research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,5-di­imino-8a-methyl-4,9-bis­­(4-methyl­phen­yl)-7-oxo-6-phenyl-deca­hydro-2H-3,8-methano­pyrano[3,2-c]pyridine-3,4a-dicarbo­nitrile N,N-di­methyl­formamide monosolvate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 January 2023; accepted 24 February 2023; online 2 March 2023)

In the title compound, C32H29N5O2·C3H7NO, the bi­cyclo[3.3.1]nonane ring sys­tem adopts a half-chair/twist-boat conformation, with the phenyl rings in equatorial orientations with respect to the piperidine ring. The two oxane rings of the 2-oxabi­cyclo­[2.2.2]octane ring system exhibit a distorted boat conformation. Inter­molecular C—H⋯O and C—H⋯N hydrogen bonds connect the mol­ecules in the crystal, generating layers extending parallel to (100). These layers are connected by C—H⋯π inter­actions. A Hirshfeld surface analysis was per­formed to qu­antify the contributions of the different inter­molecular inter­actions, indicating that the most important contributions to the crystal packing are from H⋯H (52.5%), N⋯H/H⋯N (19.2%), C⋯H/H⋯C (18.8%) and O⋯H/H⋯O (8.3%) inter­actions.

1. Chemical context

Different C—C, C—N, and C—O bond-formation methods play important roles in various organic synthesis directions (Aliyeva et al., 2011[Aliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]; Mamedov et al., 2022[Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291-296.]). Heterocyclic systems, especially those comprising the pyrano[3,2-c]pyridine scaffold, are present in many natural or synthetic products with a wide spectrum of biological properties, such as anti­tumor, anti­tubercular, cholinesterase inhibitor and anti-diabetic activities (Mamedov et al., 2019[Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232-233.]; Kumari et al., 2018[Kumari, P., Narayana, C., Dubey, S., Gupta, A. & Sagar, R. (2018). Org. Biomol. Chem. 16, 2049-2059.]). One of the most effective synthetic approaches to these polyfunctional heterocyclic systems is a Michael addition of active methyl­ene compounds at the yl­idene malono­nitrile functionality (Girgis et al., 2015[Girgis, A. S., Saleh, D. O., George, R. F., Srour, A. M., Pillai, G. G., Panda, C. S. & Katritzky, A. R. (2015). Eur. J. Med. Chem. 89, 835-843.]). In a recent study (Mamedov et al., 2019[Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232-233.]), we found that the reaction of two moles of aryl­idene malono­nitriles with acetoacetanilide in the presence of piperazine hydrate leads to the formation of novel tricyclic pyrano[3,2-c]pyridine derivatives at room temperature (Fig. 1[link]).

[Figure 1]
Figure 1
Chemical scheme for the one-pot synthesis of tricyclic pyrano[3,2-c]pyridine derivatives.

In this context and with respect to our on-going structural studies (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]; Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]), we report here the crystal structure and Hirshfeld surface analysis of 2,5-di­imino-8a-methyl-4,9-bis­(4-methyl­phen­yl)-7-oxo-6-phenyl-deca­hydro-2H-3,8-methano­pyrano[3,2-c]pyridine-3,4a-dicarbo­nitrile N,N-di­methyl­formamide monosolv­ate, C32H29N5O2·C3H7NO.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is displayed in Fig. 2[link]. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯N hydrogen bond (Table 1[link]) and consolidated by inter­molecular C—H⋯O inter­actions involving the N,N-di­methyl­formamide solvent mol­ecule (Fig. 2[link]). As shown in Fig. 3[link], the bi­cyclo­[3.3.1]nonane ring system (C2/N3/C4–C8/C1/C9) adopts a half-chair/twist-boat conformation; the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.529 (2) Å, θ = 53.0 (2)°, φ = 160.1 (3)° for the (N3/C2/C1/C9/C5/C4) ring, and QT = 0.889 (2) Å, θ = 89.21 (13)°, φ = 289.11 (14)° for the (C1/C8/C7/C6/C5/C9) ring. The phenyl rings (C12–C17, C18–C23 and C26–C31) are in equatorial orientations with respect to the piperidine ring (C1/C2/N3/C4/C5/C9). The two oxane rings (O9/C9/C1/C8/C7/C10 and O9/C9/C5/C6/C7/C10) of the 2-oxabi­cyclo­[2.2.2]octane ring system (C10/O9/C9/C1/C8/C7/C6/C5) exhibit a distorted boat conformation with puckering parameters QT = 0.799 (2) Å, θ = 91.88 (14)°, φ = 247.89 (15)° for the O9/C9/C1/C8C7/C10 ring, and QT = 0.826 (2) Å, θ = 96.04 (14)°, φ = 50.59 (15)° for the O9/C9/C5/C6/C7/C10 ring.

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 is the centroid of the C26–C31 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O34 1.00 2.44 3.297 (3) 143
C8—H8⋯O34 1.00 2.34 3.241 (3) 149
C13—H13⋯O34 0.95 2.47 3.373 (3) 159
C27—H27⋯N10 0.95 2.56 3.432 (3) 152
C30—H30⋯N11i 0.95 2.61 3.515 (3) 160
C33—H33C⋯O4ii 0.98 2.48 3.447 (3) 170
C24—H24CCg7iii 0.98 2.84 3.715 (2) 148
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The mol­ecular entities of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. C—H⋯O and C—H⋯N hydrogen bonds are indicated by dashed lines.
[Figure 3]
Figure 3
View of the octa­hydro-2H-3,8-methano­pyrano[3,2-c]pyridine ring sytem of the title compound.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]) link individual mol­ecules, forming layers parallel to (100) (Fig. 4[link]). These layers are connected by C—H⋯π inter­actions (Fig. 5[link]). Inter­estingly, the imine C=N—H groups are not involved in hydrogen-bonding inter­actions.

[Figure 4]
Figure 4
A partial view of the crystal packing along the a axis of the title compound with C—H⋯O and C—H⋯N hydrogen bonds indicated (dashed lines). [Symmetry codes: (i) x, −y + [{1\over 2}], z − [{3\over 2}]; (ii) x, −y − [{1\over 2}], z − [{1\over 2}]].
[Figure 5]
Figure 5
A general view of the packing in the unit cell of the title compound with C—H⋯π inter­actions indicated (dashed lines). [Symmetry codes: (iii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (iv) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]].

A Hirshfeld surface analysis was performed to qu­antify the inter­molecular inter­actions; the accompanying two-dimensional fingerprint plots were obtained using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.1713 (red) to 1.4361 (blue) a.u. is shown in Fig. 6[link]. The shorter and longer contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The most important red spots on the dnorm surface represent the aforementioned C—H⋯O and C—H⋯N inter­actions (Tables 1[link], 2[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Atoms Distance Symmetry code
O4⋯H33C 2.48 x, [{1\over 2}] − y, −[{1\over 2}] + z
H10N⋯H35A 2.35 x, y, 1 + z
H10N⋯H32B 2.52 x, [{3\over 2}] − y, [{1\over 2}] + z
H33A⋯N2 2.70 2 − x, 1 − y, 2 − z
H15⋯N2 2.92 2 − x, 1 − y, 1 − z
H24A⋯N10 2.82 1 − x, 1 − y, 2 − z
C29⋯H16 2.85 2 − x, [{1\over 2}] + y, [{3\over 2}] − z
C28⋯H24C 2.68 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
N25⋯H36C 2.77 1 − x, 1 − y, 1 − z
H13⋯H35C 2.29 x, y, z
C18⋯H35B 2.91 x, [{1\over 2}] − y, [{1\over 2}] + z
H32B⋯C34 3.04 x, [{3\over 2}] − y, [{1\over 2}] + z
[Figure 6]
Figure 6
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.1713 to 1.4361 a.u..

Fig. 7[link] depicts the two-dimensional fingerprint plots of (di, de) points from all the contacts contributing to the Hirshfeld surface analysis in normal mode for all atoms. The most important inter­molecular inter­actions are H⋯H contacts, contributing 52.5% to the overall crystal packing. Other inter­actions and their respective contributions are N⋯H/H⋯N (19.2%), C⋯H/H⋯C (18.8%), O⋯H/H⋯O (8.3%), N⋯N (0.6%), C⋯N/N⋯C (0.3%), C⋯C (0.2%) and C⋯O/O⋯C (0.1%), respectively.

[Figure 7]
Figure 7
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

The Hirshfeld surface study verifies the significance of H-atom inter­actions in the packing formation. The contributions of H⋯H and N⋯H/H⋯N inter­actions imply that van der Waals inter­actions are important in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

4. Database survey

The five most similar compounds found in a search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the bi­cyclo [3.3.1]nonane ring system are: 7-tert-butyl-N-methyl-2,4- diphenyl-3-aza­bicyclo­[3.3.1]nonane (I) (Kumaran et al., 1999[Kumaran, D., Ponnuswamy, M. N., Shanmugam, G., Ponnuswamy, S., Jeyaraman, R., Shivakumar, K. & Fun, H. K. (1999). Acta Cryst. B55, 793-798.]), N-acetyl-2,4-diphenyl-3-aza­bicyclo­[3.3.1]nonane (II) (Kumar­an et al., 1999[Kumaran, D., Ponnuswamy, M. N., Shanmugam, G., Ponnuswamy, S., Jeyaraman, R., Shivakumar, K. & Fun, H. K. (1999). Acta Cryst. B55, 793-798.]), N-methyl-2,4-bis­(2- methyl­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-ol (III) (Kumaran et al., 1999[Kumaran, D., Ponnuswamy, M. N., Shanmugam, G., Ponnuswamy, S., Jeyaraman, R., Shivakumar, K. & Fun, H. K. (1999). Acta Cryst. B55, 793-798.]), 3-aza­bicyclo­[3.3.1]nonane- 2,4-dione (form 2) (IV) (Hulme et al., 2006[Hulme, A. T., Fernandes, P., Florence, A., Johnston, A. & Shankland, K. (2006). Acta Cryst. E62, o3046-o3048.]) and 2,4-bis­(furan-2-yl)-1,5-dimethyl-3-aza­bicyclo [3.3.1]nonan-9-one (V) (Venkateswaramoorthi et al., 2013[Venkateswaramoorthi, R., Rizwana Begum, S., Hema, R., Krishnasamy, K. & Anitha, A. G. (2013). Acta Cryst. E69, o768.]).

Compounds (I) and (III) crystallize in monoclinic space groups (P21/c, Z = 4, and P21/n, Z = 4, respectively), whereas (II) is ortho­rhom­bic (Pbca, Z = 8). In each of the three structures, the bicyclic ring system adopts a chair/chair conformation and the phenyl rings are in equatorial orientations with respect to the piperidine ring. In (II), apart from van der Waals forces, only weak inter­molecular C—H⋯O-type inter­actions are involved in the packing.

The structure of (IV) has monoclinic symmetry (P21/c, Z = 8) and has two mol­ecules in the asymmetric unit. A C22(8) chain motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) is formed via N—H⋯O hydrogen bonds.

In (V), which likewise is monoclinic (C2/c, Z = 8), the bicyclic ring system adopts a twin-chair conformation. The two methyl groups attached to the bicycle are in an equatorial orientation for both rings. In the crystal, very long N—H⋯O hydrogen bonds connect the mol­ecules into a chain perpendicular to [010].

5. Synthesis and crystallization

The title compound was synthesized using a previously reported procedure (Mamedov et al., 2019[Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232-233.]). Colourless crystals were obtained upon recrystallization from an ethanol/water (3:1 v/v) solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were located from difference-Fourier maps and refined with free atomic coordinates and Uiso = 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula C32H27N5O2·C3H7NO
Mr 586.68
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 17.6747 (3), 15.7656 (2), 10.9086 (2)
β (°) 105.666 (2)
V3) 2926.79 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.70
Crystal size (mm) 0.14 × 0.11 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.900, 0.936
No. of measured, independent and observed [I > 2σ(I)] reflections 31226, 6140, 5275
Rint 0.051
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.166, 1.08
No. of reflections 6140
No. of parameters 408
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.36
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

4,10-Diimino-8-methyl-2,11-bis(4-methylphenyl)-6-oxo-5-phenyl-9-oxa-5-azatricyclo[5.3.1.03,8]undecane-1,3-dicarbonitrile N,N-dimethylformamide monosolvate top
Crystal data top
C32H27N5O2·C3H7NOF(000) = 1240
Mr = 586.68Dx = 1.331 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 17.6747 (3) ÅCell parameters from 19771 reflections
b = 15.7656 (2) Åθ = 3.8–79.0°
c = 10.9086 (2) ŵ = 0.70 mm1
β = 105.666 (2)°T = 100 K
V = 2926.79 (9) Å3Prism, colourless
Z = 40.14 × 0.11 × 0.08 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5275 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.051
φ and ω scansθmax = 79.5°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 2221
Tmin = 0.900, Tmax = 0.936k = 2019
31226 measured reflectionsl = 1213
6140 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0745P)2 + 3.3477P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
6140 reflectionsΔρmax = 0.34 e Å3
408 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Owing to poor agreement between observed and calculated intensities, twenty-three outliers (2 5 1, 3 8 1, 1 8 9, 12 2 8, 1 8 1, 4 0 8, 2 1 1, 4 12 10, 4 2 7, 5 12 8, 1 1 7, 3 6 8, 6 3 9, 1 9 9, 12 11 1, 2 9 9, 1 9 7, 5 3 9, 5 14 7, 3 6 1, 0 1 7, 12 2 7, and 1 11 8) were omitted in the final cycles of refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.84688 (12)0.49523 (12)0.84606 (19)0.0192 (4)
C20.90039 (12)0.46714 (13)0.76567 (19)0.0198 (4)
C40.81629 (12)0.33885 (13)0.70834 (19)0.0206 (4)
C50.77485 (12)0.35958 (13)0.81000 (19)0.0194 (4)
H50.7666070.3050610.8514470.023*
C60.69240 (12)0.39782 (13)0.74590 (19)0.0203 (4)
H60.6826040.3938140.6514130.024*
C70.69769 (12)0.49505 (13)0.78496 (19)0.0200 (4)
C80.77028 (12)0.53623 (13)0.75358 (19)0.0195 (4)
H80.7690580.5182550.6651550.023*
C90.82223 (12)0.41853 (13)0.91434 (19)0.0198 (4)
C100.70680 (12)0.49526 (13)0.9264 (2)0.0207 (4)
C110.88965 (12)0.55627 (13)0.94255 (19)0.0201 (4)
C120.91367 (12)0.37153 (13)0.5957 (2)0.0214 (4)
C130.87775 (13)0.39897 (14)0.4729 (2)0.0261 (5)
H130.8299300.4299830.4552870.031*
C140.91246 (15)0.38060 (16)0.3761 (2)0.0305 (5)
H140.8881700.3987230.2915900.037*
C150.98255 (14)0.33583 (15)0.4026 (2)0.0283 (5)
H151.0062970.3234510.3362140.034*
C161.01812 (13)0.30904 (14)0.5263 (2)0.0271 (5)
H161.0660670.2782530.5441710.033*
C170.98380 (13)0.32713 (13)0.6236 (2)0.0241 (4)
H171.0080990.3092850.7082660.029*
C180.62485 (12)0.35539 (13)0.7832 (2)0.0208 (4)
C190.63465 (13)0.31443 (13)0.9005 (2)0.0225 (4)
H190.6859900.3068110.9553330.027*
C200.57009 (13)0.28484 (14)0.9374 (2)0.0241 (4)
H200.5782800.2562821.0165770.029*
C210.49370 (13)0.29599 (14)0.8612 (2)0.0248 (5)
C220.48456 (13)0.33204 (14)0.7412 (2)0.0249 (5)
H220.4333800.3369730.6848020.030*
C230.54892 (13)0.36093 (13)0.7026 (2)0.0231 (4)
H230.5410050.3847610.6200810.028*
C240.42432 (13)0.27319 (15)0.9096 (2)0.0288 (5)
H24A0.4082640.3227970.9506100.043*
H24B0.4388460.2269510.9716080.043*
H24C0.3806360.2549570.8382650.043*
C250.62564 (13)0.53826 (13)0.7117 (2)0.0231 (4)
C260.77331 (12)0.63271 (13)0.75573 (19)0.0213 (4)
C270.74616 (13)0.68268 (13)0.8408 (2)0.0229 (4)
H270.7210830.6566570.8979470.028*
C280.75561 (13)0.77005 (14)0.8423 (2)0.0244 (4)
H280.7360150.8029870.8999620.029*
C290.79307 (13)0.81081 (14)0.7616 (2)0.0242 (4)
C300.81945 (13)0.76077 (14)0.6766 (2)0.0251 (5)
H300.8447720.7868780.6198120.030*
C310.80946 (13)0.67318 (14)0.6730 (2)0.0238 (4)
H310.8275330.6405250.6133760.029*
C320.80575 (15)0.90535 (14)0.7689 (2)0.0301 (5)
H32A0.8524320.9185750.8382800.045*
H32B0.7597390.9331630.7848280.045*
H32C0.8133140.9258270.6881690.045*
C330.89004 (12)0.37404 (13)1.0063 (2)0.0218 (4)
H33A0.9192020.4148491.0693040.033*
H33B0.9250890.3499230.9594850.033*
H33C0.8697760.3285061.0498160.033*
C340.63579 (14)0.47173 (15)0.3770 (2)0.0275 (5)
H340.5936300.5054190.3883020.033*
C350.68357 (15)0.37063 (15)0.2489 (2)0.0300 (5)
H35A0.7094550.3946720.1878610.045*
H35B0.6585470.3167520.2159150.045*
H35C0.7226640.3607800.3303820.045*
C360.54932 (14)0.43254 (18)0.1702 (2)0.0338 (5)
H36A0.5214780.3787140.1695260.051*
H36B0.5586620.4418610.0866570.051*
H36C0.5174140.4790560.1889910.051*
N20.95780 (11)0.51308 (12)0.75995 (18)0.0242 (4)
H2N0.9840 (16)0.4923 (18)0.702 (3)0.029*
N30.87658 (10)0.39156 (11)0.69547 (16)0.0205 (4)
N100.66000 (11)0.52902 (12)0.98087 (19)0.0252 (4)
H10N0.6751 (16)0.5206 (18)1.071 (3)0.030*
N110.92084 (11)0.60155 (12)1.02287 (17)0.0250 (4)
N250.57038 (11)0.56806 (13)0.64654 (19)0.0298 (4)
N340.62423 (11)0.42955 (12)0.26736 (18)0.0265 (4)
O40.79621 (9)0.27759 (10)0.63952 (15)0.0270 (4)
O90.77226 (8)0.45054 (9)0.99082 (13)0.0202 (3)
O340.69653 (10)0.47051 (11)0.46440 (15)0.0332 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (10)0.0151 (9)0.0192 (9)0.0017 (7)0.0064 (8)0.0003 (7)
C20.0234 (10)0.0172 (9)0.0190 (9)0.0005 (8)0.0063 (8)0.0001 (8)
C40.0235 (10)0.0171 (9)0.0218 (10)0.0008 (8)0.0069 (8)0.0007 (8)
C50.0240 (10)0.0146 (9)0.0209 (10)0.0016 (7)0.0080 (8)0.0012 (7)
C60.0245 (10)0.0162 (9)0.0198 (10)0.0002 (8)0.0052 (8)0.0017 (7)
C70.0219 (10)0.0168 (9)0.0210 (10)0.0003 (8)0.0052 (8)0.0000 (8)
C80.0248 (10)0.0178 (9)0.0166 (9)0.0004 (8)0.0064 (8)0.0003 (7)
C90.0231 (10)0.0172 (9)0.0207 (10)0.0000 (8)0.0086 (8)0.0010 (8)
C100.0239 (10)0.0148 (9)0.0235 (10)0.0018 (7)0.0066 (8)0.0002 (8)
C110.0242 (10)0.0164 (9)0.0209 (10)0.0007 (8)0.0080 (8)0.0000 (8)
C120.0273 (10)0.0176 (9)0.0210 (10)0.0034 (8)0.0092 (8)0.0031 (8)
C130.0284 (11)0.0244 (11)0.0260 (11)0.0021 (9)0.0081 (9)0.0000 (9)
C140.0384 (13)0.0314 (12)0.0233 (11)0.0003 (10)0.0110 (9)0.0015 (9)
C150.0363 (12)0.0256 (11)0.0282 (11)0.0051 (9)0.0179 (9)0.0069 (9)
C160.0278 (11)0.0213 (10)0.0346 (12)0.0010 (9)0.0126 (9)0.0039 (9)
C170.0282 (11)0.0184 (10)0.0262 (11)0.0007 (8)0.0082 (8)0.0009 (8)
C180.0242 (10)0.0151 (9)0.0237 (10)0.0001 (8)0.0078 (8)0.0037 (8)
C190.0243 (10)0.0196 (10)0.0224 (10)0.0005 (8)0.0046 (8)0.0012 (8)
C200.0303 (11)0.0212 (10)0.0216 (10)0.0029 (8)0.0083 (9)0.0013 (8)
C210.0282 (11)0.0191 (10)0.0285 (11)0.0030 (8)0.0100 (9)0.0049 (8)
C220.0238 (10)0.0216 (10)0.0274 (11)0.0006 (8)0.0035 (8)0.0026 (8)
C230.0298 (11)0.0178 (10)0.0213 (10)0.0009 (8)0.0062 (8)0.0003 (8)
C240.0274 (11)0.0276 (12)0.0328 (12)0.0032 (9)0.0103 (9)0.0026 (9)
C250.0265 (11)0.0188 (10)0.0254 (11)0.0018 (8)0.0093 (9)0.0021 (8)
C260.0241 (10)0.0181 (10)0.0203 (10)0.0002 (8)0.0037 (8)0.0018 (8)
C270.0287 (11)0.0184 (10)0.0228 (10)0.0001 (8)0.0088 (8)0.0012 (8)
C280.0307 (11)0.0194 (10)0.0223 (10)0.0020 (8)0.0059 (9)0.0016 (8)
C290.0282 (11)0.0189 (10)0.0224 (10)0.0004 (8)0.0018 (8)0.0019 (8)
C300.0324 (11)0.0199 (10)0.0230 (10)0.0028 (9)0.0073 (9)0.0034 (8)
C310.0300 (11)0.0210 (10)0.0213 (10)0.0004 (8)0.0084 (8)0.0003 (8)
C320.0392 (13)0.0185 (10)0.0317 (12)0.0009 (9)0.0076 (10)0.0021 (9)
C330.0259 (10)0.0173 (9)0.0220 (10)0.0006 (8)0.0060 (8)0.0014 (8)
C340.0314 (11)0.0279 (11)0.0243 (11)0.0010 (9)0.0094 (9)0.0010 (9)
C350.0376 (13)0.0254 (11)0.0277 (11)0.0027 (9)0.0100 (10)0.0009 (9)
C360.0295 (12)0.0434 (14)0.0277 (12)0.0001 (10)0.0063 (9)0.0046 (10)
N20.0280 (9)0.0221 (9)0.0245 (9)0.0027 (7)0.0105 (8)0.0021 (7)
N30.0255 (9)0.0163 (8)0.0217 (8)0.0020 (7)0.0098 (7)0.0027 (7)
N100.0311 (10)0.0216 (9)0.0260 (10)0.0001 (7)0.0131 (8)0.0001 (7)
N110.0283 (9)0.0212 (9)0.0255 (9)0.0004 (7)0.0073 (7)0.0010 (7)
N250.0291 (10)0.0244 (10)0.0346 (11)0.0011 (8)0.0061 (8)0.0030 (8)
N340.0288 (10)0.0263 (10)0.0241 (9)0.0010 (8)0.0064 (8)0.0018 (7)
O40.0322 (8)0.0205 (7)0.0307 (8)0.0034 (6)0.0126 (7)0.0073 (6)
O90.0241 (7)0.0187 (7)0.0191 (7)0.0014 (5)0.0081 (6)0.0003 (5)
O340.0358 (9)0.0365 (9)0.0253 (8)0.0032 (7)0.0049 (7)0.0042 (7)
Geometric parameters (Å, º) top
C1—C111.475 (3)C20—C211.392 (3)
C1—C21.519 (3)C20—H200.9500
C1—C91.543 (3)C21—C221.396 (3)
C1—C81.591 (3)C21—C241.504 (3)
C2—N21.262 (3)C22—C231.392 (3)
C2—N31.418 (3)C22—H220.9500
C4—O41.216 (3)C23—H230.9500
C4—N31.388 (3)C24—H24A0.9800
C4—C51.520 (3)C24—H24B0.9800
C5—C91.532 (3)C24—H24C0.9800
C5—C61.557 (3)C25—N251.143 (3)
C5—H51.0000C26—C311.393 (3)
C6—C181.517 (3)C26—C271.397 (3)
C6—C71.587 (3)C27—C281.387 (3)
C6—H61.0000C27—H270.9500
C7—C251.475 (3)C28—C291.393 (3)
C7—C101.507 (3)C28—H280.9500
C7—C81.556 (3)C29—C301.391 (3)
C8—C261.522 (3)C29—C321.506 (3)
C8—H81.0000C30—C311.391 (3)
C9—O91.459 (2)C30—H300.9500
C9—C331.512 (3)C31—H310.9500
C10—N101.259 (3)C32—H32A0.9800
C10—O91.375 (2)C32—H32B0.9800
C11—N111.149 (3)C32—H32C0.9800
C12—C171.384 (3)C33—H33A0.9800
C12—C131.388 (3)C33—H33B0.9800
C12—N31.449 (3)C33—H33C0.9800
C13—C141.387 (3)C34—O341.229 (3)
C13—H130.9500C34—N341.335 (3)
C14—C151.387 (3)C34—H340.9500
C14—H140.9500C35—N341.455 (3)
C15—C161.392 (3)C35—H35A0.9800
C15—H150.9500C35—H35B0.9800
C16—C171.387 (3)C35—H35C0.9800
C16—H160.9500C36—N341.456 (3)
C17—H170.9500C36—H36A0.9800
C18—C231.395 (3)C36—H36B0.9800
C18—C191.401 (3)C36—H36C0.9800
C19—C201.389 (3)N2—H2N0.94 (3)
C19—H190.9500N10—H10N0.95 (3)
C11—C1—C2108.85 (17)C21—C20—H20119.2
C11—C1—C9108.90 (17)C20—C21—C22117.3 (2)
C2—C1—C9110.55 (16)C20—C21—C24120.8 (2)
C11—C1—C8111.83 (16)C22—C21—C24121.8 (2)
C2—C1—C8107.95 (16)C23—C22—C21121.3 (2)
C9—C1—C8108.76 (16)C23—C22—H22119.3
N2—C2—N3125.53 (19)C21—C22—H22119.3
N2—C2—C1119.71 (19)C22—C23—C18120.9 (2)
N3—C2—C1114.63 (17)C22—C23—H23119.5
O4—C4—N3121.14 (19)C18—C23—H23119.5
O4—C4—C5120.22 (18)C21—C24—H24A109.5
N3—C4—C5118.64 (17)C21—C24—H24B109.5
C4—C5—C9113.46 (17)H24A—C24—H24B109.5
C4—C5—C6109.41 (16)C21—C24—H24C109.5
C9—C5—C6110.87 (16)H24A—C24—H24C109.5
C4—C5—H5107.6H24B—C24—H24C109.5
C9—C5—H5107.6N25—C25—C7174.4 (2)
C6—C5—H5107.6C31—C26—C27118.15 (19)
C18—C6—C5114.69 (17)C31—C26—C8117.91 (19)
C18—C6—C7110.33 (16)C27—C26—C8123.83 (19)
C5—C6—C7105.86 (16)C28—C27—C26120.4 (2)
C18—C6—H6108.6C28—C27—H27119.8
C5—C6—H6108.6C26—C27—H27119.8
C7—C6—H6108.6C27—C28—C29121.8 (2)
C25—C7—C10113.04 (18)C27—C28—H28119.1
C25—C7—C8109.31 (17)C29—C28—H28119.1
C10—C7—C8110.95 (17)C30—C29—C28117.5 (2)
C25—C7—C6108.74 (16)C30—C29—C32121.6 (2)
C10—C7—C6105.03 (16)C28—C29—C32120.8 (2)
C8—C7—C6109.64 (16)C29—C30—C31121.2 (2)
C26—C8—C7116.18 (17)C29—C30—H30119.4
C26—C8—C1112.08 (16)C31—C30—H30119.4
C7—C8—C1107.58 (16)C30—C31—C26120.9 (2)
C26—C8—H8106.8C30—C31—H31119.6
C7—C8—H8106.8C26—C31—H31119.6
C1—C8—H8106.8C29—C32—H32A109.5
O9—C9—C33105.95 (16)C29—C32—H32B109.5
O9—C9—C5109.93 (16)H32A—C32—H32B109.5
C33—C9—C5112.84 (17)C29—C32—H32C109.5
O9—C9—C1107.35 (16)H32A—C32—H32C109.5
C33—C9—C1114.04 (17)H32B—C32—H32C109.5
C5—C9—C1106.61 (16)C9—C33—H33A109.5
N10—C10—O9123.02 (19)C9—C33—H33B109.5
N10—C10—C7125.6 (2)H33A—C33—H33B109.5
O9—C10—C7111.38 (17)C9—C33—H33C109.5
N11—C11—C1175.8 (2)H33A—C33—H33C109.5
C17—C12—C13121.3 (2)H33B—C33—H33C109.5
C17—C12—N3120.32 (19)O34—C34—N34125.3 (2)
C13—C12—N3118.38 (19)O34—C34—H34117.3
C14—C13—C12119.2 (2)N34—C34—H34117.3
C14—C13—H13120.4N34—C35—H35A109.5
C12—C13—H13120.4N34—C35—H35B109.5
C15—C14—C13120.1 (2)H35A—C35—H35B109.5
C15—C14—H14119.9N34—C35—H35C109.5
C13—C14—H14119.9H35A—C35—H35C109.5
C14—C15—C16120.0 (2)H35B—C35—H35C109.5
C14—C15—H15120.0N34—C36—H36A109.5
C16—C15—H15120.0N34—C36—H36B109.5
C17—C16—C15120.2 (2)H36A—C36—H36B109.5
C17—C16—H16119.9N34—C36—H36C109.5
C15—C16—H16119.9H36A—C36—H36C109.5
C12—C17—C16119.1 (2)H36B—C36—H36C109.5
C12—C17—H17120.4C2—N2—H2N112.5 (17)
C16—C17—H17120.4C4—N3—C2124.93 (17)
C23—C18—C19117.73 (19)C4—N3—C12117.45 (17)
C23—C18—C6119.75 (19)C2—N3—C12117.42 (17)
C19—C18—C6122.41 (18)C10—N10—H10N112.8 (17)
C20—C19—C18120.7 (2)C34—N34—C35120.03 (19)
C20—C19—H19119.7C34—N34—C36121.7 (2)
C18—C19—H19119.7C35—N34—C36117.86 (19)
C19—C20—C21121.7 (2)C10—O9—C9116.16 (15)
C19—C20—H20119.2
C11—C1—C2—N221.8 (3)N3—C12—C13—C14179.8 (2)
C9—C1—C2—N2141.3 (2)C12—C13—C14—C150.5 (3)
C8—C1—C2—N299.8 (2)C13—C14—C15—C160.2 (4)
C11—C1—C2—N3162.27 (17)C14—C15—C16—C170.2 (3)
C9—C1—C2—N342.7 (2)C13—C12—C17—C160.7 (3)
C8—C1—C2—N376.1 (2)N3—C12—C17—C16179.82 (19)
O4—C4—C5—C9161.19 (19)C15—C16—C17—C120.4 (3)
N3—C4—C5—C919.4 (3)C5—C6—C18—C23156.70 (18)
O4—C4—C5—C674.4 (2)C7—C6—C18—C2383.9 (2)
N3—C4—C5—C6105.0 (2)C5—C6—C18—C1927.2 (3)
C4—C5—C6—C18128.31 (18)C7—C6—C18—C1992.2 (2)
C9—C5—C6—C18105.81 (19)C23—C18—C19—C203.6 (3)
C4—C5—C6—C7109.82 (18)C6—C18—C19—C20172.57 (19)
C9—C5—C6—C716.1 (2)C18—C19—C20—C211.2 (3)
C18—C6—C7—C2564.0 (2)C19—C20—C21—C225.1 (3)
C5—C6—C7—C25171.40 (16)C19—C20—C21—C24172.4 (2)
C18—C6—C7—C1057.3 (2)C20—C21—C22—C234.2 (3)
C5—C6—C7—C1067.34 (19)C24—C21—C22—C23173.3 (2)
C18—C6—C7—C8176.56 (16)C21—C22—C23—C180.5 (3)
C5—C6—C7—C851.9 (2)C19—C18—C23—C224.4 (3)
C25—C7—C8—C2647.0 (2)C6—C18—C23—C22171.82 (19)
C10—C7—C8—C2678.3 (2)C7—C8—C26—C31148.55 (19)
C6—C7—C8—C26166.10 (16)C1—C8—C26—C3187.2 (2)
C25—C7—C8—C1173.51 (16)C7—C8—C26—C2735.4 (3)
C10—C7—C8—C148.2 (2)C1—C8—C26—C2788.9 (2)
C6—C7—C8—C167.4 (2)C31—C26—C27—C280.3 (3)
C11—C1—C8—C2619.3 (2)C8—C26—C27—C28175.78 (19)
C2—C1—C8—C26100.43 (19)C26—C27—C28—C291.0 (3)
C9—C1—C8—C26139.59 (17)C27—C28—C29—C301.4 (3)
C11—C1—C8—C7109.61 (19)C27—C28—C29—C32177.4 (2)
C2—C1—C8—C7130.67 (17)C28—C29—C30—C310.6 (3)
C9—C1—C8—C710.7 (2)C32—C29—C30—C31178.2 (2)
C4—C5—C9—O9167.19 (16)C29—C30—C31—C260.7 (3)
C6—C5—C9—O943.6 (2)C27—C26—C31—C301.1 (3)
C4—C5—C9—C3374.8 (2)C8—C26—C31—C30175.21 (19)
C6—C5—C9—C33161.62 (17)O4—C4—N3—C2175.69 (19)
C4—C5—C9—C151.1 (2)C5—C4—N3—C23.7 (3)
C6—C5—C9—C172.5 (2)O4—C4—N3—C121.0 (3)
C11—C1—C9—O959.6 (2)C5—C4—N3—C12178.45 (17)
C2—C1—C9—O9179.10 (15)N2—C2—N3—C4175.9 (2)
C8—C1—C9—O962.54 (19)C1—C2—N3—C48.5 (3)
C11—C1—C9—C3357.5 (2)N2—C2—N3—C129.4 (3)
C2—C1—C9—C3362.1 (2)C1—C2—N3—C12166.25 (17)
C8—C1—C9—C33179.57 (16)C17—C12—N3—C498.1 (2)
C11—C1—C9—C5177.32 (16)C13—C12—N3—C482.8 (2)
C2—C1—C9—C563.1 (2)C17—C12—N3—C286.7 (2)
C8—C1—C9—C555.2 (2)C13—C12—N3—C292.4 (2)
C25—C7—C10—N101.0 (3)O34—C34—N34—C355.8 (4)
C8—C7—C10—N10122.2 (2)O34—C34—N34—C36178.1 (2)
C6—C7—C10—N10119.4 (2)N10—C10—O9—C9177.47 (19)
C25—C7—C10—O9176.72 (16)C7—C10—O9—C94.7 (2)
C8—C7—C10—O960.1 (2)C33—C9—O9—C10178.80 (16)
C6—C7—C10—O958.3 (2)C5—C9—O9—C1059.0 (2)
C17—C12—C13—C140.8 (3)C1—C9—O9—C1056.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the C26–C31 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O341.002.443.297 (3)143
C8—H8···O341.002.343.241 (3)149
C13—H13···O340.952.473.373 (3)159
C27—H27···N100.952.563.432 (3)152
C30—H30···N11i0.952.613.515 (3)160
C33—H33C···O4ii0.982.483.447 (3)170
C35—H35C···O340.982.392.787 (3)104
C24—H24C···Cg7iii0.982.843.715 (2)148
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2.
Summary of short interatomic contacts (Å) in the title compound top
AtomsDistanceSymmetry code
O4···H33C2.48x, 1/2 - y, -1/2 + z
H10N···H35A2.35x, y, 1 + z
H10N···H32B2.52x, 3/2 - y, 1/2 + z
H33A···N22.702 - x, 1 - y, 2 - z
H15···N22.922 - x, 1 - y, 1 - z
H24A···N102.821 - x, 1 - y, 2 - z
C29···H162.852 - x, 1/2 + y, 3/2 - z
C28···H24C2.681 - x, 1/2 + y, 3/2 - z
N25···H36C2.771 - x, 1 - y, 1 - z
H13···H35C2.29x, y, z
C18···H35B2.91x, 1/2 - y, 1/2 + z
H32B···C343.04x, 3/2 - y, 1/2 + z
 

Acknowledgements

Author contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and APN; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and APN; supervision, ANK and MA.

Funding information

This paper was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

First citationAliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGirgis, A. S., Saleh, D. O., George, R. F., Srour, A. M., Pillai, G. G., Panda, C. S. & Katritzky, A. R. (2015). Eur. J. Med. Chem. 89, 835–843.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHulme, A. T., Fernandes, P., Florence, A., Johnston, A. & Shankland, K. (2006). Acta Cryst. E62, o3046–o3048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumaran, D., Ponnuswamy, M. N., Shanmugam, G., Ponnuswamy, S., Jeyaraman, R., Shivakumar, K. & Fun, H. K. (1999). Acta Cryst. B55, 793–798.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumari, P., Narayana, C., Dubey, S., Gupta, A. & Sagar, R. (2018). Org. Biomol. Chem. 16, 2049–2059.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkateswaramoorthi, R., Rizwana Begum, S., Hema, R., Krishnasamy, K. & Anitha, A. G. (2013). Acta Cryst. E69, o768.  CSD CrossRef IUCr Journals Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds