C—N1C56.4 (3)
O2A—C12A—C13A—C18A3.5 (4)C2C—N2C—C5C—C6C49.1 (3)
C18A—C13A—C14A—C15A0.5 (4)C3C—N2C—C5C—C6C178.6 (2)
C12A—C13A—C14A—C15A179.1 (2)C2C—N2C—C5C—C10C135.7 (2)
C13A—C14A—C15A—C16A0.6 (4)C3C—N2C—C5C—C10C3.5 (3)
C14A—C15A—C16A—C17A0.4 (4)C10C—C5C—C6C—C7C0.6 (4)
C14A—C15A—C16A—I1A179.42 (19)N2C—C5C—C6C—C7C174.8 (2)
C15A—C16A—C17A—C18A0.1 (4)C5C—C6C—C7C—C8C1.3 (4)
I1A—C16A—C17A—C18A179.17 (19)C6C—C7C—C8C—O1C177.9 (2)
C16A—C17A—C18A—C13A0.1 (4)C6C—C7C—C8C—C9C1.9 (4)
C14A—C13A—C18A—C17A0.3 (4)O1C—C8C—C9C—C10C179.2 (2)
C12A—C13A—C18A—C17A179.3 (2)C7C—C8C—C9C—C10C0.6 (4)
C4B—N1B—C1B—C2B58.0 (3)C8C—C9C—C10C—C5C1.3 (4)
C5B—N2B—C2B—C1B168.0 (2)C6C—C5C—C10C—C9C1.9 (4)
C3B—N2B—C2B—C1B58.5 (3)N2C—C5C—C10C—C9C173.3 (2)
N1B—C1B—C2B—N2B59.4 (3)C9C—C8C—O1C—C11C172.3 (2)
C5B—N2B—C3B—C4B170.5 (2)C7C—C8C—O1C—C11C7.6 (4)
C2B—N2B—C3B—C4B56.6 (3)O3C—C12C—C13C—C14C22.7 (4)
C1B—N1B—C4B—C3B56.4 (3)O2C—C12C—C13C—C14C157.3 (2)
N2B—C3B—C4B—N1B55.9 (3)O3C—C12C—C13C—C18C156.5 (2)
C2B—N2B—C5B—C10B137.5 (2)O2C—C12C—C13C—C18C23.6 (3)
C3B—N2B—C5B—C10B6.6 (3)C18C—C13C—C14C—C15C0.2 (4)
C2B—N2B—C5B—C6B46.9 (3)C12C—C13C—C14C—C15C179.0 (2)
C3B—N2B—C5B—C6B177.8 (2)C13C—C14C—C15C—C16C1.8 (4)
C10B—C5B—C6B—C7B1.1 (4)C14C—C15C—C16C—C17C2.1 (4)
N2B—C5B—C6B—C7B174.8 (2)C14C—C15C—C16C—I1C176.51 (19)
C5B—C6B—C7B—C8B0.4 (4)C15C—C16C—C17C—C18C0.5 (4)
C6B—C7B—C8B—O1B179.5 (2)I1C—C16C—C17C—C18C178.12 (19)
C6B—C7B—C8B—C9B1.3 (4)C16C—C17C—C18C—C13C1.5 (4)
O1B—C8B—C9B—C10B180.0 (2)C14C—C13C—C18C—C17C1.8 (4)
C7B—C8B—C9B—C10B0.6 (4)C12C—C13C—C18C—C17C177.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3Ci0.77 (2)1.93 (2)2.696 (3)173 (3)
O1W—H2W1···O2A0.77 (2)1.96 (2)2.700 (3)162 (3)
O2W—H1W2···O3A0.77 (1)1.86 (2)2.626 (2)170 (3)
O2W—H2W2···O2B0.77 (2)1.97 (2)2.733 (3)168 (3)
O3W—H1W3···O3B0.77 (2)1.87 (2)2.636 (2)172 (3)
O3W—H2W3···O2C0.78 (1)1.94 (2)2.706 (3)172 (3)
N1A—H1AB···O3Wii0.94 (3)1.82 (3)2.754 (3)172 (3)
N1A—H1AA···O2A0.90 (3)1.89 (3)2.776 (3)168 (3)
C1A—H1AC···O2W0.992.573.362 (3)136
C2A—H2AB···O3Bii0.992.513.498 (3)175
C4A—H4AA···O2Ciii0.992.473.441 (3)166
C7A—H7A···I1Biii0.953.324.212 (2)156
C11A—H11A···O1Biv0.982.513.225 (4)130
N1B—H1BA···O2B0.91 (3)1.87 (3)2.780 (3)174 (3)
N1B—H1BB···O2Wii0.92 (3)1.85 (3)2.768 (3)176 (2)
C1B—H1BC···O3W0.992.443.229 (3)136
C2B—H2BB···O3Aii0.992.633.619 (3)174
C4B—H4BA···O2Biii0.992.513.491 (3)170
C4B—H4BB···O2W0.992.523.260 (3)131
C9B—H9B···I1Bii0.953.254.020 (3)139
N1C—H1CA···O2C0.96 (3)1.78 (3)2.732 (3)172 (3)
N1C—H1CA···O3C0.96 (3)2.64 (3)3.297 (3)126 (2)
N1C—H1CB···O1Wii0.83 (3)1.96 (3)2.781 (3)172 (3)
C1C—H1CC···O1Wv0.992.393.299 (3)152
C4C—H4CA···O2Aiii0.992.453.438 (3)174
C9C—H9C···I1Aii0.953.294.013 (3)135
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1; (v) x, y+1/2, z1/2.
4-(4-Methoxyphenyl)piperazin-1-ium 4-methylbenzoate monohydrate (IV) top
Crystal data top
C11H17N2O+·C8H7O2·H2OZ = 2
Mr = 346.42F(000) = 372
Triclinic, P1Dx = 1.305 Mg m3
a = 6.1481 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3467 (12) ÅCell parameters from 9904 reflections
c = 19.980 (4) Åθ = 2.8–27.5°
α = 80.190 (6)°µ = 0.09 mm1
β = 86.089 (5)°T = 90 K
γ = 82.843 (6)°Plate, colourless
V = 881.3 (3) Å30.29 × 0.21 × 0.02 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
4059 independent reflections
Radiation source: microsource3137 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.041
φ and ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.877, Tmax = 0.959k = 99
23917 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0124P)2 + 0.3732P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4059 reflectionsΔρmax = 0.19 e Å3
245 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (8)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.23887 (18)0.74787 (16)0.54355 (5)0.0192 (2)
H1A0.203 (3)0.727 (2)0.4961 (9)0.042 (5)*
H1B0.271 (3)0.871 (2)0.5385 (8)0.033 (4)*
N20.28444 (17)0.65390 (15)0.68884 (5)0.0179 (2)
C10.4273 (2)0.61887 (18)0.57271 (6)0.0202 (3)
H1C0.5582410.6307960.5412870.024*
H1D0.3922480.4890670.5782180.024*
C20.4760 (2)0.66315 (19)0.64091 (6)0.0196 (3)
H2A0.5988990.5738650.6602430.024*
H2B0.5225490.7894610.6345420.024*
C30.0887 (2)0.76711 (19)0.66009 (6)0.0211 (3)
H3A0.1085090.9002580.6561760.025*
H3B0.0397580.7431930.6915960.025*
C40.0427 (2)0.7273 (2)0.59089 (6)0.0220 (3)
H4A0.0026600.5991900.5953990.026*
H4B0.0828790.8144710.5721870.026*
C50.3246 (2)0.68052 (18)0.75566 (6)0.0183 (3)
C60.5285 (2)0.62481 (19)0.78350 (6)0.0227 (3)
H60.6441110.5698620.7568380.027*
C70.5680 (2)0.6472 (2)0.84923 (7)0.0254 (3)
H70.7092690.6086070.8666860.030*
C80.4021 (2)0.7252 (2)0.88893 (6)0.0240 (3)
C90.1971 (2)0.7774 (2)0.86282 (7)0.0274 (3)
H90.0805630.8275570.8904020.033*
C100.1588 (2)0.7577 (2)0.79726 (7)0.0252 (3)
H100.0172940.7973570.7801370.030*
O10.42146 (17)0.75852 (16)0.95411 (5)0.0337 (3)
C110.6322 (3)0.7136 (3)0.98204 (7)0.0392 (4)
H11A0.6234380.7403271.0286190.059*
H11B0.7370470.7882980.9542540.059*
H11C0.6811200.5812680.9824630.059*
O20.12234 (15)0.71150 (13)0.41700 (4)0.0241 (2)
O30.39970 (17)0.87663 (14)0.37969 (5)0.0321 (3)
C120.2413 (2)0.79566 (18)0.36975 (7)0.0206 (3)
C130.1882 (2)0.79539 (18)0.29744 (6)0.0190 (3)
C140.3302 (2)0.86250 (19)0.24411 (7)0.0229 (3)
H140.4579910.9125890.2534230.027*
C150.2855 (2)0.8564 (2)0.17733 (7)0.0259 (3)
H150.3845170.9011790.1414710.031*
C160.0986 (2)0.78599 (19)0.16202 (7)0.0241 (3)
C170.0448 (2)0.72276 (19)0.21558 (7)0.0226 (3)
H170.1749440.6762880.2061770.027*
C180.0004 (2)0.72670 (18)0.28226 (6)0.0201 (3)
H180.0996710.6820460.3180660.024*
C190.0474 (3)0.7789 (2)0.08986 (7)0.0353 (4)
H19A0.0034980.6589600.0876760.053*
H19B0.1799890.7936480.0602510.053*
H19C0.0675390.8795810.0747360.053*
O1W0.72107 (18)0.87492 (14)0.46115 (5)0.0241 (2)
H1W0.600 (3)0.874 (3)0.4328 (10)0.062 (6)*
H2W0.850 (3)0.813 (3)0.4429 (10)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0202 (6)0.0197 (6)0.0178 (6)0.0037 (5)0.0013 (4)0.0026 (4)
N20.0149 (5)0.0234 (6)0.0157 (5)0.0021 (4)0.0007 (4)0.0038 (4)
C10.0192 (7)0.0225 (7)0.0187 (6)0.0006 (5)0.0003 (5)0.0045 (5)
C20.0162 (6)0.0244 (7)0.0184 (6)0.0033 (5)0.0006 (5)0.0034 (5)
C30.0156 (6)0.0276 (7)0.0199 (7)0.0012 (6)0.0008 (5)0.0037 (5)
C40.0175 (7)0.0277 (7)0.0208 (7)0.0037 (6)0.0009 (5)0.0026 (5)
C50.0198 (7)0.0187 (7)0.0166 (6)0.0047 (5)0.0001 (5)0.0020 (5)
C60.0188 (7)0.0298 (8)0.0197 (7)0.0016 (6)0.0009 (5)0.0059 (5)
C70.0191 (7)0.0358 (8)0.0214 (7)0.0026 (6)0.0041 (5)0.0043 (6)
C80.0269 (8)0.0303 (8)0.0160 (6)0.0056 (6)0.0009 (5)0.0059 (5)
C90.0250 (7)0.0362 (9)0.0210 (7)0.0008 (6)0.0024 (6)0.0092 (6)
C100.0197 (7)0.0334 (8)0.0224 (7)0.0002 (6)0.0020 (5)0.0064 (6)
O10.0288 (6)0.0545 (7)0.0199 (5)0.0010 (5)0.0044 (4)0.0138 (5)
C110.0319 (9)0.0664 (12)0.0227 (8)0.0079 (8)0.0061 (6)0.0135 (7)
O20.0261 (5)0.0270 (5)0.0194 (5)0.0023 (4)0.0018 (4)0.0044 (4)
O30.0324 (6)0.0365 (6)0.0310 (6)0.0122 (5)0.0115 (5)0.0059 (4)
C120.0207 (7)0.0171 (7)0.0243 (7)0.0025 (5)0.0051 (5)0.0061 (5)
C130.0187 (6)0.0185 (7)0.0198 (6)0.0008 (5)0.0025 (5)0.0045 (5)
C140.0176 (7)0.0236 (7)0.0283 (7)0.0037 (6)0.0015 (5)0.0059 (6)
C150.0241 (7)0.0307 (8)0.0218 (7)0.0031 (6)0.0029 (5)0.0032 (6)
C160.0266 (7)0.0261 (7)0.0195 (7)0.0009 (6)0.0033 (5)0.0055 (5)
C170.0216 (7)0.0234 (7)0.0244 (7)0.0034 (6)0.0048 (5)0.0061 (5)
C180.0194 (7)0.0195 (7)0.0210 (7)0.0020 (5)0.0006 (5)0.0027 (5)
C190.0397 (9)0.045 (1)0.0223 (7)0.0043 (8)0.0038 (7)0.0080 (7)
O1W0.0229 (5)0.0260 (5)0.0245 (5)0.0045 (4)0.0043 (4)0.0045 (4)
Geometric parameters (Å, º) top
N1—C11.4864 (17)C9—H90.9500
N1—C41.4879 (17)C10—H100.9500
N1—H1A1.028 (17)O1—C111.4242 (18)
N1—H1B0.939 (16)C11—H11A0.9800
N2—C51.4239 (16)C11—H11B0.9800
N2—C31.4669 (16)C11—H11C0.9800
N2—C21.4674 (16)O2—C121.2759 (16)
C1—C21.5111 (17)O3—C121.2461 (16)
C1—H1C0.9900C12—C131.5032 (18)
C1—H1D0.9900C13—C181.3917 (18)
C2—H2A0.9900C13—C141.3935 (18)
C2—H2B0.9900C14—C151.3897 (19)
C3—C41.5131 (18)C14—H140.9500
C3—H3A0.9900C15—C161.3894 (19)
C3—H3B0.9900C15—H150.9500
C4—H4A0.9900C16—C171.3937 (19)
C4—H4B0.9900C16—C191.5074 (19)
C5—C61.3918 (18)C17—C181.3840 (18)
C5—C101.3974 (18)C17—H170.9500
C6—C71.3920 (18)C18—H180.9500
C6—H60.9500C19—H19A0.9800
C7—C81.3777 (19)C19—H19B0.9800
C7—H70.9500C19—H19C0.9800
C8—O11.3809 (16)O1W—H1W0.97 (2)
C8—C91.381 (2)O1W—H2W0.94 (2)
C9—C101.3809 (19)
C1—N1—C4109.09 (10)C7—C8—C9118.96 (12)
C1—N1—H1A113.3 (9)O1—C8—C9115.52 (12)
C4—N1—H1A109.7 (9)C10—C9—C8121.06 (13)
C1—N1—H1B109.9 (10)C10—C9—H9119.5
C4—N1—H1B108.5 (10)C8—C9—H9119.5
H1A—N1—H1B106.2 (13)C9—C10—C5121.16 (13)
C5—N2—C3114.15 (10)C9—C10—H10119.4
C5—N2—C2114.57 (10)C5—C10—H10119.4
C3—N2—C2112.07 (10)C8—O1—C11117.39 (11)
N1—C1—C2110.21 (11)O1—C11—H11A109.5
N1—C1—H1C109.6O1—C11—H11B109.5
C2—C1—H1C109.6H11A—C11—H11B109.5
N1—C1—H1D109.6O1—C11—H11C109.5
C2—C1—H1D109.6H11A—C11—H11C109.5
H1C—C1—H1D108.1H11B—C11—H11C109.5
N2—C2—C1111.9 (1)O3—C12—O2124.23 (12)
N2—C2—H2A109.2O3—C12—C13117.92 (12)
C1—C2—H2A109.2O2—C12—C13117.85 (11)
N2—C2—H2B109.2C18—C13—C14118.71 (12)
C1—C2—H2B109.2C18—C13—C12121.19 (11)
H2A—C2—H2B107.9C14—C13—C12120.10 (12)
N2—C3—C4112.90 (11)C15—C14—C13120.20 (12)
N2—C3—H3A109.0C15—C14—H14119.9
C4—C3—H3A109.0C13—C14—H14119.9
N2—C3—H3B109.0C16—C15—C14121.25 (13)
C4—C3—H3B109.0C16—C15—H15119.4
H3A—C3—H3B107.8C14—C15—H15119.4
N1—C4—C3110.50 (11)C15—C16—C17118.16 (12)
N1—C4—H4A109.5C15—C16—C19121.89 (13)
C3—C4—H4A109.5C17—C16—C19119.95 (13)
N1—C4—H4B109.5C18—C17—C16120.95 (12)
C3—C4—H4B109.5C18—C17—H17119.5
H4A—C4—H4B108.1C16—C17—H17119.5
C6—C5—C10116.85 (12)C17—C18—C13120.71 (12)
C6—C5—N2121.63 (12)C17—C18—H18119.6
C10—C5—N2121.48 (12)C13—C18—H18119.6
C5—C6—C7122.01 (13)C16—C19—H19A109.5
C5—C6—H6119.0C16—C19—H19B109.5
C7—C6—H6119.0H19A—C19—H19B109.5
C8—C7—C6119.92 (13)C16—C19—H19C109.5
C8—C7—H7120.0H19A—C19—H19C109.5
C6—C7—H7120.0H19B—C19—H19C109.5
C7—C8—O1125.52 (12)H1W—O1W—H2W109.5 (16)
C4—N1—C1—C259.83 (13)C8—C9—C10—C51.5 (2)
C5—N2—C2—C1175.50 (11)C6—C5—C10—C90.1 (2)
C3—N2—C2—C152.38 (14)N2—C5—C10—C9177.80 (13)
N1—C1—C2—N257.29 (14)C7—C8—O1—C112.0 (2)
C5—N2—C3—C4176.52 (11)C9—C8—O1—C11177.61 (14)
C2—N2—C3—C451.15 (14)O3—C12—C13—C18172.58 (12)
C1—N1—C4—C358.20 (14)O2—C12—C13—C188.03 (18)
N2—C3—C4—N154.40 (15)O3—C12—C13—C148.23 (19)
C3—N2—C5—C6162.71 (12)O2—C12—C13—C14171.15 (12)
C2—N2—C5—C631.58 (17)C18—C13—C14—C151.47 (19)
C3—N2—C5—C1019.66 (17)C12—C13—C14—C15177.74 (12)
C2—N2—C5—C10150.78 (12)C13—C14—C15—C160.8 (2)
C10—C5—C6—C71.0 (2)C14—C15—C16—C170.6 (2)
N2—C5—C6—C7178.78 (12)C14—C15—C16—C19179.81 (14)
C5—C6—C7—C80.5 (2)C15—C16—C17—C181.2 (2)
C6—C7—C8—O1178.52 (13)C19—C16—C17—C18179.54 (13)
C6—C7—C8—C91.1 (2)C16—C17—C18—C130.5 (2)
C7—C8—C9—C102.0 (2)C14—C13—C18—C170.85 (19)
O1—C8—C9—C10177.58 (13)C12—C13—C18—C17178.35 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21.028 (17)1.714 (17)2.7391 (15)174.1 (15)
N1—H1B···O1Wi0.939 (16)1.873 (17)2.7977 (16)167.8 (14)
C1—H1C···O1W0.992.463.2617 (17)138
C2—H2B···O3i0.992.523.5088 (17)174
C4—H4A···O2ii0.992.553.5294 (17)169
C4—H4B···O1Wiii0.992.543.3184 (17)135
O1W—H1W···O30.97 (2)1.67 (2)2.6418 (14)176.5 (18)
O1W—H2W···O2iv0.94 (2)1.83 (2)2.7626 (15)170.5 (17)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z.
 

Acknowledgements

One of the authors (V) is grateful to the DST–PURSE Project, Vijnana Bhavana, UOM for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

References

First citationArbo, M. D., Bastos, M. L. & Carmo, H. F. (2012). Drug Alcohol Depend. 122, 174–185.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAsif, M. (2015). Int. J. Adv. Sci. Res. 1, 05.  CrossRef Google Scholar
First citationBrito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGharbi, C., Fujita, W., Lefebvre, F., Kaminsky, W., Jelsch, C., Ben Nasr, C. & Khedhiri, L. (2021). J. Mol. Struct. 1230, 12929.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019b). Acta Cryst. E75, 1494–1506.  CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chintal, C., Foro, S. & Glidewell, C. (2020b). CSD Communication (refcode KUJPUD). CCDC, Cambridge, England.  Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020a). Acta Cryst. E76, 488–495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1253–1260.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNagai, F., Nonaka, R. & Satoh Hisashi Kamimura, K. (2007). Eur. J. Pharmacol. 559, 132–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 947–952.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStaack, R. F. & Maurer, H. H. (2003). J. Chromatogr. B, 798, 333–342.  Web of Science CrossRef CAS Google Scholar
First citationStaack, R. F. & Maurer, H. H. (2005). Curr. Drug Metab. 6, 259–274.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStaack, R. F., Theobald, D. S., Paul, D., Springer, D., Kraemer, T. & Maurer, H. H. (2004). Xenobiotica, 34, 179–192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWohlfarth, A., Weinmann, W. & Dresen, S. (2010). Anal. Bioanal. Chem. 396, 2403–2414.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds