research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, crystal structures and Hirshfeld surface analyses of N-aryl­sulfonyl derivatives of cytisine

crossmark logo

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent, 100170, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, massif Universitet shakharchasi 4, Tashkent, 100174, Uzbekistan, and cKara-Kalpak State University, acad. Abdirov Str., 1, Nukus, 742000, Uzbekistan
*Correspondence e-mail: raxul@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 February 2023; accepted 2 March 2023; online 10 March 2023)

By aryl­sulfonyl­ation of cytisine in the presence of tri­ethyl­amine, three new compounds have been obtained in good yields: (7R,9R)-N-[(4-ethyl­phen­yl)sulfon­yl]cytisine, C19H22N2O3S (I) {systematic name: (1R,5R)-3-[(4-ethyl­phen­yl)sulfon­yl]-1,2,3,4,5,6-hexa­hydro-8H-1,5-methano­pyrido[1,2-a][1,5]diazo­cin-8-one}, (7R,9R)-N-[(4-chloro­phen­yl)sulfon­yl]cytisine, C17H17ClN2O3S (II) {systematic name: (1R,5R)-3-[(4-chloro­phen­yl)sulfon­yl]-1,2,3,4,5,6-hexa­hydro-8H-1,5-methano­pyrido[1,2-a][1,5]diazo­cin-8-one} and (7R,9R)-N-[(3-nitro­phen­yl)sulfon­yl]cytisine, C17H17N3O5S (III) {systematic name: (1R,5R)-3-[(3-nitro­phen­yl)sulfon­yl]-1,2,3,4,5,6-hexa­hydro-8H-1,5-methano­pyrido[1,2-a][1,5]diazo­cin-8-one}. The crystal structures of the compounds were determined on the basis of single-crystal X-ray diffraction data. The crystal structures of (I)–(III) are distinguished by the arrangement of two fragments of the mol­ecule around the sulfonyl site. For all structures, weak C—H⋯O hydrogen bonds are developed. Hirshfeld surface analysis shows that H⋯H (for I and II) and H⋯O/O⋯H (for III) inter­actions make the most important contribution to the crystal packing.

1. Chemical context

Cytisine was first isolated by Huzeman and Marme from the seeds of Cytisus Laburnum Med. in 1865. To this day, other sources of cytisine have been found (Azimova & Yunusov, 2013[Azimova, S. S. & Yunusov, M. S. (2013). Editors. Natural Compounds: Alkaloids. pp. 625-626, Springer New York.]), mainly isolated from plants of the legume family (especially the seeds of Laburnum anagyroides). Cytisine is a quinolizidine alkaloid, which is found in different sources by different names: 1,2,3,4,5,6-hexa­hydro-1,5-methano-8H-pyrido(1,2-a)(1,5)-diazo­cin-8-one (Freer et al., 1987[Freer, A. A., Robins, D. J. & Sheldrake, G. N. (1987). Acta Cryst. C43, 1119-1122.]), 7,11-di­aza­tri­cyclo­[7.3.1.02,7]trideca-2,4-dien-6-one (Kulakov et al., 2010[Kulakov, I. V., Nurkenov, O. A., Turdybekov, D. M., Mahmutova, A. S., Ahmetova, S. B., Sejdahmetova, R. B. & Turdybekov, K. M. (2010). Chem. Heterocycl. Compd, 46, 240-244.]), (1R,5S)-cytisine (Rouden et al., 2014[Rouden, J., Lasne, M. C., Blanchet, J. & Baudoux, J. (2014). Chem. Rev. 114, 712-778.]) or (7R,9S)-cytisine.

Various studies report modern methods for the synthesis of cytisine (Barát et al., 2018[Barát, V., Csókás, D. & Bates, R. W. (2018). J. Org. Chem. 83, 9088-9095.]; Hirschhäuser et al., 2011[Hirschhäuser, C., Haseler, C. A. & Gallagher, T. (2011). Angew. Chem. 123, 5268-5271.]; O'Neill et al., 2000[O'Neill, B. T., Yohannes, D., Bundesmann, M. W. & Arnold, E. P. (2000). Org. Lett. 2, 4201-4204.]; Pérez et al., 2012[Pérez, E. G., Méndez-Gálvez, C. & Cassels, B. K. (2012). Nat. Prod. Rep. 29, 555-567.]) or cytisine modification (Brel, 2016[Brel, V. K. (2016). Russ. J. Org. Chem. 52, 1804-1811.]; Kulakov et al., 2010[Kulakov, I. V., Nurkenov, O. A., Turdybekov, D. M., Mahmutova, A. S., Ahmetova, S. B., Sejdahmetova, R. B. & Turdybekov, K. M. (2010). Chem. Heterocycl. Compd, 46, 240-244.]; Kulakov & Nurkenov, 2012[Kulakov, I. V. & Nurkenov, O. A. (2012). Chem. Sustainable Dev. 20, 237-250.]; Shishkin et al., 2010[Shishkin, D. V., Baibulatova, N. Z., Lobov, A. N., Ivanov, S. P., Spirikhin, L. V. & Dokichev, V. A. (2010). Chem. Nat. Compd. 46, 62-65.]; Marrière et al., 2000[Marrière, E., Rouden, J., Tadino, V. & Lasne, M. C. (2000). Org. Lett. 2, 1121-1124.]; Frasinyuk et al., 2007[Frasinyuk, M. S., Vinogradova, V. I., Bondarenko, S. P. & Khilya, V. P. (2007). Chem. Nat. Compd. 43, 590-593.]). From the large number of cytisine derivatives, substances with biological activity (Tutka et al., 2019[Tutka, P., Vinnikov, D., Courtney, R. J. & Benowitz, N. L. (2019). Addiction, 114, 1951-1969.]; Gotti & Clementi, 2021[Gotti, C. & Clementi, F. (2021). Pharmacol. Res. 170, 105700.]; Liu et al., 2020[Liu, R., Bao, X., Sun, X., Cai, Y., Zhang, T., Ye, X. & Li, X. N. (2020). Tetrahedron Lett. 61, 151803.]) and agents used in medicine (Tabex) have been found. From a chemical point of view, derivation studies of cytisine as well as the development of new methods for the synthesis of various cytisine derivatives are of inter­est.

[Scheme 1]

This communication describes the synthesis and crystal structures of three N-aryl­sulfonyl derivatives of cytisine. To obtain these N-aryl­sulfonyl derivatives, 4-ethyl­benzene­sulfonyl chloride, 4-chloro­benzene­sulfonyl chloride and 3-nitro­benzene­sulfonyl chloride were used, resulting in (7R,9R)-N-[(4-ethyl­phen­yl)sulfon­yl]cytisine (I), (7R,9R)-N-[(4-chloro­phen­yl)sulfon­yl]cytisine (II) and (7R,9R)-N-[(3-nitro­phen­yl)sulfon­yl]cytisine (III).

2. Structural commentary

The conformations of the cytisine cores in structures (I)–(III) are virtually identical and also do not differ from that of the cytisine mol­ecule itself (Freer et al., 1987[Freer, A. A., Robins, D. J. & Sheldrake, G. N. (1987). Acta Cryst. C43, 1119-1122.]), or its various N-derivatives. The configurations of the chiral C atoms in cytisine are 7R, 9S, whereas in the case of (I)–(III) obtained by aryl­sulfonation of cytisine, the configurations are 7R, 9R in each case.

The asymmetric unit of (I) consists of one mol­ecule of (7R,9R)-N-[(4-ethyl­phen­yl)sulfon­yl]cytisine (Fig. 1[link]). The methyl fragment (C8′A, C8′B) of the ethyl group bound to the phenyl ring is disordered over two sets of sites. In the crystal structures of (II) and (III), both asymmetric units likewise comprise one mol­ecule of (7R,9R)-N-[(4-chloro­phen­yl)sulfon­yl]cytisine and (7R,9R)-N-[(3-nitro­phen­yl)sulfon­yl]cytisine, respectively (Figs. 2[link], 3[link]). The cytisine moieties in (I)–(III) are almost superimposable in the three mol­ecules (Fig. 4[link]). Basically, the difference in the mol­ecular structures pertains to the arrangement of two fragments around the sulfonyl site, i.e. the arrangement of fragments along the S1—N12 and S1—C1′ bonds). Corresponding torsion angles C1′—S1—N12—C11 and N12—S1—C1′—C2′ are listed in Tables 1[link], 2[link] and 3[link].

Table 1
Selected torsion angles (°) for (I)[link]

C1′—S1—N12—C11 76.6 (2) N12—S1—C1′—C2′ −79.4 (2)

Table 2
Selected torsion angles (°) for (II)[link]

C1′—S1—N12—C11 72.1 (2) N12—S1—C1′—C2′ −79.4 (2)

Table 3
Selected torsion angles (°) for (III)[link]

C1′—S1—N12—C11 57.3 (3) N12—S1—C1′—C2′ −87.9 (3)
[Figure 1]
Figure 1
The asymmetric unit of (I) with atom labelling. Displacement ellipsoids represent 30% probability levels.
[Figure 2]
Figure 2
The asymmetric unit of (II) with atom labelling. Displacement ellipsoids represent 30% probability levels.
[Figure 3]
Figure 3
The asymmetric unit of (III) with atom labelling. Displacement ellipsoids represent 30% probability levels.
[Figure 4]
Figure 4
Overlay plot of the mol­ecules in the crystal structures of (I)–(III).

3. Supra­molecular features

In the crystal packing of (I)–(III), weak inter­molecular hydrogen bonds of the type C—H⋯O(C) are developed. In the crystal structures of (I) and (II), C—H⋯O1 hydrogen bonds link mol­ecules into chains directed parallel to [100] (Figs. 5[link], 6[link]), besides other C—H⋯O or C—H⋯Cl (in the case of II) inter­actions (Tables 4[link], 5[link]). In the crystal structure of (III), the C—H⋯O1 inter­actions link the mol­ecules into a chain running along [1[\overline{1}]0] (Fig. 7[link], Table 6[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.34 3.116 (3) 141
C7—H7A⋯O2ii 0.98 2.44 3.254 (3) 140
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.61 3.375 (4) 140
C13—H13B⋯O1i 0.97 2.69 3.475 (3) 139
C5′—H5′A⋯O3i 0.93 2.42 3.198 (3) 142
C8—H8A⋯O3ii 0.97 2.56 3.424 (3) 149
C4—H4A⋯Cl1iii 0.93 2.94 3.764 (3) 148
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 6
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4′—H4′A⋯O1i 0.93 2.61 3.257 (5) 127
C10—H10A⋯O5ii 0.97 2.58 3.460 (6) 151
C11—H11A⋯O5iii 0.97 2.55 3.428 (7) 150
C13—H13A⋯O3iv 0.97 2.46 3.330 (4) 150
Symmetry codes: (i) [x-1, y+1, z]; (ii) x+1, y, z; (iii) [-x, y-{\script{1\over 2}}, -z+2]; (iv) x, y+1, z.
[Figure 5]
Figure 5
The observed C5—H⋯O1 hydrogen bond in the crystal structure of (I). For clarity, the disordered methyl fragment is not shown.
[Figure 6]
Figure 6
The observed hydrogen bonds (C5—H⋯O1, C13—H⋯O1, C5′—H⋯O3) in the crystal structure of (II).
[Figure 7]
Figure 7
The observed hydrogen bonds (C4′—H⋯O1) in the crystal structure of (III).

In order to visualize and qu­antify inter­molecular inter­actions in (I)–(III), a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed with Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) generated.

The Hirshfeld surfaces for the mol­ecules in (I)–(III) are shown in Figs. 8[link]–10[link][link] in which the two-dimensional fingerprint plots of the most dominant contacts are also presented.

[Figure 8]
Figure 8
Three-dimensional Hirshfeld surfaces of the compound (I) plotted over dnorm in the range −0.2931 to 1.5624 a.u., and Hirshfeld fingerprint plots for all contacts and decomposed into H⋯H, H⋯O/O⋯H and H⋯C/C⋯H contacts. di and de denote the closest inter­nal and external distances (in Å) from a point on the surface.
[Figure 9]
Figure 9
Three-dimensional Hirshfeld surfaces of the compound (II) plotted over dnorm in the range −0.2332 to 1.6350 a.u., and Hirshfeld fingerprint plots for all contacts and decomposed into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯Cl/Cl⋯H contacts. di and de denote the closest inter­nal and external distances (in Å) from a point on the surface.
[Figure 10]
Figure 10
Three-dimensional Hirshfeld surfaces of the compound (III) plotted over dnorm in the range −0.1815 to 1.3331 a.u., and Hirshfeld fingerprint plots for all contacts and decomposed into H⋯O/O⋯H, H⋯H and H⋯C/C⋯H contacts. di and de denote the closest inter­nal and external distances (in Å) from a point on the surface.

For structure (I), H⋯H contacts are responsible for the largest contribution (54.9%) to the Hirshfeld surface. Besides these contacts, H⋯O/O⋯H (26.2%) and H⋯C/C⋯H (16.7%) inter­actions contribute significantly to the total Hirshfeld surface (Fig. 8[link]). The contributions of further contacts are only minor and amount to H⋯N/N⋯H (1.8%), C⋯C (0.2%) and H⋯S/S⋯H (0.1%).

In structure (II), the contribution percentages of the most significant contacts change because of the presence of H⋯Cl/Cl⋯H inter­actions and amount to H⋯H (38.9%), H⋯O/O⋯H (25.4%), H⋯C/C⋯H (16.7%) and H⋯Cl/Cl⋯H (10.9%) (Fig. 9[link]). The contributions of further contacts are only minor and are Cl⋯O/O⋯Cl (2.4%), Cl⋯C/C⋯Cl (1.8%), C⋯O/O⋯C (1.7%), H⋯N/N⋯H (1.6%), C⋯C (0.3%) and Cl⋯S/S⋯Cl (0.1%).

In structure (III), the existence of a nitro group likewise changes the contributions of the significant inter­actions: H⋯O/O⋯H (44.3%), H⋯H (33.3%) and H⋯C/C⋯H (10.2%) (Fig. 10[link]). Other minor contributions amount to C⋯C (3.8%), C⋯O/O⋯C (3.2%), H⋯N/N⋯H (2.5%), O⋯N/N⋯O (1.3%), O⋯O (1.2%) and C⋯N/N⋯C (0.2%).

4. Database survey

A Cambridge Structural Database search (version 2022.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 99 N-derivatives of cytisine, of which twelve are N-benzyl derivatives of cytisine. N-aryl­sulfonyl­cytisine derivatives are not found. The most similar structure with respect to (I)–(III) is 3-[(4-bromo­phen­yl)meth­yl]-8-oxo-1,3,4,5,6,8-hexa­hydro-2H-1,5-methano­pyrido[1,2-a][1,5]diazo­cin-3-ium perchlorate (KINBOB; Przybył et al., 2019[Przybył, A. K., Maj, E., Wietrzyk, J. & Kubicki, M. (2019). J. Mol. Struct. 1176, 871-880.]).

5. Synthesis and crystallization

General method

Aryl­sulfonyl chloride (0.01 mol) and 10 ml of acetone were placed in a two-necked flask with a volume of 50 ml. After cooling, a previously prepared solution (1.9 g (0.01 mol) of cytisine and 0.01 mol of tri­ethyl­amine in 15 ml of acetone) was added under stirring through a separatory funnel. The reaction mixture was stirred at room temperature for 10 h. The reaction mixture was then left in the open air overnight to produce a dry mass. The mass was treated with 15 ml of distilled water and the remaining solid filtered off and dried in air. The reaction scheme is shown in Fig. 11[link].

[Figure 11]
Figure 11
General reaction scheme for the synthesis of N-aryl­sulfonyl derivatives of cytisine.

(7R,9R)-N-[(4-ethyl­phen­yl)sulfon­yl]cytisine (I)

Yield 64% (2.29 g), m.p. 456–458 K, Rf = 0.59 [5:1 (v/v) benzene–ethanol].

(7R,9R)-N-[(4-chloro­phen­yl)sulfon­yl]cytisine (II)

Yield 76% (2.77 g), m.p. 488–490 K, Rf = 0.71 [5:1 (v/v) benzene–ethanol].

(7R,9R)-N-[(3-nitro­phen­yl)sulfon­yl]cytisine (III)

Yield 72% (2.71 g), m.p. 524–526 K, Rf = 0.50 [5:1 (v/v) benzene–ethanol].

Colourless crystals of (I)–(III) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. In (I), the methyl C8′ atom is disordered over two positions (C8′A, C8′B). The site occupancy factors of the disordered fragment were refined with a free variable to a ratio of 0.55 (2):0.45 (2). Hydrogen atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH, 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso(H) = 1.2Ueq(C) or Uiso = 1.5Ueq(C) for methyl H atoms.

Table 7
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C19H22N2O3S C17H17ClN2O3S C17H17N3O5S
Mr 358.44 364.83 375.39
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121 Monoclinic, P21
Temperature (K) 299 299 296
a, b, c (Å) 6.9503 (14), 10.585 (2), 24.975 (5) 7.1374 (14), 11.448 (2), 20.844 (4) 11.040 (2), 6.2621 (13), 12.424 (3)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 94.03 (3), 90
V3) 1837.5 (6) 1703.2 (6) 856.8 (3)
Z 4 4 2
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 1.73 3.29 2.00
Crystal size (mm) 0.25 × 0.20 × 0.10 0.30 × 0.20 × 0.15 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.032, 1.000 0.795, 1.000 0.639, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17786, 3553, 3348 16028, 3289, 3203 7776, 2446, 2363
Rint 0.054 0.027 0.023
(sin θ/λ)max−1) 0.615 0.615 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.11 0.030, 0.078, 1.05 0.039, 0.114, 1.04
No. of reflections 3553 3289 2446
No. of parameters 238 217 235
No. of restraints 0 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.44 0.42, −0.33 0.47, −0.22
Absolute structure Flack x determined using 1319 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1318 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 579 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.012 (9) −0.004 (5) 0.017 (16)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

(1R,5R)-3-[(4-Ethylphenyl)sulfonyl]-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one (I) top
Crystal data top
C19H22N2O3SDx = 1.296 Mg m3
Mr = 358.44Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 10591 reflections
a = 6.9503 (14) Åθ = 3.5–70.9°
b = 10.585 (2) ŵ = 1.73 mm1
c = 24.975 (5) ÅT = 299 K
V = 1837.5 (6) Å3Prizmatic, colorless
Z = 40.25 × 0.20 × 0.10 mm
F(000) = 760
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3553 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3348 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.054
ω scansθmax = 71.4°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.032, Tmax = 1.000k = 1213
17786 measured reflectionsl = 2330
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.0534P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.22 e Å3
3553 reflectionsΔρmin = 0.44 e Å3
238 parametersAbsolute structure: Flack x determined using 1319 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.012 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.72079 (9)0.74770 (5)0.14537 (2)0.05691 (18)
O10.3969 (2)0.73366 (18)0.35879 (6)0.0609 (4)
O20.8449 (3)0.64623 (16)0.16065 (7)0.0707 (5)
O30.5240 (3)0.7222 (2)0.13301 (8)0.0766 (6)
N10.6396 (3)0.83845 (17)0.31683 (7)0.0442 (4)
N120.7204 (3)0.84820 (18)0.19511 (7)0.0525 (4)
C20.5717 (3)0.7474 (2)0.35284 (8)0.0489 (5)
C30.7162 (4)0.6760 (3)0.38004 (10)0.0620 (6)
H3A0.6794160.6122850.4035570.074*
C40.9054 (4)0.6993 (3)0.37223 (11)0.0660 (7)
H4A0.9967190.6526820.3909460.079*
C50.9646 (4)0.7917 (3)0.33673 (10)0.0605 (6)
H5A1.0951370.8074180.3319950.073*
C60.8326 (3)0.8596 (2)0.30875 (9)0.0492 (5)
C70.8915 (4)0.9562 (3)0.26785 (10)0.0585 (6)
H7A1.0171900.9905690.2780750.070*
C80.7474 (5)1.0639 (2)0.26561 (11)0.0692 (7)
H8A0.7365111.1040490.3004000.083*
H8B0.7882281.1268540.2397660.083*
C90.5559 (4)1.0075 (3)0.24915 (11)0.0612 (7)
H9A0.4616501.0761970.2471580.073*
C100.4861 (3)0.9134 (2)0.29083 (10)0.0524 (5)
H10A0.4162010.9590330.3183160.063*
H10B0.3964560.8557050.2738490.063*
C110.5739 (4)0.9493 (3)0.19342 (10)0.0641 (7)
H11A0.4510360.9146280.1823250.077*
H11B0.6115631.0135630.1677930.077*
C130.9099 (4)0.8943 (3)0.21250 (10)0.0592 (6)
H13A0.9585280.9554100.1868920.071*
H13B1.0000460.8244820.2142440.071*
C1'0.8285 (4)0.8251 (2)0.09016 (9)0.0585 (6)
C2'0.7190 (5)0.9095 (3)0.06041 (11)0.0780 (8)
H2'A0.5901060.9231140.0685660.094*
C3'0.8057 (7)0.9728 (3)0.01842 (12)0.0894 (11)
H3'A0.7325211.0290340.0017060.107*
C4'0.9946 (6)0.9558 (3)0.00544 (11)0.0819 (10)
C5'1.1005 (6)0.8709 (3)0.03537 (12)0.0849 (9)
H5'A1.2290820.8571860.0269120.102*
C6'1.0180 (5)0.8052 (3)0.07808 (11)0.0712 (7)
H6'A1.0910030.7486800.0980650.085*
C7'1.0838 (8)1.0285 (4)0.04059 (14)0.1161 (17)
H7'A1.1640410.9712790.0611230.139*0.55 (2)
H7'B0.9815961.0577160.0639670.139*0.55 (2)
H7'C1.0531550.9835590.0733540.139*0.45 (2)
H7'D1.0199221.1098300.0425310.139*0.45 (2)
C8'A1.199 (3)1.1360 (16)0.0246 (4)0.136 (7)0.55 (2)
H8'A1.2338721.1840560.0556810.205*0.55 (2)
H8'B1.3129571.1070820.0067800.205*0.55 (2)
H8'C1.1256521.1883090.0006380.205*0.55 (2)
C8'B1.280 (2)1.050 (2)0.0404 (4)0.111 (5)0.45 (2)
H8'D1.3129471.1055670.0695350.166*0.45 (2)
H8'E1.3473970.9718140.0443490.166*0.45 (2)
H8'F1.3163531.0893490.0071500.166*0.45 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0714 (4)0.0452 (3)0.0542 (3)0.0046 (3)0.0012 (2)0.0040 (2)
O10.0488 (9)0.0641 (10)0.0699 (10)0.0067 (8)0.0057 (7)0.0023 (9)
O20.0982 (14)0.0453 (9)0.0687 (10)0.0091 (9)0.0036 (10)0.0092 (8)
O30.0790 (13)0.0775 (13)0.0733 (11)0.0218 (11)0.0037 (9)0.0046 (10)
N10.0400 (9)0.0428 (9)0.0498 (9)0.0003 (7)0.0009 (7)0.0053 (7)
N120.0558 (11)0.0508 (10)0.0510 (9)0.0010 (9)0.0009 (9)0.0024 (8)
C20.0483 (11)0.0486 (11)0.0499 (10)0.0027 (10)0.0015 (8)0.0064 (11)
C30.0698 (16)0.0617 (14)0.0546 (12)0.0022 (13)0.0104 (12)0.0050 (11)
C40.0597 (15)0.0767 (17)0.0614 (13)0.0145 (13)0.0193 (11)0.0041 (13)
C50.0406 (11)0.0813 (18)0.0595 (12)0.0023 (11)0.0057 (10)0.0113 (12)
C60.0419 (11)0.0543 (12)0.0514 (11)0.0040 (10)0.0013 (9)0.0133 (10)
C70.0522 (13)0.0583 (14)0.0649 (14)0.0145 (11)0.0065 (11)0.0104 (11)
C80.088 (2)0.0459 (12)0.0741 (15)0.0106 (14)0.0117 (15)0.0046 (11)
C90.0679 (17)0.0469 (13)0.0689 (15)0.0121 (12)0.0039 (14)0.0033 (11)
C100.0443 (11)0.0503 (12)0.0625 (13)0.0082 (10)0.0002 (10)0.0019 (10)
C110.0740 (17)0.0561 (14)0.0623 (14)0.0117 (13)0.0004 (13)0.0086 (12)
C130.0566 (13)0.0607 (14)0.0603 (13)0.0092 (11)0.0106 (11)0.0014 (11)
C1'0.0768 (17)0.0495 (12)0.0492 (11)0.0015 (12)0.0001 (11)0.0000 (10)
C2'0.087 (2)0.0819 (19)0.0648 (15)0.0054 (18)0.0035 (15)0.0168 (14)
C3'0.126 (3)0.079 (2)0.0635 (17)0.003 (2)0.0097 (19)0.0196 (15)
C4'0.125 (3)0.0704 (19)0.0503 (14)0.0161 (19)0.0094 (17)0.0020 (13)
C5'0.094 (2)0.093 (2)0.0684 (17)0.0076 (19)0.0210 (16)0.0031 (16)
C6'0.0838 (19)0.0683 (16)0.0615 (14)0.0077 (15)0.0101 (14)0.0040 (13)
C7'0.182 (5)0.106 (3)0.0603 (18)0.035 (3)0.018 (2)0.0090 (19)
C8'A0.219 (15)0.128 (10)0.062 (4)0.069 (11)0.000 (6)0.020 (5)
C8'B0.130 (9)0.134 (12)0.069 (5)0.043 (8)0.023 (5)0.010 (7)
Geometric parameters (Å, º) top
S1—O31.428 (2)C10—H10B0.9700
S1—O21.429 (2)C11—H11A0.9700
S1—N121.635 (2)C11—H11B0.9700
S1—C1'1.770 (3)C13—H13A0.9700
O1—C21.233 (3)C13—H13B0.9700
N1—C61.375 (3)C1'—C6'1.368 (4)
N1—C21.400 (3)C1'—C2'1.389 (4)
N1—C101.479 (3)C2'—C3'1.383 (5)
N12—C131.471 (3)C2'—H2'A0.9300
N12—C111.478 (3)C3'—C4'1.365 (6)
C2—C31.429 (3)C3'—H3'A0.9300
C3—C41.352 (4)C4'—C5'1.381 (5)
C3—H3A0.9300C4'—C7'1.515 (4)
C4—C51.383 (4)C5'—C6'1.396 (4)
C4—H4A0.9300C5'—H5'A0.9300
C5—C61.359 (3)C6'—H6'A0.9300
C5—H5A0.9300C7'—C8'B1.385 (12)
C6—C71.502 (4)C7'—C8'A1.447 (11)
C7—C81.519 (4)C7'—H7'A0.9700
C7—C131.535 (3)C7'—H7'B0.9700
C7—H7A0.9800C7'—H7'C0.9700
C8—C91.516 (4)C7'—H7'D0.9700
C8—H8A0.9700C8'A—H8'A0.9600
C8—H8B0.9700C8'A—H8'B0.9600
C9—C101.520 (4)C8'A—H8'C0.9600
C9—C111.527 (4)C8'B—H8'D0.9600
C9—H9A0.9800C8'B—H8'E0.9600
C10—H10A0.9700C8'B—H8'F0.9600
O3—S1—O2119.57 (13)C9—C11—H11A109.9
O3—S1—N12106.61 (11)N12—C11—H11B109.9
O2—S1—N12106.68 (10)C9—C11—H11B109.9
O3—S1—C1'108.91 (13)H11A—C11—H11B108.3
O2—S1—C1'107.49 (13)N12—C13—C7109.45 (19)
N12—S1—C1'106.94 (11)N12—C13—H13A109.8
C6—N1—C2122.35 (18)C7—C13—H13A109.8
C6—N1—C10123.50 (19)N12—C13—H13B109.8
C2—N1—C10114.07 (17)C7—C13—H13B109.8
C13—N12—C11112.7 (2)H13A—C13—H13B108.2
C13—N12—S1116.04 (16)C6'—C1'—C2'120.6 (3)
C11—N12—S1116.78 (16)C6'—C1'—S1120.5 (2)
O1—C2—N1119.4 (2)C2'—C1'—S1118.9 (2)
O1—C2—C3125.0 (2)C3'—C2'—C1'118.6 (3)
N1—C2—C3115.6 (2)C3'—C2'—H2'A120.7
C4—C3—C2121.2 (3)C1'—C2'—H2'A120.7
C4—C3—H3A119.4C4'—C3'—C2'122.4 (3)
C2—C3—H3A119.4C4'—C3'—H3'A118.8
C3—C4—C5120.7 (2)C2'—C3'—H3'A118.8
C3—C4—H4A119.6C3'—C4'—C5'118.0 (3)
C5—C4—H4A119.6C3'—C4'—C7'120.4 (4)
C6—C5—C4120.2 (2)C5'—C4'—C7'121.6 (4)
C6—C5—H5A119.9C4'—C5'—C6'121.3 (3)
C4—C5—H5A119.9C4'—C5'—H5'A119.4
C5—C6—N1119.8 (2)C6'—C5'—H5'A119.4
C5—C6—C7121.7 (2)C1'—C6'—C5'119.2 (3)
N1—C6—C7118.5 (2)C1'—C6'—H6'A120.4
C6—C7—C8110.9 (2)C5'—C6'—H6'A120.4
C6—C7—C13110.2 (2)C8'B—C7'—C4'119.0 (6)
C8—C7—C13110.0 (2)C8'A—C7'—C4'114.5 (5)
C6—C7—H7A108.6C8'A—C7'—H7'A108.6
C8—C7—H7A108.6C4'—C7'—H7'A108.6
C13—C7—H7A108.6C8'A—C7'—H7'B108.6
C9—C8—C7107.0 (2)C4'—C7'—H7'B108.6
C9—C8—H8A110.3H7'A—C7'—H7'B107.6
C7—C8—H8A110.3C8'B—C7'—H7'C107.6
C9—C8—H8B110.3C4'—C7'—H7'C107.6
C7—C8—H8B110.3C8'B—C7'—H7'D107.6
H8A—C8—H8B108.6C4'—C7'—H7'D107.6
C8—C9—C10110.6 (2)H7'C—C7'—H7'D107.0
C8—C9—C11109.5 (2)C7'—C8'A—H8'A109.5
C10—C9—C11112.7 (2)C7'—C8'A—H8'B109.5
C8—C9—H9A107.9H8'A—C8'A—H8'B109.5
C10—C9—H9A107.9C7'—C8'A—H8'C109.5
C11—C9—H9A107.9H8'A—C8'A—H8'C109.5
N1—C10—C9115.0 (2)H8'B—C8'A—H8'C109.5
N1—C10—H10A108.5C7'—C8'B—H8'D109.5
C9—C10—H10A108.5C7'—C8'B—H8'E109.5
N1—C10—H10B108.5H8'D—C8'B—H8'E109.5
C9—C10—H10B108.5C7'—C8'B—H8'F109.5
H10A—C10—H10B107.5H8'D—C8'B—H8'F109.5
N12—C11—C9108.8 (2)H8'E—C8'B—H8'F109.5
N12—C11—H11A109.9
O3—S1—N12—C13176.35 (18)C8—C9—C10—N135.6 (3)
O2—S1—N12—C1354.8 (2)C11—C9—C10—N187.4 (3)
C1'—S1—N12—C1360.0 (2)C13—N12—C11—C958.7 (3)
O3—S1—N12—C1139.7 (2)S1—N12—C11—C9163.28 (18)
O2—S1—N12—C11168.57 (19)C8—C9—C11—N1260.8 (3)
C1'—S1—N12—C1176.6 (2)C10—C9—C11—N1262.8 (3)
C6—N1—C2—O1179.2 (2)C11—N12—C13—C757.4 (3)
C10—N1—C2—O12.3 (3)S1—N12—C13—C7164.26 (18)
C6—N1—C2—C31.1 (3)C6—C7—C13—N1264.3 (3)
C10—N1—C2—C3178.03 (19)C8—C7—C13—N1258.3 (3)
O1—C2—C3—C4178.3 (2)O3—S1—C1'—C6'146.7 (2)
N1—C2—C3—C42.1 (3)O2—S1—C1'—C6'15.8 (3)
C2—C3—C4—C51.3 (4)N12—S1—C1'—C6'98.4 (2)
C3—C4—C5—C60.7 (4)O3—S1—C1'—C2'35.4 (3)
C4—C5—C6—N11.7 (4)O2—S1—C1'—C2'166.3 (2)
C4—C5—C6—C7176.9 (2)N12—S1—C1'—C2'79.4 (2)
C2—N1—C6—C50.7 (3)C6'—C1'—C2'—C3'0.0 (5)
C10—N1—C6—C5175.9 (2)S1—C1'—C2'—C3'177.9 (3)
C2—N1—C6—C7177.89 (18)C1'—C2'—C3'—C4'0.4 (5)
C10—N1—C6—C75.5 (3)C2'—C3'—C4'—C5'0.7 (6)
C5—C6—C7—C8148.0 (2)C2'—C3'—C4'—C7'179.3 (3)
N1—C6—C7—C833.4 (3)C3'—C4'—C5'—C6'0.7 (5)
C5—C6—C7—C1390.0 (3)C7'—C4'—C5'—C6'179.3 (3)
N1—C6—C7—C1388.6 (3)C2'—C1'—C6'—C5'0.0 (4)
C6—C7—C8—C961.4 (3)S1—C1'—C6'—C5'177.9 (2)
C13—C7—C8—C960.7 (3)C4'—C5'—C6'—C1'0.4 (5)
C7—C8—C9—C1062.7 (3)C3'—C4'—C7'—C8'B154.4 (12)
C7—C8—C9—C1162.1 (3)C5'—C4'—C7'—C8'B25.7 (12)
C6—N1—C10—C96.6 (3)C3'—C4'—C7'—C8'A101.1 (12)
C2—N1—C10—C9176.56 (19)C5'—C4'—C7'—C8'A78.9 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.343.116 (3)141
C7—H7A···O2ii0.982.443.254 (3)140
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2.
(1R,5R)-3-[(4-chlorophenyl)sulfonyl]-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one (II) top
Crystal data top
C17H17ClN2O3SDx = 1.423 Mg m3
Mr = 364.83Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 12750 reflections
a = 7.1374 (14) Åθ = 3.9–71.2°
b = 11.448 (2) ŵ = 3.29 mm1
c = 20.844 (4) ÅT = 299 K
V = 1703.2 (6) Å3Prizmatic, colorless
Z = 40.30 × 0.20 × 0.15 mm
F(000) = 760
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3289 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3203 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.027
ω scansθmax = 71.4°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.795, Tmax = 1.000k = 1413
16028 measured reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.1799P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.42 e Å3
3289 reflectionsΔρmin = 0.33 e Å3
217 parametersAbsolute structure: Flack x determined using 1318 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.004 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22478 (8)0.27207 (5)0.34739 (3)0.03902 (15)
Cl10.32153 (13)0.49086 (7)0.54785 (3)0.0699 (2)
O10.7771 (3)0.28000 (19)0.15317 (11)0.0647 (5)
O20.1269 (3)0.18068 (15)0.31475 (8)0.0502 (4)
O30.3999 (3)0.24823 (16)0.37824 (9)0.0524 (4)
N10.4944 (3)0.36786 (17)0.16841 (9)0.0409 (4)
N120.2648 (3)0.37419 (16)0.29491 (8)0.0401 (4)
C20.6102 (4)0.2880 (2)0.13668 (12)0.0488 (6)
C30.5244 (5)0.2229 (3)0.08706 (15)0.0627 (7)
H3A0.5966850.1712650.0631040.075*
C40.3400 (5)0.2340 (3)0.07356 (14)0.0655 (8)
H4A0.2871530.1891940.0410140.079*
C50.2283 (4)0.3117 (3)0.10791 (13)0.0562 (6)
H5A0.1009710.3173770.0989750.067*
C60.3060 (3)0.3793 (2)0.15466 (11)0.0423 (5)
C70.1922 (3)0.4659 (2)0.19194 (12)0.0451 (5)
H7A0.0887620.4928440.1647940.054*
C80.3121 (4)0.5714 (2)0.21021 (14)0.0529 (6)
H8A0.3635720.6078850.1720780.064*
H8B0.2372180.6287130.2329790.064*
C90.4687 (4)0.5263 (2)0.25296 (13)0.0476 (5)
H9A0.5463000.5929990.2656950.057*
C100.5921 (3)0.4407 (2)0.21691 (13)0.0471 (6)
H10A0.6905670.4842860.1955340.057*
H10B0.6514770.3893290.2478110.057*
C110.3847 (4)0.4731 (2)0.31352 (12)0.0480 (6)
H11A0.4837890.4464150.3417870.058*
H11B0.3111750.5312350.3361710.058*
C130.1095 (3)0.4089 (2)0.25235 (12)0.0451 (5)
H13A0.0279460.4636590.2742690.054*
H13B0.0361340.3408160.2405810.054*
C1'0.0721 (3)0.3307 (2)0.40561 (11)0.0395 (5)
C2'0.1424 (4)0.4029 (3)0.45401 (13)0.0536 (6)
H2'A0.2702870.4175020.4567760.064*
C3'0.0214 (5)0.4522 (3)0.49743 (13)0.0607 (7)
H3'A0.0665740.5013480.5294050.073*
C4'0.1678 (4)0.4284 (2)0.49336 (11)0.0472 (6)
C5'0.2378 (4)0.3554 (3)0.44671 (12)0.0549 (6)
H5'A0.3652410.3387060.4451220.066*
C6'0.1173 (4)0.3073 (2)0.40242 (12)0.0496 (6)
H6'A0.1636680.2590300.3702640.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0399 (3)0.0367 (3)0.0404 (3)0.0018 (2)0.0007 (2)0.0021 (2)
Cl10.0922 (6)0.0660 (4)0.0514 (4)0.0183 (4)0.0234 (4)0.0014 (3)
O10.0432 (9)0.0705 (12)0.0805 (13)0.0155 (9)0.0077 (9)0.0098 (11)
O20.0568 (10)0.0399 (8)0.0539 (9)0.0081 (7)0.0038 (8)0.0110 (8)
O30.0469 (9)0.0530 (10)0.0572 (10)0.0070 (8)0.0037 (8)0.0050 (8)
N10.0363 (9)0.0433 (10)0.0432 (10)0.0015 (8)0.0017 (7)0.0079 (8)
N120.0380 (9)0.0428 (9)0.0395 (9)0.0068 (8)0.0036 (8)0.0006 (8)
C20.0471 (13)0.0464 (13)0.0530 (14)0.0065 (10)0.0087 (11)0.0103 (10)
C30.0742 (19)0.0554 (15)0.0586 (15)0.0143 (15)0.0122 (14)0.0012 (14)
C40.077 (2)0.0630 (17)0.0562 (15)0.0023 (16)0.0086 (14)0.0106 (14)
C50.0486 (14)0.0666 (16)0.0533 (14)0.0015 (12)0.0082 (12)0.0014 (12)
C60.0393 (11)0.0476 (12)0.0398 (11)0.0024 (9)0.0019 (9)0.0099 (10)
C70.0398 (12)0.0509 (13)0.0446 (12)0.0077 (10)0.0028 (9)0.0080 (10)
C80.0580 (15)0.0406 (12)0.0602 (15)0.0069 (11)0.0042 (12)0.0103 (11)
C90.0495 (13)0.0387 (12)0.0547 (13)0.0094 (10)0.0014 (12)0.0027 (10)
C100.0369 (12)0.0502 (13)0.0543 (14)0.0047 (10)0.0028 (10)0.0054 (11)
C110.0506 (13)0.0461 (12)0.0472 (12)0.0113 (11)0.0041 (11)0.0037 (10)
C130.0335 (10)0.0559 (14)0.0458 (12)0.0017 (10)0.0003 (9)0.0004 (10)
C1'0.0424 (11)0.0396 (11)0.0365 (10)0.0049 (9)0.0009 (9)0.0017 (9)
C2'0.0494 (14)0.0638 (15)0.0477 (13)0.0126 (12)0.0036 (12)0.0117 (12)
C3'0.0720 (18)0.0653 (17)0.0447 (14)0.0100 (15)0.0002 (13)0.0196 (13)
C4'0.0609 (15)0.0447 (12)0.0360 (11)0.0056 (11)0.0060 (10)0.0023 (10)
C5'0.0441 (13)0.0681 (16)0.0527 (13)0.0021 (12)0.0034 (11)0.0091 (12)
C6'0.0454 (13)0.0590 (15)0.0444 (12)0.0114 (11)0.0008 (11)0.0125 (11)
Geometric parameters (Å, º) top
S1—O21.4304 (17)C8—C91.520 (4)
S1—O31.4319 (18)C8—H8A0.9700
S1—N121.6262 (19)C8—H8B0.9700
S1—C1'1.764 (2)C9—C101.517 (4)
Cl1—C4'1.733 (3)C9—C111.524 (4)
O1—C21.243 (3)C9—H9A0.9800
N1—C61.381 (3)C10—H10A0.9700
N1—C21.399 (3)C10—H10B0.9700
N1—C101.485 (3)C11—H11A0.9700
N12—C111.471 (3)C11—H11B0.9700
N12—C131.474 (3)C13—H13A0.9700
C2—C31.414 (4)C13—H13B0.9700
C3—C41.352 (5)C1'—C6'1.379 (3)
C3—H3A0.9300C1'—C2'1.398 (3)
C4—C51.393 (4)C2'—C3'1.372 (4)
C4—H4A0.9300C2'—H2'A0.9300
C5—C61.363 (4)C3'—C4'1.380 (4)
C5—H5A0.9300C3'—H3'A0.9300
C6—C71.499 (3)C4'—C5'1.376 (4)
C7—C81.528 (4)C5'—C6'1.377 (4)
C7—C131.537 (3)C5'—H5'A0.9300
C7—H7A0.9800C6'—H6'A0.9300
O2—S1—O3120.05 (11)C8—C9—C11109.4 (2)
O2—S1—N12106.96 (10)C10—C9—H9A108.0
O3—S1—N12106.62 (11)C8—C9—H9A108.0
O2—S1—C1'107.67 (11)C11—C9—H9A108.0
O3—S1—C1'107.63 (11)N1—C10—C9115.3 (2)
N12—S1—C1'107.33 (11)N1—C10—H10A108.4
C6—N1—C2122.6 (2)C9—C10—H10A108.4
C6—N1—C10123.0 (2)N1—C10—H10B108.4
C2—N1—C10114.32 (19)C9—C10—H10B108.4
C11—N12—C13112.9 (2)H10A—C10—H10B107.5
C11—N12—S1118.55 (15)N12—C11—C9108.5 (2)
C13—N12—S1117.80 (16)N12—C11—H11A110.0
O1—C2—N1118.9 (3)C9—C11—H11A110.0
O1—C2—C3125.4 (3)N12—C11—H11B110.0
N1—C2—C3115.7 (2)C9—C11—H11B110.0
C4—C3—C2121.6 (3)H11A—C11—H11B108.4
C4—C3—H3A119.2N12—C13—C7108.57 (19)
C2—C3—H3A119.2N12—C13—H13A110.0
C3—C4—C5120.7 (3)C7—C13—H13A110.0
C3—C4—H4A119.7N12—C13—H13B110.0
C5—C4—H4A119.7C7—C13—H13B110.0
C6—C5—C4119.9 (3)H13A—C13—H13B108.4
C6—C5—H5A120.1C6'—C1'—C2'120.1 (2)
C4—C5—H5A120.1C6'—C1'—S1119.92 (18)
C5—C6—N1119.4 (2)C2'—C1'—S1120.00 (19)
C5—C6—C7121.7 (2)C3'—C2'—C1'119.6 (2)
N1—C6—C7118.9 (2)C3'—C2'—H2'A120.2
C6—C7—C8110.4 (2)C1'—C2'—H2'A120.2
C6—C7—C13110.61 (19)C2'—C3'—C4'119.6 (2)
C8—C7—C13110.3 (2)C2'—C3'—H3'A120.2
C6—C7—H7A108.5C4'—C3'—H3'A120.2
C8—C7—H7A108.5C5'—C4'—C3'121.2 (2)
C13—C7—H7A108.5C5'—C4'—Cl1118.9 (2)
C9—C8—C7106.80 (19)C3'—C4'—Cl1119.8 (2)
C9—C8—H8A110.4C4'—C5'—C6'119.3 (2)
C7—C8—H8A110.4C4'—C5'—H5'A120.3
C9—C8—H8B110.4C6'—C5'—H5'A120.3
C7—C8—H8B110.4C5'—C6'—C1'120.2 (2)
H8A—C8—H8B108.6C5'—C6'—H6'A119.9
C10—C9—C8110.9 (2)C1'—C6'—H6'A119.9
C10—C9—C11112.4 (2)
O2—S1—N12—C11172.55 (18)C6—N1—C10—C92.5 (3)
O3—S1—N12—C1143.0 (2)C2—N1—C10—C9178.8 (2)
C1'—S1—N12—C1172.1 (2)C8—C9—C10—N133.3 (3)
O2—S1—N12—C1345.5 (2)C11—C9—C10—N189.4 (3)
O3—S1—N12—C13175.12 (17)C13—N12—C11—C960.2 (3)
C1'—S1—N12—C1369.78 (19)S1—N12—C11—C9156.07 (18)
C6—N1—C2—O1177.7 (2)C10—C9—C11—N1262.0 (3)
C10—N1—C2—O13.6 (3)C8—C9—C11—N1261.6 (3)
C6—N1—C2—C33.0 (3)C11—N12—C13—C758.3 (3)
C10—N1—C2—C3175.7 (2)S1—N12—C13—C7157.68 (17)
O1—C2—C3—C4177.7 (3)C6—C7—C13—N1264.2 (3)
N1—C2—C3—C43.0 (4)C8—C7—C13—N1258.2 (3)
C2—C3—C4—C50.9 (5)O2—S1—C1'—C6'15.8 (3)
C3—C4—C5—C61.5 (5)O3—S1—C1'—C6'146.5 (2)
C4—C5—C6—N11.5 (4)N12—S1—C1'—C6'99.0 (2)
C4—C5—C6—C7178.7 (3)O2—S1—C1'—C2'165.7 (2)
C2—N1—C6—C50.8 (3)O3—S1—C1'—C2'35.0 (2)
C10—N1—C6—C5177.8 (2)N12—S1—C1'—C2'79.4 (2)
C2—N1—C6—C7179.0 (2)C6'—C1'—C2'—C3'1.3 (4)
C10—N1—C6—C72.4 (3)S1—C1'—C2'—C3'177.2 (2)
C5—C6—C7—C8147.4 (2)C1'—C2'—C3'—C4'1.0 (4)
N1—C6—C7—C832.8 (3)C2'—C3'—C4'—C5'0.4 (5)
C5—C6—C7—C1390.2 (3)C2'—C3'—C4'—Cl1179.7 (2)
N1—C6—C7—C1389.6 (3)C3'—C4'—C5'—C6'1.5 (4)
C6—C7—C8—C962.1 (3)Cl1—C4'—C5'—C6'178.7 (2)
C13—C7—C8—C960.5 (3)C4'—C5'—C6'—C1'1.2 (4)
C7—C8—C9—C1062.6 (3)C2'—C1'—C6'—C5'0.2 (4)
C7—C8—C9—C1161.9 (3)S1—C1'—C6'—C5'178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.613.375 (4)140
C13—H13B···O1i0.972.693.475 (3)139
C5—H5A···O3i0.932.423.198 (3)142
C8—H8A···O3ii0.972.563.424 (3)149
C4—H4A···Cl1iii0.932.943.764 (3)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.
(1R,5R)-3-((3-nitrophenyl)sulfonyl)-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one (III) top
Crystal data top
C17H17N3O5SF(000) = 392
Mr = 375.39Dx = 1.455 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 11.040 (2) ÅCell parameters from 5501 reflections
b = 6.2621 (13) Åθ = 4.0–71.4°
c = 12.424 (3) ŵ = 2.00 mm1
β = 94.03 (3)°T = 296 K
V = 856.8 (3) Å3Prizmatic, colorless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
2446 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2363 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.023
ω scansθmax = 71.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.639, Tmax = 1.000k = 67
7776 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0754P)2 + 0.1248P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.47 e Å3
2446 reflectionsΔρmin = 0.22 e Å3
235 parametersAbsolute structure: Flack x determined using 579 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.017 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15419 (6)0.10657 (14)0.65911 (6)0.0503 (2)
O10.6728 (3)0.1378 (5)0.7756 (3)0.0777 (8)
O20.1535 (2)0.1620 (5)0.54790 (18)0.0696 (9)
O30.1536 (3)0.1126 (4)0.6914 (3)0.0761 (8)
O40.1062 (4)0.0114 (12)0.9888 (4)0.143 (2)
O50.2278 (4)0.2805 (12)0.9936 (3)0.140 (2)
N10.5589 (2)0.1629 (4)0.7462 (2)0.0446 (6)
N120.2750 (2)0.2153 (4)0.71985 (18)0.0421 (5)
N30.1493 (3)0.1778 (10)0.9537 (3)0.0916 (16)
C20.6474 (3)0.0176 (6)0.7157 (3)0.0557 (8)
C30.7019 (3)0.0648 (7)0.6191 (3)0.0639 (11)
H3A0.7590570.0288790.5942810.077*
C40.6726 (3)0.2440 (8)0.5615 (3)0.0638 (10)
H4A0.7109710.2728960.4988920.077*
C50.5843 (3)0.3867 (6)0.5960 (3)0.0553 (8)
H5A0.5643350.5091170.5562340.066*
C60.5290 (3)0.3440 (5)0.6875 (2)0.0436 (6)
C70.4346 (3)0.4905 (5)0.7275 (3)0.0492 (7)
H7A0.4517840.6357740.7034210.059*
C80.4401 (3)0.4899 (7)0.8499 (3)0.0580 (9)
H8A0.5201900.5320070.8794700.070*
H8B0.3808760.5885260.8757500.070*
C90.4120 (3)0.2638 (7)0.8834 (2)0.0526 (8)
H9A0.4133070.2610730.9623800.063*
C100.5094 (3)0.1127 (8)0.8501 (2)0.0539 (7)
H10A0.5755970.1130610.9058010.065*
H10B0.4760960.0306580.8463200.065*
C110.2850 (3)0.1977 (6)0.8394 (2)0.0514 (8)
H11A0.2692590.0516910.8604010.062*
H11B0.2250280.2890810.8694840.062*
C130.3064 (3)0.4300 (6)0.6827 (3)0.0495 (7)
H13A0.2485240.5330330.7067390.059*
H13B0.3023690.4328780.6044590.059*
C1'0.0293 (3)0.2314 (5)0.7149 (2)0.0449 (6)
C2'0.0143 (3)0.1467 (6)0.8071 (2)0.0517 (8)
H2'A0.0144810.0176810.8357350.062*
C3'0.1031 (3)0.2624 (8)0.8550 (3)0.0606 (10)
C4'0.1479 (3)0.4520 (8)0.8136 (4)0.0693 (11)
H4'A0.2072720.5258830.8478950.083*
C5'0.1040 (3)0.5310 (7)0.7212 (4)0.0696 (10)
H5'A0.1351410.6578080.6916900.084*
C6'0.0138 (3)0.4237 (6)0.6715 (3)0.0558 (8)
H6'A0.0175490.4793930.6098880.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0495 (4)0.0415 (4)0.0608 (4)0.0046 (3)0.0094 (3)0.0112 (4)
O10.0648 (16)0.0635 (19)0.105 (2)0.0234 (14)0.0084 (14)0.0117 (17)
O20.0688 (14)0.090 (3)0.0508 (11)0.0015 (14)0.0079 (10)0.0178 (13)
O30.0725 (17)0.0361 (14)0.121 (2)0.0036 (12)0.0151 (16)0.0143 (15)
O40.109 (3)0.205 (6)0.120 (3)0.006 (4)0.038 (2)0.085 (4)
O50.123 (3)0.186 (6)0.120 (3)0.016 (4)0.071 (3)0.029 (4)
N10.0405 (11)0.0402 (15)0.0533 (12)0.0025 (10)0.0038 (9)0.0029 (11)
N120.0437 (12)0.0376 (14)0.0458 (11)0.0058 (11)0.0079 (9)0.0014 (10)
N30.060 (2)0.148 (5)0.069 (2)0.013 (2)0.0244 (16)0.009 (3)
C20.0444 (15)0.0499 (19)0.072 (2)0.0058 (15)0.0022 (14)0.0110 (18)
C30.0494 (16)0.069 (3)0.074 (2)0.0040 (17)0.0143 (15)0.022 (2)
C40.060 (2)0.072 (3)0.0609 (18)0.0118 (19)0.0194 (16)0.0169 (19)
C50.0612 (19)0.056 (2)0.0495 (16)0.0082 (16)0.0095 (13)0.0003 (15)
C60.0436 (14)0.0395 (16)0.0477 (14)0.0042 (12)0.0023 (11)0.0048 (13)
C70.0570 (16)0.0318 (16)0.0595 (17)0.0019 (13)0.0089 (13)0.0002 (13)
C80.0631 (18)0.054 (2)0.0570 (17)0.0011 (17)0.0084 (14)0.0178 (16)
C90.0546 (17)0.062 (2)0.0415 (13)0.0025 (16)0.0069 (12)0.0016 (15)
C100.0491 (14)0.0588 (19)0.0539 (15)0.0031 (18)0.0039 (12)0.0138 (18)
C110.0500 (15)0.058 (2)0.0474 (14)0.0080 (15)0.0120 (12)0.0053 (15)
C130.0505 (16)0.0400 (17)0.0578 (16)0.0086 (14)0.0039 (13)0.0096 (15)
C1'0.0380 (13)0.0422 (17)0.0542 (15)0.0021 (12)0.0018 (11)0.0016 (14)
C2'0.0394 (13)0.055 (2)0.0613 (16)0.0045 (14)0.0056 (12)0.0088 (16)
C3'0.0426 (15)0.083 (3)0.0572 (17)0.0108 (17)0.0072 (13)0.0053 (19)
C4'0.0446 (16)0.076 (3)0.089 (3)0.0053 (18)0.0116 (16)0.024 (2)
C5'0.0525 (17)0.056 (2)0.100 (3)0.0152 (17)0.0041 (18)0.004 (2)
C6'0.0490 (16)0.051 (2)0.0682 (19)0.0059 (15)0.0058 (14)0.0066 (17)
Geometric parameters (Å, º) top
S1—O21.424 (3)C7—H7A0.9800
S1—O31.430 (3)C8—C91.514 (6)
S1—N121.634 (3)C8—H8A0.9700
S1—C1'1.768 (3)C8—H8B0.9700
O1—C21.245 (5)C9—C101.512 (5)
O4—N31.214 (8)C9—C111.526 (5)
O5—N31.212 (7)C9—H9A0.9800
N1—C61.376 (4)C10—H10A0.9700
N1—C21.407 (4)C10—H10B0.9700
N1—C101.471 (4)C11—H11A0.9700
N12—C131.471 (4)C11—H11B0.9700
N12—C111.485 (4)C13—H13A0.9700
N3—C3'1.460 (5)C13—H13B0.9700
C2—C31.411 (5)C1'—C2'1.379 (4)
C3—C41.357 (6)C1'—C6'1.390 (5)
C3—H3A0.9300C2'—C3'1.386 (5)
C4—C51.411 (6)C2'—H2'A0.9300
C4—H4A0.9300C3'—C4'1.372 (7)
C5—C61.354 (4)C4'—C5'1.370 (6)
C5—H5A0.9300C4'—H4'A0.9300
C6—C71.499 (4)C5'—C6'1.383 (5)
C7—C81.519 (4)C5'—H5'A0.9300
C7—C131.531 (5)C6'—H6'A0.9300
O2—S1—O3120.4 (2)C10—C9—C8110.3 (3)
O2—S1—N12107.14 (14)C10—C9—C11112.7 (3)
O3—S1—N12106.87 (16)C8—C9—C11110.8 (3)
O2—S1—C1'108.78 (16)C10—C9—H9A107.6
O3—S1—C1'107.17 (17)C8—C9—H9A107.6
N12—S1—C1'105.56 (13)C11—C9—H9A107.6
C6—N1—C2122.4 (3)N1—C10—C9114.9 (3)
C6—N1—C10123.5 (3)N1—C10—H10A108.5
C2—N1—C10114.0 (3)C9—C10—H10A108.5
C13—N12—C11112.2 (3)N1—C10—H10B108.5
C13—N12—S1116.0 (2)C9—C10—H10B108.5
C11—N12—S1115.6 (2)H10A—C10—H10B107.5
O5—N3—O4125.6 (5)N12—C11—C9109.9 (2)
O5—N3—C3'116.9 (6)N12—C11—H11A109.7
O4—N3—C3'117.5 (4)C9—C11—H11A109.7
O1—C2—N1118.4 (3)N12—C11—H11B109.7
O1—C2—C3125.5 (3)C9—C11—H11B109.7
N1—C2—C3116.1 (3)H11A—C11—H11B108.2
C4—C3—C2121.4 (3)N12—C13—C7110.2 (2)
C4—C3—H3A119.3N12—C13—H13A109.6
C2—C3—H3A119.3C7—C13—H13A109.6
C3—C4—C5120.5 (3)N12—C13—H13B109.6
C3—C4—H4A119.7C7—C13—H13B109.6
C5—C4—H4A119.7H13A—C13—H13B108.1
C6—C5—C4119.4 (4)C2'—C1'—C6'121.7 (3)
C6—C5—H5A120.3C2'—C1'—S1118.9 (3)
C4—C5—H5A120.3C6'—C1'—S1119.1 (2)
C5—C6—N1120.1 (3)C1'—C2'—C3'117.0 (3)
C5—C6—C7121.5 (3)C1'—C2'—H2'A121.5
N1—C6—C7118.4 (3)C3'—C2'—H2'A121.5
C6—C7—C8110.5 (3)C4'—C3'—C2'122.5 (3)
C6—C7—C13112.0 (3)C4'—C3'—N3119.4 (4)
C8—C7—C13109.5 (3)C2'—C3'—N3118.1 (4)
C6—C7—H7A108.2C5'—C4'—C3'119.2 (3)
C8—C7—H7A108.2C5'—C4'—H4'A120.4
C13—C7—H7A108.2C3'—C4'—H4'A120.4
C9—C8—C7106.5 (3)C4'—C5'—C6'120.5 (4)
C9—C8—H8A110.4C4'—C5'—H5'A119.8
C7—C8—H8A110.4C6'—C5'—H5'A119.8
C9—C8—H8B110.4C5'—C6'—C1'119.1 (3)
C7—C8—H8B110.4C5'—C6'—H6'A120.5
H8A—C8—H8B108.6C1'—C6'—H6'A120.5
O2—S1—N12—C1338.6 (2)C8—C9—C10—N136.5 (4)
O3—S1—N12—C13168.9 (2)C11—C9—C10—N187.9 (4)
C1'—S1—N12—C1377.3 (2)C13—N12—C11—C955.3 (4)
O2—S1—N12—C11173.1 (2)S1—N12—C11—C9168.5 (2)
O3—S1—N12—C1156.6 (3)C10—C9—C11—N1265.9 (4)
C1'—S1—N12—C1157.3 (3)C8—C9—C11—N1258.2 (4)
C6—N1—C2—O1177.1 (3)C11—N12—C13—C756.7 (3)
C10—N1—C2—O11.8 (5)S1—N12—C13—C7167.3 (2)
C6—N1—C2—C31.8 (4)C6—C7—C13—N1262.7 (3)
C10—N1—C2—C3177.0 (3)C8—C7—C13—N1260.3 (4)
O1—C2—C3—C4176.7 (4)O2—S1—C1'—C2'157.4 (3)
N1—C2—C3—C42.0 (5)O3—S1—C1'—C2'25.8 (3)
C2—C3—C4—C51.3 (6)N12—S1—C1'—C2'87.9 (3)
C3—C4—C5—C60.2 (5)O2—S1—C1'—C6'29.2 (3)
C4—C5—C6—N10.1 (5)O3—S1—C1'—C6'160.8 (3)
C4—C5—C6—C7180.0 (3)N12—S1—C1'—C6'85.5 (3)
C2—N1—C6—C50.8 (4)C6'—C1'—C2'—C3'0.3 (5)
C10—N1—C6—C5175.6 (3)S1—C1'—C2'—C3'173.0 (2)
C2—N1—C6—C7179.2 (3)C1'—C2'—C3'—C4'0.7 (5)
C10—N1—C6—C74.4 (4)C1'—C2'—C3'—N3179.0 (3)
C5—C6—C7—C8147.0 (3)O5—N3—C3'—C4'1.1 (6)
N1—C6—C7—C833.0 (4)O4—N3—C3'—C4'178.9 (5)
C5—C6—C7—C1390.6 (4)O5—N3—C3'—C2'179.3 (4)
N1—C6—C7—C1389.4 (3)O4—N3—C3'—C2'0.8 (6)
C6—C7—C8—C962.1 (3)C2'—C3'—C4'—C5'0.2 (6)
C13—C7—C8—C961.7 (4)N3—C3'—C4'—C5'179.8 (4)
C7—C8—C9—C1064.2 (3)C3'—C4'—C5'—C6'1.4 (6)
C7—C8—C9—C1161.3 (3)C4'—C5'—C6'—C1'1.8 (6)
C6—N1—C10—C96.1 (5)C2'—C1'—C6'—C5'0.9 (5)
C2—N1—C10—C9178.7 (3)S1—C1'—C6'—C5'174.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.613.257 (5)127
C10—H10A···O5ii0.972.583.460 (6)151
C11—H11A···O5iii0.972.553.428 (7)150
C13—H13A···O3iv0.972.463.330 (4)150
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z; (iii) x, y1/2, z+2; (iv) x, y+1, z.
 

Acknowledgements

We are especially grateful to Professor B. Tashkhodzhaev for help in discussing the results.

References

First citationAzimova, S. S. & Yunusov, M. S. (2013). Editors. Natural Compounds: Alkaloids. pp. 625–626, Springer New York.  Google Scholar
First citationBarát, V., Csókás, D. & Bates, R. W. (2018). J. Org. Chem. 83, 9088–9095.  Web of Science PubMed Google Scholar
First citationBrel, V. K. (2016). Russ. J. Org. Chem. 52, 1804–1811.  Web of Science CrossRef CAS Google Scholar
First citationFrasinyuk, M. S., Vinogradova, V. I., Bondarenko, S. P. & Khilya, V. P. (2007). Chem. Nat. Compd. 43, 590–593.  Web of Science CrossRef CAS Google Scholar
First citationFreer, A. A., Robins, D. J. & Sheldrake, G. N. (1987). Acta Cryst. C43, 1119–1122.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGotti, C. & Clementi, F. (2021). Pharmacol. Res. 170, 105700.  Web of Science CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirschhäuser, C., Haseler, C. A. & Gallagher, T. (2011). Angew. Chem. 123, 5268–5271.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKulakov, I. V. & Nurkenov, O. A. (2012). Chem. Sustainable Dev. 20, 237–250.  Google Scholar
First citationKulakov, I. V., Nurkenov, O. A., Turdybekov, D. M., Mahmutova, A. S., Ahmetova, S. B., Sejdahmetova, R. B. & Turdybekov, K. M. (2010). Chem. Heterocycl. Compd, 46, 240–244.  Web of Science CrossRef CAS Google Scholar
First citationLiu, R., Bao, X., Sun, X., Cai, Y., Zhang, T., Ye, X. & Li, X. N. (2020). Tetrahedron Lett. 61, 151803.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarrière, E., Rouden, J., Tadino, V. & Lasne, M. C. (2000). Org. Lett. 2, 1121–1124.  Web of Science PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationO'Neill, B. T., Yohannes, D., Bundesmann, M. W. & Arnold, E. P. (2000). Org. Lett. 2, 4201–4204.  Web of Science PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPérez, E. G., Méndez-Gálvez, C. & Cassels, B. K. (2012). Nat. Prod. Rep. 29, 555–567.  Web of Science PubMed Google Scholar
First citationPrzybył, A. K., Maj, E., Wietrzyk, J. & Kubicki, M. (2019). J. Mol. Struct. 1176, 871–880.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRouden, J., Lasne, M. C., Blanchet, J. & Baudoux, J. (2014). Chem. Rev. 114, 712–778.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkin, D. V., Baibulatova, N. Z., Lobov, A. N., Ivanov, S. P., Spirikhin, L. V. & Dokichev, V. A. (2010). Chem. Nat. Compd. 46, 62–65.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTutka, P., Vinnikov, D., Courtney, R. J. & Benowitz, N. L. (2019). Addiction, 114, 1951–1969.  Web of Science CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds