research communications
Syntheses, crystal structures and Hirshfeld surface analyses of N-arylsulfonyl derivatives of cytisine
aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent, 100170, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, massif Universitet shakharchasi 4, Tashkent, 100174, Uzbekistan, and cKara-Kalpak State University, acad. Abdirov Str., 1, Nukus, 742000, Uzbekistan
*Correspondence e-mail: raxul@mail.ru
By arylsulfonylation of cytisine in the presence of triethylamine, three new compounds have been obtained in good yields: (7R,9R)-N-[(4-ethylphenyl)sulfonyl]cytisine, C19H22N2O3S (I) {systematic name: (1R,5R)-3-[(4-ethylphenyl)sulfonyl]-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one}, (7R,9R)-N-[(4-chlorophenyl)sulfonyl]cytisine, C17H17ClN2O3S (II) {systematic name: (1R,5R)-3-[(4-chlorophenyl)sulfonyl]-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one} and (7R,9R)-N-[(3-nitrophenyl)sulfonyl]cytisine, C17H17N3O5S (III) {systematic name: (1R,5R)-3-[(3-nitrophenyl)sulfonyl]-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one}. The crystal structures of the compounds were determined on the basis of single-crystal X-ray diffraction data. The crystal structures of (I)–(III) are distinguished by the arrangement of two fragments of the molecule around the sulfonyl site. For all structures, weak C—H⋯O hydrogen bonds are developed. Hirshfeld surface analysis shows that H⋯H (for I and II) and H⋯O/O⋯H (for III) interactions make the most important contribution to the crystal packing.
1. Chemical context
Cytisine was first isolated by Huzeman and Marme from the seeds of Cytisus Laburnum Med. in 1865. To this day, other sources of cytisine have been found (Azimova & Yunusov, 2013), mainly isolated from plants of the legume family (especially the seeds of Laburnum anagyroides). Cytisine is a quinolizidine alkaloid, which is found in different sources by different names: 1,2,3,4,5,6-hexahydro-1,5-methano-8H-pyrido(1,2-a)(1,5)-diazocin-8-one (Freer et al., 1987), 7,11-diazatricyclo[7.3.1.02,7]trideca-2,4-dien-6-one (Kulakov et al., 2010), (1R,5S)-cytisine (Rouden et al., 2014) or (7R,9S)-cytisine.
Various studies report modern methods for the synthesis of cytisine (Barát et al., 2018; Hirschhäuser et al., 2011; O'Neill et al., 2000; Pérez et al., 2012) or cytisine modification (Brel, 2016; Kulakov et al., 2010; Kulakov & Nurkenov, 2012; Shishkin et al., 2010; Marrière et al., 2000; Frasinyuk et al., 2007). From the large number of cytisine derivatives, substances with biological activity (Tutka et al., 2019; Gotti & Clementi, 2021; Liu et al., 2020) and agents used in medicine (Tabex) have been found. From a chemical point of view, derivation studies of cytisine as well as the development of new methods for the synthesis of various cytisine derivatives are of interest.
This communication describes the synthesis and crystal structures of three N-arylsulfonyl derivatives of cytisine. To obtain these N-arylsulfonyl derivatives, 4-ethylbenzenesulfonyl chloride, 4-chlorobenzenesulfonyl chloride and 3-nitrobenzenesulfonyl chloride were used, resulting in (7R,9R)-N-[(4-ethylphenyl)sulfonyl]cytisine (I), (7R,9R)-N-[(4-chlorophenyl)sulfonyl]cytisine (II) and (7R,9R)-N-[(3-nitrophenyl)sulfonyl]cytisine (III).
2. Structural commentary
The conformations of the cytisine cores in structures (I)–(III) are virtually identical and also do not differ from that of the cytisine molecule itself (Freer et al., 1987), or its various N-derivatives. The configurations of the chiral C atoms in cytisine are 7R, 9S, whereas in the case of (I)–(III) obtained by arylsulfonation of cytisine, the configurations are 7R, 9R in each case.
The I) consists of one molecule of (7R,9R)-N-[(4-ethylphenyl)sulfonyl]cytisine (Fig. 1). The methyl fragment (C8′A, C8′B) of the ethyl group bound to the phenyl ring is disordered over two sets of sites. In the crystal structures of (II) and (III), both asymmetric units likewise comprise one molecule of (7R,9R)-N-[(4-chlorophenyl)sulfonyl]cytisine and (7R,9R)-N-[(3-nitrophenyl)sulfonyl]cytisine, respectively (Figs. 2, 3). The cytisine moieties in (I)–(III) are almost superimposable in the three molecules (Fig. 4). Basically, the difference in the molecular structures pertains to the arrangement of two fragments around the sulfonyl site, i.e. the arrangement of fragments along the S1—N12 and S1—C1′ bonds). Corresponding torsion angles C1′—S1—N12—C11 and N12—S1—C1′—C2′ are listed in Tables 1, 2 and 3.
of (
|
|
|
3. Supramolecular features
In the crystal packing of (I)–(III), weak intermolecular hydrogen bonds of the type C—H⋯O(C) are developed. In the crystal structures of (I) and (II), C—H⋯O1 hydrogen bonds link molecules into chains directed parallel to [100] (Figs. 5, 6), besides other C—H⋯O or C—H⋯Cl (in the case of II) interactions (Tables 4, 5). In the of (III), the C—H⋯O1 interactions link the molecules into a chain running along [10] (Fig. 7, Table 6).
|
|
In order to visualize and quantify intermolecular interactions in (I)–(III), a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with Crystal Explorer 21 (Spackman et al., 2021), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) generated.
The Hirshfeld surfaces for the molecules in (I)–(III) are shown in Figs. 8–10 in which the two-dimensional fingerprint plots of the most dominant contacts are also presented.
For structure (I), H⋯H contacts are responsible for the largest contribution (54.9%) to the Hirshfeld surface. Besides these contacts, H⋯O/O⋯H (26.2%) and H⋯C/C⋯H (16.7%) interactions contribute significantly to the total Hirshfeld surface (Fig. 8). The contributions of further contacts are only minor and amount to H⋯N/N⋯H (1.8%), C⋯C (0.2%) and H⋯S/S⋯H (0.1%).
In structure (II), the contribution percentages of the most significant contacts change because of the presence of H⋯Cl/Cl⋯H interactions and amount to H⋯H (38.9%), H⋯O/O⋯H (25.4%), H⋯C/C⋯H (16.7%) and H⋯Cl/Cl⋯H (10.9%) (Fig. 9). The contributions of further contacts are only minor and are Cl⋯O/O⋯Cl (2.4%), Cl⋯C/C⋯Cl (1.8%), C⋯O/O⋯C (1.7%), H⋯N/N⋯H (1.6%), C⋯C (0.3%) and Cl⋯S/S⋯Cl (0.1%).
In structure (III), the existence of a nitro group likewise changes the contributions of the significant interactions: H⋯O/O⋯H (44.3%), H⋯H (33.3%) and H⋯C/C⋯H (10.2%) (Fig. 10). Other minor contributions amount to C⋯C (3.8%), C⋯O/O⋯C (3.2%), H⋯N/N⋯H (2.5%), O⋯N/N⋯O (1.3%), O⋯O (1.2%) and C⋯N/N⋯C (0.2%).
4. Database survey
A Cambridge Structural Database search (version 2022.3.0; Groom et al., 2016) revealed 99 N-derivatives of cytisine, of which twelve are N-benzyl derivatives of cytisine. N-arylsulfonylcytisine derivatives are not found. The most similar structure with respect to (I)–(III) is 3-[(4-bromophenyl)methyl]-8-oxo-1,3,4,5,6,8-hexahydro-2H-1,5-methanopyrido[1,2-a][1,5]diazocin-3-ium perchlorate (KINBOB; Przybył et al., 2019).
5. Synthesis and crystallization
General method
Arylsulfonyl chloride (0.01 mol) and 10 ml of acetone were placed in a two-necked flask with a volume of 50 ml. After cooling, a previously prepared solution (1.9 g (0.01 mol) of cytisine and 0.01 mol of triethylamine in 15 ml of acetone) was added under stirring through a separatory funnel. The reaction mixture was stirred at room temperature for 10 h. The reaction mixture was then left in the open air overnight to produce a dry mass. The mass was treated with 15 ml of distilled water and the remaining solid filtered off and dried in air. The reaction scheme is shown in Fig. 11.
(7R,9R)-N-[(4-ethylphenyl)sulfonyl]cytisine (I)
Yield 64% (2.29 g), m.p. 456–458 K, Rf = 0.59 [5:1 (v/v) benzene–ethanol].
(7R,9R)-N-[(4-chlorophenyl)sulfonyl]cytisine (II)
Yield 76% (2.77 g), m.p. 488–490 K, Rf = 0.71 [5:1 (v/v) benzene–ethanol].
(7R,9R)-N-[(3-nitrophenyl)sulfonyl]cytisine (III)
Yield 72% (2.71 g), m.p. 524–526 K, Rf = 0.50 [5:1 (v/v) benzene–ethanol].
Colourless crystals of (I)–(III) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.
6. Refinement
Crystal data, data collection and structure . In (I), the methyl C8′ atom is disordered over two positions (C8′A, C8′B). The site occupancy factors of the disordered fragment were refined with a free variable to a ratio of 0.55 (2):0.45 (2). Hydrogen atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH, 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the in a riding motion approximation with Uiso(H) = 1.2Ueq(C) or Uiso = 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 7
|
Supporting information
https://doi.org/10.1107/S2056989023001950/wm5674sup1.cif
contains datablocks I, II, III, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023001950/wm5674Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023001950/wm5674IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989023001950/wm5674IIIsup4.hkl
For all structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C19H22N2O3S | Dx = 1.296 Mg m−3 |
Mr = 358.44 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 10591 reflections |
a = 6.9503 (14) Å | θ = 3.5–70.9° |
b = 10.585 (2) Å | µ = 1.73 mm−1 |
c = 24.975 (5) Å | T = 299 K |
V = 1837.5 (6) Å3 | Prizmatic, colorless |
Z = 4 | 0.25 × 0.20 × 0.10 mm |
F(000) = 760 |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 3553 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3348 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.054 |
ω scans | θmax = 71.4°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
Tmin = 0.032, Tmax = 1.000 | k = −12→13 |
17786 measured reflections | l = −23→30 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0523P)2 + 0.0534P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.22 e Å−3 |
3553 reflections | Δρmin = −0.44 e Å−3 |
238 parameters | Absolute structure: Flack x determined using 1319 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.012 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.72079 (9) | 0.74770 (5) | 0.14537 (2) | 0.05691 (18) | |
O1 | 0.3969 (2) | 0.73366 (18) | 0.35879 (6) | 0.0609 (4) | |
O2 | 0.8449 (3) | 0.64623 (16) | 0.16065 (7) | 0.0707 (5) | |
O3 | 0.5240 (3) | 0.7222 (2) | 0.13301 (8) | 0.0766 (6) | |
N1 | 0.6396 (3) | 0.83845 (17) | 0.31683 (7) | 0.0442 (4) | |
N12 | 0.7204 (3) | 0.84820 (18) | 0.19511 (7) | 0.0525 (4) | |
C2 | 0.5717 (3) | 0.7474 (2) | 0.35284 (8) | 0.0489 (5) | |
C3 | 0.7162 (4) | 0.6760 (3) | 0.38004 (10) | 0.0620 (6) | |
H3A | 0.679416 | 0.612285 | 0.403557 | 0.074* | |
C4 | 0.9054 (4) | 0.6993 (3) | 0.37223 (11) | 0.0660 (7) | |
H4A | 0.996719 | 0.652682 | 0.390946 | 0.079* | |
C5 | 0.9646 (4) | 0.7917 (3) | 0.33673 (10) | 0.0605 (6) | |
H5A | 1.095137 | 0.807418 | 0.331995 | 0.073* | |
C6 | 0.8326 (3) | 0.8596 (2) | 0.30875 (9) | 0.0492 (5) | |
C7 | 0.8915 (4) | 0.9562 (3) | 0.26785 (10) | 0.0585 (6) | |
H7A | 1.017190 | 0.990569 | 0.278075 | 0.070* | |
C8 | 0.7474 (5) | 1.0639 (2) | 0.26561 (11) | 0.0692 (7) | |
H8A | 0.736511 | 1.104049 | 0.300400 | 0.083* | |
H8B | 0.788228 | 1.126854 | 0.239766 | 0.083* | |
C9 | 0.5559 (4) | 1.0075 (3) | 0.24915 (11) | 0.0612 (7) | |
H9A | 0.461650 | 1.076197 | 0.247158 | 0.073* | |
C10 | 0.4861 (3) | 0.9134 (2) | 0.29083 (10) | 0.0524 (5) | |
H10A | 0.416201 | 0.959033 | 0.318316 | 0.063* | |
H10B | 0.396456 | 0.855705 | 0.273849 | 0.063* | |
C11 | 0.5739 (4) | 0.9493 (3) | 0.19342 (10) | 0.0641 (7) | |
H11A | 0.451036 | 0.914628 | 0.182325 | 0.077* | |
H11B | 0.611563 | 1.013563 | 0.167793 | 0.077* | |
C13 | 0.9099 (4) | 0.8943 (3) | 0.21250 (10) | 0.0592 (6) | |
H13A | 0.958528 | 0.955410 | 0.186892 | 0.071* | |
H13B | 1.000046 | 0.824482 | 0.214244 | 0.071* | |
C1' | 0.8285 (4) | 0.8251 (2) | 0.09016 (9) | 0.0585 (6) | |
C2' | 0.7190 (5) | 0.9095 (3) | 0.06041 (11) | 0.0780 (8) | |
H2'A | 0.590106 | 0.923114 | 0.068566 | 0.094* | |
C3' | 0.8057 (7) | 0.9728 (3) | 0.01842 (12) | 0.0894 (11) | |
H3'A | 0.732521 | 1.029034 | −0.001706 | 0.107* | |
C4' | 0.9946 (6) | 0.9558 (3) | 0.00544 (11) | 0.0819 (10) | |
C5' | 1.1005 (6) | 0.8709 (3) | 0.03537 (12) | 0.0849 (9) | |
H5'A | 1.229082 | 0.857186 | 0.026912 | 0.102* | |
C6' | 1.0180 (5) | 0.8052 (3) | 0.07808 (11) | 0.0712 (7) | |
H6'A | 1.091003 | 0.748680 | 0.098065 | 0.085* | |
C7' | 1.0838 (8) | 1.0285 (4) | −0.04059 (14) | 0.1161 (17) | |
H7'A | 1.164041 | 0.971279 | −0.061123 | 0.139* | 0.55 (2) |
H7'B | 0.981596 | 1.057716 | −0.063967 | 0.139* | 0.55 (2) |
H7'C | 1.053155 | 0.983559 | −0.073354 | 0.139* | 0.45 (2) |
H7'D | 1.019922 | 1.109830 | −0.042531 | 0.139* | 0.45 (2) |
C8'A | 1.199 (3) | 1.1360 (16) | −0.0246 (4) | 0.136 (7) | 0.55 (2) |
H8'A | 1.233872 | 1.184056 | −0.055681 | 0.205* | 0.55 (2) |
H8'B | 1.312957 | 1.107082 | −0.006780 | 0.205* | 0.55 (2) |
H8'C | 1.125652 | 1.188309 | −0.000638 | 0.205* | 0.55 (2) |
C8'B | 1.280 (2) | 1.050 (2) | −0.0404 (4) | 0.111 (5) | 0.45 (2) |
H8'D | 1.312947 | 1.105567 | −0.069535 | 0.166* | 0.45 (2) |
H8'E | 1.347397 | 0.971814 | −0.044349 | 0.166* | 0.45 (2) |
H8'F | 1.316353 | 1.089349 | −0.007150 | 0.166* | 0.45 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0714 (4) | 0.0452 (3) | 0.0542 (3) | −0.0046 (3) | 0.0012 (2) | 0.0040 (2) |
O1 | 0.0488 (9) | 0.0641 (10) | 0.0699 (10) | −0.0067 (8) | 0.0057 (7) | 0.0023 (9) |
O2 | 0.0982 (14) | 0.0453 (9) | 0.0687 (10) | 0.0091 (9) | 0.0036 (10) | 0.0092 (8) |
O3 | 0.0790 (13) | 0.0775 (13) | 0.0733 (11) | −0.0218 (11) | −0.0037 (9) | −0.0046 (10) |
N1 | 0.0400 (9) | 0.0428 (9) | 0.0498 (9) | 0.0003 (7) | −0.0009 (7) | −0.0053 (7) |
N12 | 0.0558 (11) | 0.0508 (10) | 0.0510 (9) | 0.0010 (9) | 0.0009 (9) | 0.0024 (8) |
C2 | 0.0483 (11) | 0.0486 (11) | 0.0499 (10) | −0.0027 (10) | −0.0015 (8) | −0.0064 (11) |
C3 | 0.0698 (16) | 0.0617 (14) | 0.0546 (12) | 0.0022 (13) | −0.0104 (12) | 0.0050 (11) |
C4 | 0.0597 (15) | 0.0767 (17) | 0.0614 (13) | 0.0145 (13) | −0.0193 (11) | −0.0041 (13) |
C5 | 0.0406 (11) | 0.0813 (18) | 0.0595 (12) | 0.0023 (11) | −0.0057 (10) | −0.0113 (12) |
C6 | 0.0419 (11) | 0.0543 (12) | 0.0514 (11) | −0.0040 (10) | 0.0013 (9) | −0.0133 (10) |
C7 | 0.0522 (13) | 0.0583 (14) | 0.0649 (14) | −0.0145 (11) | 0.0065 (11) | −0.0104 (11) |
C8 | 0.088 (2) | 0.0459 (12) | 0.0741 (15) | −0.0106 (14) | 0.0117 (15) | −0.0046 (11) |
C9 | 0.0679 (17) | 0.0469 (13) | 0.0689 (15) | 0.0121 (12) | 0.0039 (14) | 0.0033 (11) |
C10 | 0.0443 (11) | 0.0503 (12) | 0.0625 (13) | 0.0082 (10) | −0.0002 (10) | −0.0019 (10) |
C11 | 0.0740 (17) | 0.0561 (14) | 0.0623 (14) | 0.0117 (13) | −0.0004 (13) | 0.0086 (12) |
C13 | 0.0566 (13) | 0.0607 (14) | 0.0603 (13) | −0.0092 (11) | 0.0106 (11) | 0.0014 (11) |
C1' | 0.0768 (17) | 0.0495 (12) | 0.0492 (11) | −0.0015 (12) | 0.0001 (11) | 0.0000 (10) |
C2' | 0.087 (2) | 0.0819 (19) | 0.0648 (15) | 0.0054 (18) | −0.0035 (15) | 0.0168 (14) |
C3' | 0.126 (3) | 0.079 (2) | 0.0635 (17) | 0.003 (2) | −0.0097 (19) | 0.0196 (15) |
C4' | 0.125 (3) | 0.0704 (19) | 0.0503 (14) | −0.0161 (19) | 0.0094 (17) | 0.0020 (13) |
C5' | 0.094 (2) | 0.093 (2) | 0.0684 (17) | −0.0076 (19) | 0.0210 (16) | −0.0031 (16) |
C6' | 0.0838 (19) | 0.0683 (16) | 0.0615 (14) | 0.0077 (15) | 0.0101 (14) | 0.0040 (13) |
C7' | 0.182 (5) | 0.106 (3) | 0.0603 (18) | −0.035 (3) | 0.018 (2) | 0.0090 (19) |
C8'A | 0.219 (15) | 0.128 (10) | 0.062 (4) | −0.069 (11) | 0.000 (6) | 0.020 (5) |
C8'B | 0.130 (9) | 0.134 (12) | 0.069 (5) | −0.043 (8) | 0.023 (5) | 0.010 (7) |
S1—O3 | 1.428 (2) | C10—H10B | 0.9700 |
S1—O2 | 1.429 (2) | C11—H11A | 0.9700 |
S1—N12 | 1.635 (2) | C11—H11B | 0.9700 |
S1—C1' | 1.770 (3) | C13—H13A | 0.9700 |
O1—C2 | 1.233 (3) | C13—H13B | 0.9700 |
N1—C6 | 1.375 (3) | C1'—C6' | 1.368 (4) |
N1—C2 | 1.400 (3) | C1'—C2' | 1.389 (4) |
N1—C10 | 1.479 (3) | C2'—C3' | 1.383 (5) |
N12—C13 | 1.471 (3) | C2'—H2'A | 0.9300 |
N12—C11 | 1.478 (3) | C3'—C4' | 1.365 (6) |
C2—C3 | 1.429 (3) | C3'—H3'A | 0.9300 |
C3—C4 | 1.352 (4) | C4'—C5' | 1.381 (5) |
C3—H3A | 0.9300 | C4'—C7' | 1.515 (4) |
C4—C5 | 1.383 (4) | C5'—C6' | 1.396 (4) |
C4—H4A | 0.9300 | C5'—H5'A | 0.9300 |
C5—C6 | 1.359 (3) | C6'—H6'A | 0.9300 |
C5—H5A | 0.9300 | C7'—C8'B | 1.385 (12) |
C6—C7 | 1.502 (4) | C7'—C8'A | 1.447 (11) |
C7—C8 | 1.519 (4) | C7'—H7'A | 0.9700 |
C7—C13 | 1.535 (3) | C7'—H7'B | 0.9700 |
C7—H7A | 0.9800 | C7'—H7'C | 0.9700 |
C8—C9 | 1.516 (4) | C7'—H7'D | 0.9700 |
C8—H8A | 0.9700 | C8'A—H8'A | 0.9600 |
C8—H8B | 0.9700 | C8'A—H8'B | 0.9600 |
C9—C10 | 1.520 (4) | C8'A—H8'C | 0.9600 |
C9—C11 | 1.527 (4) | C8'B—H8'D | 0.9600 |
C9—H9A | 0.9800 | C8'B—H8'E | 0.9600 |
C10—H10A | 0.9700 | C8'B—H8'F | 0.9600 |
O3—S1—O2 | 119.57 (13) | C9—C11—H11A | 109.9 |
O3—S1—N12 | 106.61 (11) | N12—C11—H11B | 109.9 |
O2—S1—N12 | 106.68 (10) | C9—C11—H11B | 109.9 |
O3—S1—C1' | 108.91 (13) | H11A—C11—H11B | 108.3 |
O2—S1—C1' | 107.49 (13) | N12—C13—C7 | 109.45 (19) |
N12—S1—C1' | 106.94 (11) | N12—C13—H13A | 109.8 |
C6—N1—C2 | 122.35 (18) | C7—C13—H13A | 109.8 |
C6—N1—C10 | 123.50 (19) | N12—C13—H13B | 109.8 |
C2—N1—C10 | 114.07 (17) | C7—C13—H13B | 109.8 |
C13—N12—C11 | 112.7 (2) | H13A—C13—H13B | 108.2 |
C13—N12—S1 | 116.04 (16) | C6'—C1'—C2' | 120.6 (3) |
C11—N12—S1 | 116.78 (16) | C6'—C1'—S1 | 120.5 (2) |
O1—C2—N1 | 119.4 (2) | C2'—C1'—S1 | 118.9 (2) |
O1—C2—C3 | 125.0 (2) | C3'—C2'—C1' | 118.6 (3) |
N1—C2—C3 | 115.6 (2) | C3'—C2'—H2'A | 120.7 |
C4—C3—C2 | 121.2 (3) | C1'—C2'—H2'A | 120.7 |
C4—C3—H3A | 119.4 | C4'—C3'—C2' | 122.4 (3) |
C2—C3—H3A | 119.4 | C4'—C3'—H3'A | 118.8 |
C3—C4—C5 | 120.7 (2) | C2'—C3'—H3'A | 118.8 |
C3—C4—H4A | 119.6 | C3'—C4'—C5' | 118.0 (3) |
C5—C4—H4A | 119.6 | C3'—C4'—C7' | 120.4 (4) |
C6—C5—C4 | 120.2 (2) | C5'—C4'—C7' | 121.6 (4) |
C6—C5—H5A | 119.9 | C4'—C5'—C6' | 121.3 (3) |
C4—C5—H5A | 119.9 | C4'—C5'—H5'A | 119.4 |
C5—C6—N1 | 119.8 (2) | C6'—C5'—H5'A | 119.4 |
C5—C6—C7 | 121.7 (2) | C1'—C6'—C5' | 119.2 (3) |
N1—C6—C7 | 118.5 (2) | C1'—C6'—H6'A | 120.4 |
C6—C7—C8 | 110.9 (2) | C5'—C6'—H6'A | 120.4 |
C6—C7—C13 | 110.2 (2) | C8'B—C7'—C4' | 119.0 (6) |
C8—C7—C13 | 110.0 (2) | C8'A—C7'—C4' | 114.5 (5) |
C6—C7—H7A | 108.6 | C8'A—C7'—H7'A | 108.6 |
C8—C7—H7A | 108.6 | C4'—C7'—H7'A | 108.6 |
C13—C7—H7A | 108.6 | C8'A—C7'—H7'B | 108.6 |
C9—C8—C7 | 107.0 (2) | C4'—C7'—H7'B | 108.6 |
C9—C8—H8A | 110.3 | H7'A—C7'—H7'B | 107.6 |
C7—C8—H8A | 110.3 | C8'B—C7'—H7'C | 107.6 |
C9—C8—H8B | 110.3 | C4'—C7'—H7'C | 107.6 |
C7—C8—H8B | 110.3 | C8'B—C7'—H7'D | 107.6 |
H8A—C8—H8B | 108.6 | C4'—C7'—H7'D | 107.6 |
C8—C9—C10 | 110.6 (2) | H7'C—C7'—H7'D | 107.0 |
C8—C9—C11 | 109.5 (2) | C7'—C8'A—H8'A | 109.5 |
C10—C9—C11 | 112.7 (2) | C7'—C8'A—H8'B | 109.5 |
C8—C9—H9A | 107.9 | H8'A—C8'A—H8'B | 109.5 |
C10—C9—H9A | 107.9 | C7'—C8'A—H8'C | 109.5 |
C11—C9—H9A | 107.9 | H8'A—C8'A—H8'C | 109.5 |
N1—C10—C9 | 115.0 (2) | H8'B—C8'A—H8'C | 109.5 |
N1—C10—H10A | 108.5 | C7'—C8'B—H8'D | 109.5 |
C9—C10—H10A | 108.5 | C7'—C8'B—H8'E | 109.5 |
N1—C10—H10B | 108.5 | H8'D—C8'B—H8'E | 109.5 |
C9—C10—H10B | 108.5 | C7'—C8'B—H8'F | 109.5 |
H10A—C10—H10B | 107.5 | H8'D—C8'B—H8'F | 109.5 |
N12—C11—C9 | 108.8 (2) | H8'E—C8'B—H8'F | 109.5 |
N12—C11—H11A | 109.9 | ||
O3—S1—N12—C13 | −176.35 (18) | C8—C9—C10—N1 | −35.6 (3) |
O2—S1—N12—C13 | 54.8 (2) | C11—C9—C10—N1 | 87.4 (3) |
C1'—S1—N12—C13 | −60.0 (2) | C13—N12—C11—C9 | −58.7 (3) |
O3—S1—N12—C11 | −39.7 (2) | S1—N12—C11—C9 | 163.28 (18) |
O2—S1—N12—C11 | −168.57 (19) | C8—C9—C11—N12 | 60.8 (3) |
C1'—S1—N12—C11 | 76.6 (2) | C10—C9—C11—N12 | −62.8 (3) |
C6—N1—C2—O1 | 179.2 (2) | C11—N12—C13—C7 | 57.4 (3) |
C10—N1—C2—O1 | 2.3 (3) | S1—N12—C13—C7 | −164.26 (18) |
C6—N1—C2—C3 | −1.1 (3) | C6—C7—C13—N12 | 64.3 (3) |
C10—N1—C2—C3 | −178.03 (19) | C8—C7—C13—N12 | −58.3 (3) |
O1—C2—C3—C4 | −178.3 (2) | O3—S1—C1'—C6' | −146.7 (2) |
N1—C2—C3—C4 | 2.1 (3) | O2—S1—C1'—C6' | −15.8 (3) |
C2—C3—C4—C5 | −1.3 (4) | N12—S1—C1'—C6' | 98.4 (2) |
C3—C4—C5—C6 | −0.7 (4) | O3—S1—C1'—C2' | 35.4 (3) |
C4—C5—C6—N1 | 1.7 (4) | O2—S1—C1'—C2' | 166.3 (2) |
C4—C5—C6—C7 | −176.9 (2) | N12—S1—C1'—C2' | −79.4 (2) |
C2—N1—C6—C5 | −0.7 (3) | C6'—C1'—C2'—C3' | 0.0 (5) |
C10—N1—C6—C5 | 175.9 (2) | S1—C1'—C2'—C3' | 177.9 (3) |
C2—N1—C6—C7 | 177.89 (18) | C1'—C2'—C3'—C4' | −0.4 (5) |
C10—N1—C6—C7 | −5.5 (3) | C2'—C3'—C4'—C5' | 0.7 (6) |
C5—C6—C7—C8 | −148.0 (2) | C2'—C3'—C4'—C7' | −179.3 (3) |
N1—C6—C7—C8 | 33.4 (3) | C3'—C4'—C5'—C6' | −0.7 (5) |
C5—C6—C7—C13 | 90.0 (3) | C7'—C4'—C5'—C6' | 179.3 (3) |
N1—C6—C7—C13 | −88.6 (3) | C2'—C1'—C6'—C5' | 0.0 (4) |
C6—C7—C8—C9 | −61.4 (3) | S1—C1'—C6'—C5' | −177.9 (2) |
C13—C7—C8—C9 | 60.7 (3) | C4'—C5'—C6'—C1' | 0.4 (5) |
C7—C8—C9—C10 | 62.7 (3) | C3'—C4'—C7'—C8'B | 154.4 (12) |
C7—C8—C9—C11 | −62.1 (3) | C5'—C4'—C7'—C8'B | −25.7 (12) |
C6—N1—C10—C9 | 6.6 (3) | C3'—C4'—C7'—C8'A | 101.1 (12) |
C2—N1—C10—C9 | −176.56 (19) | C5'—C4'—C7'—C8'A | −78.9 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O1i | 0.93 | 2.34 | 3.116 (3) | 141 |
C7—H7A···O2ii | 0.98 | 2.44 | 3.254 (3) | 140 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, y+1/2, −z+1/2. |
C17H17ClN2O3S | Dx = 1.423 Mg m−3 |
Mr = 364.83 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 12750 reflections |
a = 7.1374 (14) Å | θ = 3.9–71.2° |
b = 11.448 (2) Å | µ = 3.29 mm−1 |
c = 20.844 (4) Å | T = 299 K |
V = 1703.2 (6) Å3 | Prizmatic, colorless |
Z = 4 | 0.30 × 0.20 × 0.15 mm |
F(000) = 760 |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 3289 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3203 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 71.4°, θmin = 4.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
Tmin = 0.795, Tmax = 1.000 | k = −14→13 |
16028 measured reflections | l = −25→25 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0503P)2 + 0.1799P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.42 e Å−3 |
3289 reflections | Δρmin = −0.33 e Å−3 |
217 parameters | Absolute structure: Flack x determined using 1318 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.004 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.22478 (8) | 0.27207 (5) | 0.34739 (3) | 0.03902 (15) | |
Cl1 | −0.32153 (13) | 0.49086 (7) | 0.54785 (3) | 0.0699 (2) | |
O1 | 0.7771 (3) | 0.28000 (19) | 0.15317 (11) | 0.0647 (5) | |
O2 | 0.1269 (3) | 0.18068 (15) | 0.31475 (8) | 0.0502 (4) | |
O3 | 0.3999 (3) | 0.24823 (16) | 0.37824 (9) | 0.0524 (4) | |
N1 | 0.4944 (3) | 0.36786 (17) | 0.16841 (9) | 0.0409 (4) | |
N12 | 0.2648 (3) | 0.37419 (16) | 0.29491 (8) | 0.0401 (4) | |
C2 | 0.6102 (4) | 0.2880 (2) | 0.13668 (12) | 0.0488 (6) | |
C3 | 0.5244 (5) | 0.2229 (3) | 0.08706 (15) | 0.0627 (7) | |
H3A | 0.596685 | 0.171265 | 0.063104 | 0.075* | |
C4 | 0.3400 (5) | 0.2340 (3) | 0.07356 (14) | 0.0655 (8) | |
H4A | 0.287153 | 0.189194 | 0.041014 | 0.079* | |
C5 | 0.2283 (4) | 0.3117 (3) | 0.10791 (13) | 0.0562 (6) | |
H5A | 0.100971 | 0.317377 | 0.098975 | 0.067* | |
C6 | 0.3060 (3) | 0.3793 (2) | 0.15466 (11) | 0.0423 (5) | |
C7 | 0.1922 (3) | 0.4659 (2) | 0.19194 (12) | 0.0451 (5) | |
H7A | 0.088762 | 0.492844 | 0.164794 | 0.054* | |
C8 | 0.3121 (4) | 0.5714 (2) | 0.21021 (14) | 0.0529 (6) | |
H8A | 0.363572 | 0.607885 | 0.172078 | 0.064* | |
H8B | 0.237218 | 0.628713 | 0.232979 | 0.064* | |
C9 | 0.4687 (4) | 0.5263 (2) | 0.25296 (13) | 0.0476 (5) | |
H9A | 0.546300 | 0.592999 | 0.265695 | 0.057* | |
C10 | 0.5921 (3) | 0.4407 (2) | 0.21691 (13) | 0.0471 (6) | |
H10A | 0.690567 | 0.484286 | 0.195534 | 0.057* | |
H10B | 0.651477 | 0.389329 | 0.247811 | 0.057* | |
C11 | 0.3847 (4) | 0.4731 (2) | 0.31352 (12) | 0.0480 (6) | |
H11A | 0.483789 | 0.446415 | 0.341787 | 0.058* | |
H11B | 0.311175 | 0.531235 | 0.336171 | 0.058* | |
C13 | 0.1095 (3) | 0.4089 (2) | 0.25235 (12) | 0.0451 (5) | |
H13A | 0.027946 | 0.463659 | 0.274269 | 0.054* | |
H13B | 0.036134 | 0.340816 | 0.240581 | 0.054* | |
C1' | 0.0721 (3) | 0.3307 (2) | 0.40561 (11) | 0.0395 (5) | |
C2' | 0.1424 (4) | 0.4029 (3) | 0.45401 (13) | 0.0536 (6) | |
H2'A | 0.270287 | 0.417502 | 0.456776 | 0.064* | |
C3' | 0.0214 (5) | 0.4522 (3) | 0.49743 (13) | 0.0607 (7) | |
H3'A | 0.066574 | 0.501348 | 0.529405 | 0.073* | |
C4' | −0.1678 (4) | 0.4284 (2) | 0.49336 (11) | 0.0472 (6) | |
C5' | −0.2378 (4) | 0.3554 (3) | 0.44671 (12) | 0.0549 (6) | |
H5'A | −0.365241 | 0.338706 | 0.445122 | 0.066* | |
C6' | −0.1173 (4) | 0.3073 (2) | 0.40242 (12) | 0.0496 (6) | |
H6'A | −0.163668 | 0.259030 | 0.370264 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0399 (3) | 0.0367 (3) | 0.0404 (3) | −0.0018 (2) | 0.0007 (2) | −0.0021 (2) |
Cl1 | 0.0922 (6) | 0.0660 (4) | 0.0514 (4) | 0.0183 (4) | 0.0234 (4) | −0.0014 (3) |
O1 | 0.0432 (9) | 0.0705 (12) | 0.0805 (13) | 0.0155 (9) | 0.0077 (9) | 0.0098 (11) |
O2 | 0.0568 (10) | 0.0399 (8) | 0.0539 (9) | −0.0081 (7) | 0.0038 (8) | −0.0110 (8) |
O3 | 0.0469 (9) | 0.0530 (10) | 0.0572 (10) | 0.0070 (8) | −0.0037 (8) | 0.0050 (8) |
N1 | 0.0363 (9) | 0.0433 (10) | 0.0432 (10) | 0.0015 (8) | 0.0017 (7) | 0.0079 (8) |
N12 | 0.0380 (9) | 0.0428 (9) | 0.0395 (9) | −0.0068 (8) | −0.0036 (8) | 0.0006 (8) |
C2 | 0.0471 (13) | 0.0464 (13) | 0.0530 (14) | 0.0065 (10) | 0.0087 (11) | 0.0103 (10) |
C3 | 0.0742 (19) | 0.0554 (15) | 0.0586 (15) | 0.0143 (15) | 0.0122 (14) | −0.0012 (14) |
C4 | 0.077 (2) | 0.0630 (17) | 0.0562 (15) | 0.0023 (16) | −0.0086 (14) | −0.0106 (14) |
C5 | 0.0486 (14) | 0.0666 (16) | 0.0533 (14) | 0.0015 (12) | −0.0082 (12) | −0.0014 (12) |
C6 | 0.0393 (11) | 0.0476 (12) | 0.0398 (11) | 0.0024 (9) | −0.0019 (9) | 0.0099 (10) |
C7 | 0.0398 (12) | 0.0509 (13) | 0.0446 (12) | 0.0077 (10) | −0.0028 (9) | 0.0080 (10) |
C8 | 0.0580 (15) | 0.0406 (12) | 0.0602 (15) | 0.0069 (11) | 0.0042 (12) | 0.0103 (11) |
C9 | 0.0495 (13) | 0.0387 (12) | 0.0547 (13) | −0.0094 (10) | −0.0014 (12) | 0.0027 (10) |
C10 | 0.0369 (12) | 0.0502 (13) | 0.0543 (14) | −0.0047 (10) | −0.0028 (10) | 0.0054 (11) |
C11 | 0.0506 (13) | 0.0461 (12) | 0.0472 (12) | −0.0113 (11) | −0.0041 (11) | −0.0037 (10) |
C13 | 0.0335 (10) | 0.0559 (14) | 0.0458 (12) | 0.0017 (10) | −0.0003 (9) | 0.0004 (10) |
C1' | 0.0424 (11) | 0.0396 (11) | 0.0365 (10) | −0.0049 (9) | 0.0009 (9) | −0.0017 (9) |
C2' | 0.0494 (14) | 0.0638 (15) | 0.0477 (13) | −0.0126 (12) | −0.0036 (12) | −0.0117 (12) |
C3' | 0.0720 (18) | 0.0653 (17) | 0.0447 (14) | −0.0100 (15) | −0.0002 (13) | −0.0196 (13) |
C4' | 0.0609 (15) | 0.0447 (12) | 0.0360 (11) | 0.0056 (11) | 0.0060 (10) | 0.0023 (10) |
C5' | 0.0441 (13) | 0.0681 (16) | 0.0527 (13) | −0.0021 (12) | 0.0034 (11) | −0.0091 (12) |
C6' | 0.0454 (13) | 0.0590 (15) | 0.0444 (12) | −0.0114 (11) | −0.0008 (11) | −0.0125 (11) |
S1—O2 | 1.4304 (17) | C8—C9 | 1.520 (4) |
S1—O3 | 1.4319 (18) | C8—H8A | 0.9700 |
S1—N12 | 1.6262 (19) | C8—H8B | 0.9700 |
S1—C1' | 1.764 (2) | C9—C10 | 1.517 (4) |
Cl1—C4' | 1.733 (3) | C9—C11 | 1.524 (4) |
O1—C2 | 1.243 (3) | C9—H9A | 0.9800 |
N1—C6 | 1.381 (3) | C10—H10A | 0.9700 |
N1—C2 | 1.399 (3) | C10—H10B | 0.9700 |
N1—C10 | 1.485 (3) | C11—H11A | 0.9700 |
N12—C11 | 1.471 (3) | C11—H11B | 0.9700 |
N12—C13 | 1.474 (3) | C13—H13A | 0.9700 |
C2—C3 | 1.414 (4) | C13—H13B | 0.9700 |
C3—C4 | 1.352 (5) | C1'—C6' | 1.379 (3) |
C3—H3A | 0.9300 | C1'—C2' | 1.398 (3) |
C4—C5 | 1.393 (4) | C2'—C3' | 1.372 (4) |
C4—H4A | 0.9300 | C2'—H2'A | 0.9300 |
C5—C6 | 1.363 (4) | C3'—C4' | 1.380 (4) |
C5—H5A | 0.9300 | C3'—H3'A | 0.9300 |
C6—C7 | 1.499 (3) | C4'—C5' | 1.376 (4) |
C7—C8 | 1.528 (4) | C5'—C6' | 1.377 (4) |
C7—C13 | 1.537 (3) | C5'—H5'A | 0.9300 |
C7—H7A | 0.9800 | C6'—H6'A | 0.9300 |
O2—S1—O3 | 120.05 (11) | C8—C9—C11 | 109.4 (2) |
O2—S1—N12 | 106.96 (10) | C10—C9—H9A | 108.0 |
O3—S1—N12 | 106.62 (11) | C8—C9—H9A | 108.0 |
O2—S1—C1' | 107.67 (11) | C11—C9—H9A | 108.0 |
O3—S1—C1' | 107.63 (11) | N1—C10—C9 | 115.3 (2) |
N12—S1—C1' | 107.33 (11) | N1—C10—H10A | 108.4 |
C6—N1—C2 | 122.6 (2) | C9—C10—H10A | 108.4 |
C6—N1—C10 | 123.0 (2) | N1—C10—H10B | 108.4 |
C2—N1—C10 | 114.32 (19) | C9—C10—H10B | 108.4 |
C11—N12—C13 | 112.9 (2) | H10A—C10—H10B | 107.5 |
C11—N12—S1 | 118.55 (15) | N12—C11—C9 | 108.5 (2) |
C13—N12—S1 | 117.80 (16) | N12—C11—H11A | 110.0 |
O1—C2—N1 | 118.9 (3) | C9—C11—H11A | 110.0 |
O1—C2—C3 | 125.4 (3) | N12—C11—H11B | 110.0 |
N1—C2—C3 | 115.7 (2) | C9—C11—H11B | 110.0 |
C4—C3—C2 | 121.6 (3) | H11A—C11—H11B | 108.4 |
C4—C3—H3A | 119.2 | N12—C13—C7 | 108.57 (19) |
C2—C3—H3A | 119.2 | N12—C13—H13A | 110.0 |
C3—C4—C5 | 120.7 (3) | C7—C13—H13A | 110.0 |
C3—C4—H4A | 119.7 | N12—C13—H13B | 110.0 |
C5—C4—H4A | 119.7 | C7—C13—H13B | 110.0 |
C6—C5—C4 | 119.9 (3) | H13A—C13—H13B | 108.4 |
C6—C5—H5A | 120.1 | C6'—C1'—C2' | 120.1 (2) |
C4—C5—H5A | 120.1 | C6'—C1'—S1 | 119.92 (18) |
C5—C6—N1 | 119.4 (2) | C2'—C1'—S1 | 120.00 (19) |
C5—C6—C7 | 121.7 (2) | C3'—C2'—C1' | 119.6 (2) |
N1—C6—C7 | 118.9 (2) | C3'—C2'—H2'A | 120.2 |
C6—C7—C8 | 110.4 (2) | C1'—C2'—H2'A | 120.2 |
C6—C7—C13 | 110.61 (19) | C2'—C3'—C4' | 119.6 (2) |
C8—C7—C13 | 110.3 (2) | C2'—C3'—H3'A | 120.2 |
C6—C7—H7A | 108.5 | C4'—C3'—H3'A | 120.2 |
C8—C7—H7A | 108.5 | C5'—C4'—C3' | 121.2 (2) |
C13—C7—H7A | 108.5 | C5'—C4'—Cl1 | 118.9 (2) |
C9—C8—C7 | 106.80 (19) | C3'—C4'—Cl1 | 119.8 (2) |
C9—C8—H8A | 110.4 | C4'—C5'—C6' | 119.3 (2) |
C7—C8—H8A | 110.4 | C4'—C5'—H5'A | 120.3 |
C9—C8—H8B | 110.4 | C6'—C5'—H5'A | 120.3 |
C7—C8—H8B | 110.4 | C5'—C6'—C1' | 120.2 (2) |
H8A—C8—H8B | 108.6 | C5'—C6'—H6'A | 119.9 |
C10—C9—C8 | 110.9 (2) | C1'—C6'—H6'A | 119.9 |
C10—C9—C11 | 112.4 (2) | ||
O2—S1—N12—C11 | −172.55 (18) | C6—N1—C10—C9 | 2.5 (3) |
O3—S1—N12—C11 | −43.0 (2) | C2—N1—C10—C9 | −178.8 (2) |
C1'—S1—N12—C11 | 72.1 (2) | C8—C9—C10—N1 | −33.3 (3) |
O2—S1—N12—C13 | 45.5 (2) | C11—C9—C10—N1 | 89.4 (3) |
O3—S1—N12—C13 | 175.12 (17) | C13—N12—C11—C9 | −60.2 (3) |
C1'—S1—N12—C13 | −69.78 (19) | S1—N12—C11—C9 | 156.07 (18) |
C6—N1—C2—O1 | −177.7 (2) | C10—C9—C11—N12 | −62.0 (3) |
C10—N1—C2—O1 | 3.6 (3) | C8—C9—C11—N12 | 61.6 (3) |
C6—N1—C2—C3 | 3.0 (3) | C11—N12—C13—C7 | 58.3 (3) |
C10—N1—C2—C3 | −175.7 (2) | S1—N12—C13—C7 | −157.68 (17) |
O1—C2—C3—C4 | 177.7 (3) | C6—C7—C13—N12 | 64.2 (3) |
N1—C2—C3—C4 | −3.0 (4) | C8—C7—C13—N12 | −58.2 (3) |
C2—C3—C4—C5 | 0.9 (5) | O2—S1—C1'—C6' | −15.8 (3) |
C3—C4—C5—C6 | 1.5 (5) | O3—S1—C1'—C6' | −146.5 (2) |
C4—C5—C6—N1 | −1.5 (4) | N12—S1—C1'—C6' | 99.0 (2) |
C4—C5—C6—C7 | 178.7 (3) | O2—S1—C1'—C2' | 165.7 (2) |
C2—N1—C6—C5 | −0.8 (3) | O3—S1—C1'—C2' | 35.0 (2) |
C10—N1—C6—C5 | 177.8 (2) | N12—S1—C1'—C2' | −79.4 (2) |
C2—N1—C6—C7 | 179.0 (2) | C6'—C1'—C2'—C3' | −1.3 (4) |
C10—N1—C6—C7 | −2.4 (3) | S1—C1'—C2'—C3' | 177.2 (2) |
C5—C6—C7—C8 | −147.4 (2) | C1'—C2'—C3'—C4' | 1.0 (4) |
N1—C6—C7—C8 | 32.8 (3) | C2'—C3'—C4'—C5' | 0.4 (5) |
C5—C6—C7—C13 | 90.2 (3) | C2'—C3'—C4'—Cl1 | −179.7 (2) |
N1—C6—C7—C13 | −89.6 (3) | C3'—C4'—C5'—C6' | −1.5 (4) |
C6—C7—C8—C9 | −62.1 (3) | Cl1—C4'—C5'—C6' | 178.7 (2) |
C13—C7—C8—C9 | 60.5 (3) | C4'—C5'—C6'—C1' | 1.2 (4) |
C7—C8—C9—C10 | 62.6 (3) | C2'—C1'—C6'—C5' | 0.2 (4) |
C7—C8—C9—C11 | −61.9 (3) | S1—C1'—C6'—C5' | −178.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O1i | 0.93 | 2.61 | 3.375 (4) | 140 |
C13—H13B···O1i | 0.97 | 2.69 | 3.475 (3) | 139 |
C5′—H5′A···O3i | 0.93 | 2.42 | 3.198 (3) | 142 |
C8—H8A···O3ii | 0.97 | 2.56 | 3.424 (3) | 149 |
C4—H4A···Cl1iii | 0.93 | 2.94 | 3.764 (3) | 148 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2. |
C17H17N3O5S | F(000) = 392 |
Mr = 375.39 | Dx = 1.455 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 11.040 (2) Å | Cell parameters from 5501 reflections |
b = 6.2621 (13) Å | θ = 4.0–71.4° |
c = 12.424 (3) Å | µ = 2.00 mm−1 |
β = 94.03 (3)° | T = 296 K |
V = 856.8 (3) Å3 | Prizmatic, colorless |
Z = 2 | 0.20 × 0.15 × 0.10 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 2446 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2363 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.023 |
ω scans | θmax = 71.5°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −13→13 |
Tmin = 0.639, Tmax = 1.000 | k = −6→7 |
7776 measured reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0754P)2 + 0.1248P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.114 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.47 e Å−3 |
2446 reflections | Δρmin = −0.22 e Å−3 |
235 parameters | Absolute structure: Flack x determined using 579 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.017 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.15419 (6) | 0.10657 (14) | 0.65911 (6) | 0.0503 (2) | |
O1 | 0.6728 (3) | −0.1378 (5) | 0.7756 (3) | 0.0777 (8) | |
O2 | 0.1535 (2) | 0.1620 (5) | 0.54790 (18) | 0.0696 (9) | |
O3 | 0.1536 (3) | −0.1126 (4) | 0.6914 (3) | 0.0761 (8) | |
O4 | −0.1062 (4) | 0.0114 (12) | 0.9888 (4) | 0.143 (2) | |
O5 | −0.2278 (4) | 0.2805 (12) | 0.9936 (3) | 0.140 (2) | |
N1 | 0.5589 (2) | 0.1629 (4) | 0.7462 (2) | 0.0446 (6) | |
N12 | 0.2750 (2) | 0.2153 (4) | 0.71985 (18) | 0.0421 (5) | |
N3 | −0.1493 (3) | 0.1778 (10) | 0.9537 (3) | 0.0916 (16) | |
C2 | 0.6474 (3) | 0.0176 (6) | 0.7157 (3) | 0.0557 (8) | |
C3 | 0.7019 (3) | 0.0648 (7) | 0.6191 (3) | 0.0639 (11) | |
H3A | 0.759057 | −0.028879 | 0.594281 | 0.077* | |
C4 | 0.6726 (3) | 0.2440 (8) | 0.5615 (3) | 0.0638 (10) | |
H4A | 0.710971 | 0.272896 | 0.498892 | 0.077* | |
C5 | 0.5843 (3) | 0.3867 (6) | 0.5960 (3) | 0.0553 (8) | |
H5A | 0.564335 | 0.509117 | 0.556234 | 0.066* | |
C6 | 0.5290 (3) | 0.3440 (5) | 0.6875 (2) | 0.0436 (6) | |
C7 | 0.4346 (3) | 0.4905 (5) | 0.7275 (3) | 0.0492 (7) | |
H7A | 0.451784 | 0.635774 | 0.703421 | 0.059* | |
C8 | 0.4401 (3) | 0.4899 (7) | 0.8499 (3) | 0.0580 (9) | |
H8A | 0.520190 | 0.532007 | 0.879470 | 0.070* | |
H8B | 0.380876 | 0.588526 | 0.875750 | 0.070* | |
C9 | 0.4120 (3) | 0.2638 (7) | 0.8834 (2) | 0.0526 (8) | |
H9A | 0.413307 | 0.261073 | 0.962380 | 0.063* | |
C10 | 0.5094 (3) | 0.1127 (8) | 0.8501 (2) | 0.0539 (7) | |
H10A | 0.575597 | 0.113061 | 0.905801 | 0.065* | |
H10B | 0.476096 | −0.030658 | 0.846320 | 0.065* | |
C11 | 0.2850 (3) | 0.1977 (6) | 0.8394 (2) | 0.0514 (8) | |
H11A | 0.269259 | 0.051691 | 0.860401 | 0.062* | |
H11B | 0.225028 | 0.289081 | 0.869484 | 0.062* | |
C13 | 0.3064 (3) | 0.4300 (6) | 0.6827 (3) | 0.0495 (7) | |
H13A | 0.248524 | 0.533033 | 0.706739 | 0.059* | |
H13B | 0.302369 | 0.432878 | 0.604459 | 0.059* | |
C1' | 0.0293 (3) | 0.2314 (5) | 0.7149 (2) | 0.0449 (6) | |
C2' | −0.0143 (3) | 0.1467 (6) | 0.8071 (2) | 0.0517 (8) | |
H2'A | 0.014481 | 0.017681 | 0.835735 | 0.062* | |
C3' | −0.1031 (3) | 0.2624 (8) | 0.8550 (3) | 0.0606 (10) | |
C4' | −0.1479 (3) | 0.4520 (8) | 0.8136 (4) | 0.0693 (11) | |
H4'A | −0.207272 | 0.525883 | 0.847895 | 0.083* | |
C5' | −0.1040 (3) | 0.5310 (7) | 0.7212 (4) | 0.0696 (10) | |
H5'A | −0.135141 | 0.657808 | 0.691690 | 0.084* | |
C6' | −0.0138 (3) | 0.4237 (6) | 0.6715 (3) | 0.0558 (8) | |
H6'A | 0.017549 | 0.479393 | 0.609888 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0495 (4) | 0.0415 (4) | 0.0608 (4) | 0.0046 (3) | 0.0094 (3) | −0.0112 (4) |
O1 | 0.0648 (16) | 0.0635 (19) | 0.105 (2) | 0.0234 (14) | 0.0084 (14) | 0.0117 (17) |
O2 | 0.0688 (14) | 0.090 (3) | 0.0508 (11) | −0.0015 (14) | 0.0079 (10) | −0.0178 (13) |
O3 | 0.0725 (17) | 0.0361 (14) | 0.121 (2) | 0.0036 (12) | 0.0151 (16) | −0.0143 (15) |
O4 | 0.109 (3) | 0.205 (6) | 0.120 (3) | 0.006 (4) | 0.038 (2) | 0.085 (4) |
O5 | 0.123 (3) | 0.186 (6) | 0.120 (3) | −0.016 (4) | 0.071 (3) | −0.029 (4) |
N1 | 0.0405 (11) | 0.0402 (15) | 0.0533 (12) | 0.0025 (10) | 0.0038 (9) | −0.0029 (11) |
N12 | 0.0437 (12) | 0.0376 (14) | 0.0458 (11) | 0.0058 (11) | 0.0079 (9) | 0.0014 (10) |
N3 | 0.060 (2) | 0.148 (5) | 0.069 (2) | −0.013 (2) | 0.0244 (16) | 0.009 (3) |
C2 | 0.0444 (15) | 0.0499 (19) | 0.072 (2) | 0.0058 (15) | 0.0022 (14) | −0.0110 (18) |
C3 | 0.0494 (16) | 0.069 (3) | 0.074 (2) | 0.0040 (17) | 0.0143 (15) | −0.022 (2) |
C4 | 0.060 (2) | 0.072 (3) | 0.0609 (18) | −0.0118 (19) | 0.0194 (16) | −0.0169 (19) |
C5 | 0.0612 (19) | 0.056 (2) | 0.0495 (16) | −0.0082 (16) | 0.0095 (13) | −0.0003 (15) |
C6 | 0.0436 (14) | 0.0395 (16) | 0.0477 (14) | −0.0042 (12) | 0.0023 (11) | −0.0048 (13) |
C7 | 0.0570 (16) | 0.0318 (16) | 0.0595 (17) | 0.0019 (13) | 0.0089 (13) | −0.0002 (13) |
C8 | 0.0631 (18) | 0.054 (2) | 0.0570 (17) | 0.0011 (17) | 0.0084 (14) | −0.0178 (16) |
C9 | 0.0546 (17) | 0.062 (2) | 0.0415 (13) | 0.0025 (16) | 0.0069 (12) | −0.0016 (15) |
C10 | 0.0491 (14) | 0.0588 (19) | 0.0539 (15) | 0.0031 (18) | 0.0039 (12) | 0.0138 (18) |
C11 | 0.0500 (15) | 0.058 (2) | 0.0474 (14) | 0.0080 (15) | 0.0120 (12) | 0.0053 (15) |
C13 | 0.0505 (16) | 0.0400 (17) | 0.0578 (16) | 0.0086 (14) | 0.0039 (13) | 0.0096 (15) |
C1' | 0.0380 (13) | 0.0422 (17) | 0.0542 (15) | 0.0021 (12) | 0.0018 (11) | −0.0016 (14) |
C2' | 0.0394 (13) | 0.055 (2) | 0.0613 (16) | −0.0045 (14) | 0.0056 (12) | 0.0088 (16) |
C3' | 0.0426 (15) | 0.083 (3) | 0.0572 (17) | −0.0108 (17) | 0.0072 (13) | −0.0053 (19) |
C4' | 0.0446 (16) | 0.076 (3) | 0.089 (3) | 0.0053 (18) | 0.0116 (16) | −0.024 (2) |
C5' | 0.0525 (17) | 0.056 (2) | 0.100 (3) | 0.0152 (17) | 0.0041 (18) | 0.004 (2) |
C6' | 0.0490 (16) | 0.051 (2) | 0.0682 (19) | 0.0059 (15) | 0.0058 (14) | 0.0066 (17) |
S1—O2 | 1.424 (3) | C7—H7A | 0.9800 |
S1—O3 | 1.430 (3) | C8—C9 | 1.514 (6) |
S1—N12 | 1.634 (3) | C8—H8A | 0.9700 |
S1—C1' | 1.768 (3) | C8—H8B | 0.9700 |
O1—C2 | 1.245 (5) | C9—C10 | 1.512 (5) |
O4—N3 | 1.214 (8) | C9—C11 | 1.526 (5) |
O5—N3 | 1.212 (7) | C9—H9A | 0.9800 |
N1—C6 | 1.376 (4) | C10—H10A | 0.9700 |
N1—C2 | 1.407 (4) | C10—H10B | 0.9700 |
N1—C10 | 1.471 (4) | C11—H11A | 0.9700 |
N12—C13 | 1.471 (4) | C11—H11B | 0.9700 |
N12—C11 | 1.485 (4) | C13—H13A | 0.9700 |
N3—C3' | 1.460 (5) | C13—H13B | 0.9700 |
C2—C3 | 1.411 (5) | C1'—C2' | 1.379 (4) |
C3—C4 | 1.357 (6) | C1'—C6' | 1.390 (5) |
C3—H3A | 0.9300 | C2'—C3' | 1.386 (5) |
C4—C5 | 1.411 (6) | C2'—H2'A | 0.9300 |
C4—H4A | 0.9300 | C3'—C4' | 1.372 (7) |
C5—C6 | 1.354 (4) | C4'—C5' | 1.370 (6) |
C5—H5A | 0.9300 | C4'—H4'A | 0.9300 |
C6—C7 | 1.499 (4) | C5'—C6' | 1.383 (5) |
C7—C8 | 1.519 (4) | C5'—H5'A | 0.9300 |
C7—C13 | 1.531 (5) | C6'—H6'A | 0.9300 |
O2—S1—O3 | 120.4 (2) | C10—C9—C8 | 110.3 (3) |
O2—S1—N12 | 107.14 (14) | C10—C9—C11 | 112.7 (3) |
O3—S1—N12 | 106.87 (16) | C8—C9—C11 | 110.8 (3) |
O2—S1—C1' | 108.78 (16) | C10—C9—H9A | 107.6 |
O3—S1—C1' | 107.17 (17) | C8—C9—H9A | 107.6 |
N12—S1—C1' | 105.56 (13) | C11—C9—H9A | 107.6 |
C6—N1—C2 | 122.4 (3) | N1—C10—C9 | 114.9 (3) |
C6—N1—C10 | 123.5 (3) | N1—C10—H10A | 108.5 |
C2—N1—C10 | 114.0 (3) | C9—C10—H10A | 108.5 |
C13—N12—C11 | 112.2 (3) | N1—C10—H10B | 108.5 |
C13—N12—S1 | 116.0 (2) | C9—C10—H10B | 108.5 |
C11—N12—S1 | 115.6 (2) | H10A—C10—H10B | 107.5 |
O5—N3—O4 | 125.6 (5) | N12—C11—C9 | 109.9 (2) |
O5—N3—C3' | 116.9 (6) | N12—C11—H11A | 109.7 |
O4—N3—C3' | 117.5 (4) | C9—C11—H11A | 109.7 |
O1—C2—N1 | 118.4 (3) | N12—C11—H11B | 109.7 |
O1—C2—C3 | 125.5 (3) | C9—C11—H11B | 109.7 |
N1—C2—C3 | 116.1 (3) | H11A—C11—H11B | 108.2 |
C4—C3—C2 | 121.4 (3) | N12—C13—C7 | 110.2 (2) |
C4—C3—H3A | 119.3 | N12—C13—H13A | 109.6 |
C2—C3—H3A | 119.3 | C7—C13—H13A | 109.6 |
C3—C4—C5 | 120.5 (3) | N12—C13—H13B | 109.6 |
C3—C4—H4A | 119.7 | C7—C13—H13B | 109.6 |
C5—C4—H4A | 119.7 | H13A—C13—H13B | 108.1 |
C6—C5—C4 | 119.4 (4) | C2'—C1'—C6' | 121.7 (3) |
C6—C5—H5A | 120.3 | C2'—C1'—S1 | 118.9 (3) |
C4—C5—H5A | 120.3 | C6'—C1'—S1 | 119.1 (2) |
C5—C6—N1 | 120.1 (3) | C1'—C2'—C3' | 117.0 (3) |
C5—C6—C7 | 121.5 (3) | C1'—C2'—H2'A | 121.5 |
N1—C6—C7 | 118.4 (3) | C3'—C2'—H2'A | 121.5 |
C6—C7—C8 | 110.5 (3) | C4'—C3'—C2' | 122.5 (3) |
C6—C7—C13 | 112.0 (3) | C4'—C3'—N3 | 119.4 (4) |
C8—C7—C13 | 109.5 (3) | C2'—C3'—N3 | 118.1 (4) |
C6—C7—H7A | 108.2 | C5'—C4'—C3' | 119.2 (3) |
C8—C7—H7A | 108.2 | C5'—C4'—H4'A | 120.4 |
C13—C7—H7A | 108.2 | C3'—C4'—H4'A | 120.4 |
C9—C8—C7 | 106.5 (3) | C4'—C5'—C6' | 120.5 (4) |
C9—C8—H8A | 110.4 | C4'—C5'—H5'A | 119.8 |
C7—C8—H8A | 110.4 | C6'—C5'—H5'A | 119.8 |
C9—C8—H8B | 110.4 | C5'—C6'—C1' | 119.1 (3) |
C7—C8—H8B | 110.4 | C5'—C6'—H6'A | 120.5 |
H8A—C8—H8B | 108.6 | C1'—C6'—H6'A | 120.5 |
O2—S1—N12—C13 | 38.6 (2) | C8—C9—C10—N1 | −36.5 (4) |
O3—S1—N12—C13 | 168.9 (2) | C11—C9—C10—N1 | 87.9 (4) |
C1'—S1—N12—C13 | −77.3 (2) | C13—N12—C11—C9 | −55.3 (4) |
O2—S1—N12—C11 | 173.1 (2) | S1—N12—C11—C9 | 168.5 (2) |
O3—S1—N12—C11 | −56.6 (3) | C10—C9—C11—N12 | −65.9 (4) |
C1'—S1—N12—C11 | 57.3 (3) | C8—C9—C11—N12 | 58.2 (4) |
C6—N1—C2—O1 | 177.1 (3) | C11—N12—C13—C7 | 56.7 (3) |
C10—N1—C2—O1 | 1.8 (5) | S1—N12—C13—C7 | −167.3 (2) |
C6—N1—C2—C3 | −1.8 (4) | C6—C7—C13—N12 | 62.7 (3) |
C10—N1—C2—C3 | −177.0 (3) | C8—C7—C13—N12 | −60.3 (4) |
O1—C2—C3—C4 | −176.7 (4) | O2—S1—C1'—C2' | 157.4 (3) |
N1—C2—C3—C4 | 2.0 (5) | O3—S1—C1'—C2' | 25.8 (3) |
C2—C3—C4—C5 | −1.3 (6) | N12—S1—C1'—C2' | −87.9 (3) |
C3—C4—C5—C6 | 0.2 (5) | O2—S1—C1'—C6' | −29.2 (3) |
C4—C5—C6—N1 | 0.1 (5) | O3—S1—C1'—C6' | −160.8 (3) |
C4—C5—C6—C7 | −180.0 (3) | N12—S1—C1'—C6' | 85.5 (3) |
C2—N1—C6—C5 | 0.8 (4) | C6'—C1'—C2'—C3' | −0.3 (5) |
C10—N1—C6—C5 | 175.6 (3) | S1—C1'—C2'—C3' | 173.0 (2) |
C2—N1—C6—C7 | −179.2 (3) | C1'—C2'—C3'—C4' | 0.7 (5) |
C10—N1—C6—C7 | −4.4 (4) | C1'—C2'—C3'—N3 | −179.0 (3) |
C5—C6—C7—C8 | −147.0 (3) | O5—N3—C3'—C4' | 1.1 (6) |
N1—C6—C7—C8 | 33.0 (4) | O4—N3—C3'—C4' | −178.9 (5) |
C5—C6—C7—C13 | 90.6 (4) | O5—N3—C3'—C2' | −179.3 (4) |
N1—C6—C7—C13 | −89.4 (3) | O4—N3—C3'—C2' | 0.8 (6) |
C6—C7—C8—C9 | −62.1 (3) | C2'—C3'—C4'—C5' | 0.2 (6) |
C13—C7—C8—C9 | 61.7 (4) | N3—C3'—C4'—C5' | 179.8 (4) |
C7—C8—C9—C10 | 64.2 (3) | C3'—C4'—C5'—C6' | −1.4 (6) |
C7—C8—C9—C11 | −61.3 (3) | C4'—C5'—C6'—C1' | 1.8 (6) |
C6—N1—C10—C9 | 6.1 (5) | C2'—C1'—C6'—C5' | −0.9 (5) |
C2—N1—C10—C9 | −178.7 (3) | S1—C1'—C6'—C5' | −174.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4′—H4′A···O1i | 0.93 | 2.61 | 3.257 (5) | 127 |
C10—H10A···O5ii | 0.97 | 2.58 | 3.460 (6) | 151 |
C11—H11A···O5iii | 0.97 | 2.55 | 3.428 (7) | 150 |
C13—H13A···O3iv | 0.97 | 2.46 | 3.330 (4) | 150 |
Symmetry codes: (i) x−1, y+1, z; (ii) x+1, y, z; (iii) −x, y−1/2, −z+2; (iv) x, y+1, z. |
Acknowledgements
We are especially grateful to Professor B. Tashkhodzhaev for help in discussing the results.
References
Azimova, S. S. & Yunusov, M. S. (2013). Editors. Natural Compounds: Alkaloids. pp. 625–626, Springer New York. Google Scholar
Barát, V., Csókás, D. & Bates, R. W. (2018). J. Org. Chem. 83, 9088–9095. Web of Science PubMed Google Scholar
Brel, V. K. (2016). Russ. J. Org. Chem. 52, 1804–1811. Web of Science CrossRef CAS Google Scholar
Frasinyuk, M. S., Vinogradova, V. I., Bondarenko, S. P. & Khilya, V. P. (2007). Chem. Nat. Compd. 43, 590–593. Web of Science CrossRef CAS Google Scholar
Freer, A. A., Robins, D. J. & Sheldrake, G. N. (1987). Acta Cryst. C43, 1119–1122. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Gotti, C. & Clementi, F. (2021). Pharmacol. Res. 170, 105700. Web of Science CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirschhäuser, C., Haseler, C. A. & Gallagher, T. (2011). Angew. Chem. 123, 5268–5271. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kulakov, I. V. & Nurkenov, O. A. (2012). Chem. Sustainable Dev. 20, 237–250. Google Scholar
Kulakov, I. V., Nurkenov, O. A., Turdybekov, D. M., Mahmutova, A. S., Ahmetova, S. B., Sejdahmetova, R. B. & Turdybekov, K. M. (2010). Chem. Heterocycl. Compd, 46, 240–244. Web of Science CrossRef CAS Google Scholar
Liu, R., Bao, X., Sun, X., Cai, Y., Zhang, T., Ye, X. & Li, X. N. (2020). Tetrahedron Lett. 61, 151803. Web of Science CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marrière, E., Rouden, J., Tadino, V. & Lasne, M. C. (2000). Org. Lett. 2, 1121–1124. Web of Science PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
O'Neill, B. T., Yohannes, D., Bundesmann, M. W. & Arnold, E. P. (2000). Org. Lett. 2, 4201–4204. Web of Science PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pérez, E. G., Méndez-Gálvez, C. & Cassels, B. K. (2012). Nat. Prod. Rep. 29, 555–567. Web of Science PubMed Google Scholar
Przybył, A. K., Maj, E., Wietrzyk, J. & Kubicki, M. (2019). J. Mol. Struct. 1176, 871–880. Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rouden, J., Lasne, M. C., Blanchet, J. & Baudoux, J. (2014). Chem. Rev. 114, 712–778. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shishkin, D. V., Baibulatova, N. Z., Lobov, A. N., Ivanov, S. P., Spirikhin, L. V. & Dokichev, V. A. (2010). Chem. Nat. Compd. 46, 62–65. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tutka, P., Vinnikov, D., Courtney, R. J. & Benowitz, N. L. (2019). Addiction, 114, 1951–1969. Web of Science CrossRef PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.