research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-(3-hy­dr­oxy­phen­yl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one hemihydrate

crossmark logo

aSchool of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia, cCentre for Drug Research, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia, and dNatural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
*Correspondence e-mail: sitimunirah@upm.edu.my

Edited by C. Schulzke, Universität Greifswald, Germany (Received 20 September 2022; accepted 2 March 2023; online 10 March 2023)

High-quality single crystals of the title compound, 2C13H11NO2·H2O, were grown and a structural analysis was performed. The asymmetric unit comprises one mol­ecule of 3-(3-hy­droxy­phen­yl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (3HPPP), which was recently discovered to be a promising anti-MRSA candidate, and a half-mol­ecule of water. The compound crystallizes in the monoclinic space group P2/c. The crystal structure features inter­molecular pyrrole-N—H⋯O (water), carbon­yl/keto-C—O⋯H—O-phenol and phenol-C—O⋯H (water) hydrogen bonds, which help to consolidate the crystal packing. A Hirshfeld surface analysis for the components in the asymmetric unit showed that H⋯H (40.9%) and H⋯C/C⋯H (32.4%) contacts make the largest contributions to the inter­molecular inter­actions of 3HPPP. Considering the presence of water, in its vicinity H⋯O/O⋯H and H⋯C/C⋯H are the most significant contacts, contributing 48.7 and 29.8%, respectively.

1. Chemical context

Chalcones are 1,3-diphenyl-2-propen-1-ones with an α,β-unsaturated carbonyl system in between two aromatic rings (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]; Attarde et al., 2010[Attarde, M., Vora, A., Varghese, A. & Kachwala, Y. (2010). Org. Chem. Ind. J. 10(5), 192-204.]). Chalcones are widely used as precursors for the biosynthesis of compounds in the flavonoid class, and can be chemically synthesized by various reactions such as aldol condensation, and Suzuki and Wittig reactions (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]). To date, chalcones have continued to attract great inter­est from researchers because of their simple chemistry and diverse applications in medicinal and synthetic chemistry (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]), analytical chemistry (Sun et al., 2012[Sun, Y., Chen, H., Cao, D., Liu, Z., Chen, H., Deng, Y. & Fang, Q. (2012). J. Photochem. Photobiol. Chem. 244, 65-70.]), materials chemistry and lighting technology (Anandkumar et al., 2017[Anandkumar, D., Ganesan, S., Rajakumar, P. & Maruthamuthu, P. (2017). New J. Chem. 41, 11238-11249.]; Danko et al., 2012[Danko, M., Andics, A., Kosa, C., Hrdlovic, P. & Vegh, D. (2012). Dyes Pigments, 92, 1257-1265.]).

[Scheme 1]

Chalcone analogues have been reported with a wide range of biological activities, including anti-inflammatory, anti­microbial, and anti­cancer properties (Kar Mahapatra et al., 2019[Kar Mahapatra, D., Asati, V. & Bharti, S. K. (2019). Expert Opin. Ther. Pat. 29, 385-406.]; Lin et al., 2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]; Nowakowska, 2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). Recently, we discovered a new promising anti-microbial candidate, 3-(3-hy­droxy­phen­yl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (3HPPP), which showed remarkable inhibitory activity on methicillin-resistant Staphylococcus aureus (MRSA, ATCC 700699) with MIC and MBC values of 0.23 mg ml−1 and 0.47 mg ml−1, respectively (Gunasekharan et al., 2021[Gunasekharan, M., Choi, T. I., Rukayadi, Y., Mohammad Latif, M. A., Karunakaran, T., Mohd Faudzi, S. M. & Kim, C. H. (2021). Molecules, 26, 5314.]). However, as yet the crystal structure of this compound has remained elusive. The mol­ecular structure of its hydrate is analysed and discussed herein.

2. Structural commentary

The mol­ecular structure of the asymmetric unit of 3HPPP plus the symmetry-completed water mol­ecule are shown in Fig. 1[link]. The asymmetric unit consists of a mol­ecule of 3HPPP in a neutral state plus half a water mol­ecule of crystallization. The investigated bioactive compound crystallized in the monoclinic crystal system, space group P2/c, with the unit cell containing four mol­ecules of 3HPPP together with two mol­ecules of water. Four water mol­ecules reside on four of the cell edges on the crystallographic c-axis and are shared between the unit and adjacent cells. Further analysis of the metrical parameters of the mol­ecule showed no anomalies compared to the available literature data for related compounds. The planarity of 3HPPP is confirmed as both the aromatic pyrrole (N1/C1–C4) and phenyl (C8–C13) rings are aligned in the plane of the aliphatic α,β-unsaturated ketone linker, making dihedral angles of 0.91 (7) and 5.98 (7)°, respectively with the linker.

[Figure 1]
Figure 1
ORTEP (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) diagram of compound 3HPPP plus the symmetry-completed water molecule with the atom-labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

Fig. 2[link] illustrates the unit cell of 3HPPP viewed along the crystallographic b-axis and the supra­molecular association within and around it. In the crystal, mol­ecules are linked into dimers via multiple inter­molecular hydrogen bonds (Table 1[link]). The dimers are arranged in planes with two distinct orientations and at an angle of roughly 61° to each other, while the water mol­ecules act as hinges. This represents a zigzag pattern when viewed along the the ac diagonal. Furthermore, the 3HPPP dimers are arranged in a stair-like fashion, which ascends/descends roughly in the b-axis direction. Inter­molecular hydrogen bonds C13—H13⋯O1i [symmetry code: (i) −x + 1, −y + 1, −z + 1) between two mol­ecules of 3HPPP can be observed connecting these non-covalently. Mol­ecules of 3HPPP are linked into inversion dimer–dimer chains through these weak inter­actions. Moreover, the lattice water mol­ecules act as donors and acceptors in hydrogen bonds with the phenol and pyrrole moieties of 3HPPP [O3—H3O⋯O2ii and N1—H1N⋯O3; symmetry code: (ii) x − 1, −y + 1, z − [{1\over 2}]; Table 2[link]]. All hydrogen atoms and all lone pairs of the water mol­ecule are engaged in hydrogen bonding (Fig. 2[link]). These hydrogen bonds connect two of the 3HPPP dimers in different planes comparably strongly and further consolidate the crystal packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.901 (19) 1.828 (19) 2.7257 (11) 174.2 (16)
N1—H1N⋯O3 0.888 (17) 2.041 (17) 2.8722 (13) 155.4 (14)
C13—H13⋯O1i 0.95 2.51 3.2050 (13) 130
O3—H3O⋯O2ii 0.864 (18) 2.320 (18) 2.9430 (7) 129.2 (16)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-1, -y+1, z-{\script{1\over 2}}].

Table 2
Percentage contribution of inter­atomic contacts to the calculated Hirshfeld surfaces for the individual constituents in the asymmetric unit of 3HPPP

Contact Percentage contribution
  3HPPP Water
H⋯H 40.9 16.2
H⋯O/O⋯H 19.4 48.7
H⋯C/C⋯H 32.4 29.8
H⋯N/N⋯H 2.0 4.6
[Figure 2]
Figure 2
The crystal packing of compound 3HPPP viewed along the b axis. The inter­molecular inter­actions are indicated by dashed lines.

4. Database survey

A database survey of the Cambridge Structural Database (WEBCSD version 1.9.32, updated September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that no structure of a compound with a close similarity to the entire 3HPPP mol­ecule as been reported. However, focusing on the pyrrole ene-one side yielded three [refcodes HIXGAW (Norsten et al., 1999[Norsten, T. B., McDonald, R. & Branda, N. R. (1999). Chem. Commun. pp. 719-720.]); RICFEP (Camarillo et al., 2007[Camarillo, E. A., Flores, H., Amador, P. & Bernès, S. (2007). Acta Cryst. E63, o2593-o2594.]) and RICFEP01 (Jones, 2013[Jones, P. (2013). Private communication (refcode RICFEP01, CCDC 969887). CCDC, Cambridge, England.])] similar compounds with a 77–88% similarity score relative to the title compound. The title compound differs from those at the substituted ethyl-phenol (C6–C13) side. The overall conformation of the title compound and HIXGAW are very nearly planar and the other two (RICFEP and RICFEP01) are planar. A notable difference relates to the substitution on the keto side. The respective dihedral angles in the studied compound and in HIXGAW are in the range of 5.49–24.65°.

5. Hirshfeld surface analysis

Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to calculate the Hirshfeld surfaces to obtain further insight into the inter­molecular inter­actions in the crystal structure of the title compound. The three-dimensional Hirshfeld surfaces plotted over dnorm ranging from −0.667 to 1.118 a.u. are shown in Fig. 3[link]. For compound 3HPPP (Fig. 3[link]a), the most prominent inter­actions in the crystal packing are the hydrogen bonds, which are represented by four bright-red spots on the mapped dnorm surface. The bright-red spots around O1 and O2 correspond to the hydrogen bonding between hydroxyl and carbon­yl/keto functional groups of two mol­ecules of 3HPPP. The other two bright-red spots are due to hydrogen bonding between the pyrrole-N—H functional group and the water mol­ecule, and between the water mol­ecule and the hydroxyl group of 3HPPP. In addition to these four spots, two faint-red spots appear around O1 and H13, representing the non-classical hydrogen-bond inter­action of an aromatic C–H and the carbon­yl/keto functional group. The intensities of all these red spots indicate the relative strengths of the inter­actions, as well as the distances of the contacts. The dnorm Hirshfeld surface for the water mol­ecules present in the crystal lattice was also calculated and mapped (Fig. 3[link]b). Four bright-red spots are observed, which are due to the pyrrole-to-water and water-to-hydroxyl hydrogen bonds and are thereby mirrors of the inter­actions involving water described above.

[Figure 3]
Figure 3
Three-dimensional Hirshfeld surfaces plotted over dnorm in the range −0.667 to 1.118 a.u of (a) compound 3HPPP and (b) the water mol­ecule, generated with Crystal Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

The overall two-dimensional fingerprint plots of both mol­ecules, water and 3HPPP, and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H inter­actions are shown in Fig. 4[link], while the percentage contributions are listed in Table 2[link]. The two-dimensional fingerprint plots for compound 3HPPP show that H⋯H and H⋯ C/C⋯ H are the most significant inter­atomic inter­actions in the crystal packing, contributing 40.9 and 32.4%, respectively, to the Hirshfeld surface. The H⋯O/O⋯H (19.4%) and other minor contacts (H⋯N/N⋯H = 2.0%) further contribute to the Hirshfeld surfaces. On the other hand, the most prominent inter­atomic contacts for the water mol­ecule are H⋯O/O⋯H, as expected, with a 48.7% contribution while H⋯H and H⋯C/C⋯H contacts contribute 16.2 and 29.8%, respectively.

[Figure 4]
Figure 4
Overall two-dimensional fingerprint plots for compound 3HPPP and the water mol­ecule together with those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H inter­actions, generated with Crystal Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

6. Synthesis and crystallization

The 3-hy­droxy­pyrrolylated chalcone 3HPPP was synthesized by a Claisen–Schmidt condensation reaction between 2-ace­tyl­pyrrole (2 mmol) and 3-hy­droxy­benzaldehyde (2 mmol) under ethano­lic (10 ml) conditions. The resulting mixture was stirred for 5 min followed by the dropwise addition of 3 ml of a 40% aqueous NaOH solution (Fig. 5[link]). The mixture was stirred overnight at room temperature. After the reaction was essentially complete, it was quenched by pouring the resultant solution onto crushed ice and extraction with ethyl acetate (3 × 10 ml). The organic layer was washed with distilled water (3 × 10 ml), filtered, dried over anhydrous MgSO4 and concentrated in vacuo. Finally, the collected crudes were purified by gravity column chromatography using hexa­ne:ethyl acetate (ratio of 7:3) as solvent system. Multiple spectroscopic analyses confirmed the chemical structure (Mohd Faudzi et al., 2020[Mohd Faudzi, S. M., Abdullah, M. A., Abdull Manap, M. R., Ismail, A. Z., Rullah, K., Mohd Aluwi, M. F. F., Mazila Ramli, A. N., Abas, F. & Lajis, N. H. (2020). Bioorg. Chem. 94, 103376.]). The obtained pure 3HPPP was then recrystallized by slow evaporation of an ethanol solution, giving crystals suitable for X-ray diffraction analysis.

[Figure 5]
Figure 5
Synthetic route towards 3-(3-hy­droxy­phen­yl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (3HPPP).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms bound to oxygen or nitro­gen were found in difference maps and refined freely. The carbon-bound hydrogen atoms, which are all aromatic, were geometrically placed and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula 2C13H11NO2·H2O
Mr 444.47
Crystal system, space group Monoclinic, P2/c
Temperature (K) 100
a, b, c (Å) 11.9096 (1), 5.5836 (1), 16.8121 (2)
β (°) 105.356 (1)
V3) 1078.07 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.78
Crystal size (mm) 0.18 × 0.17 × 0.13
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.676, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13888, 2221, 2067
Rint 0.028
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.04
No. of reflections 2221
No. of parameters 163
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 1.3 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.121a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.121a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.121a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

3-(3-Hydroxyphenyl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one hemihydrate top
Crystal data top
2C13H11NO2·H2OF(000) = 468
Mr = 444.47Dx = 1.369 Mg m3
Monoclinic, P2/cCu Kα radiation, λ = 1.54184 Å
a = 11.9096 (1) ÅCell parameters from 9119 reflections
b = 5.5836 (1) Åθ = 3.8–76.1°
c = 16.8121 (2) ŵ = 0.78 mm1
β = 105.356 (1)°T = 100 K
V = 1078.07 (3) Å3Prism, colourless
Z = 20.18 × 0.17 × 0.13 mm
Data collection top
XtaLAB Synergy, Dualflex, AtlasS2
diffractometer
2067 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.028
ω scansθmax = 75.2°, θmin = 3.9°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2021)
h = 1414
Tmin = 0.676, Tmax = 1.000k = 67
13888 measured reflectionsl = 1821
2221 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3933P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2221 reflectionsΔρmax = 0.30 e Å3
163 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0039 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27900 (7)0.42189 (15)0.33951 (5)0.0268 (2)
O20.81284 (7)0.95369 (15)0.59533 (5)0.0215 (2)
O30.0000000.0526 (2)0.2500000.0208 (3)
N10.10566 (8)0.45548 (17)0.19188 (5)0.0186 (2)
C10.17738 (9)0.7925 (2)0.15408 (6)0.0178 (2)
H1A0.2251410.9283860.1535170.021*
C20.07695 (9)0.7278 (2)0.09255 (6)0.0222 (3)
H2A0.0440330.8120120.0427260.027*
C30.03512 (9)0.5190 (2)0.11809 (6)0.0222 (3)
H30.0321720.4340670.0885900.027*
C40.19382 (9)0.62052 (19)0.21594 (6)0.0159 (2)
C50.28203 (9)0.59293 (19)0.29291 (6)0.0177 (2)
C60.37555 (9)0.7736 (2)0.31381 (6)0.0179 (2)
H60.3762120.9017760.2767630.021*
C70.45937 (9)0.75864 (19)0.38443 (6)0.0173 (2)
H70.4553060.6247170.4184130.021*
C80.55672 (9)0.92326 (19)0.41588 (6)0.0155 (2)
C90.56928 (9)1.14020 (19)0.37719 (6)0.0174 (2)
H90.5136931.1860810.3277860.021*
C100.66350 (9)1.28752 (19)0.41156 (6)0.0184 (2)
H100.6722291.4338340.3849750.022*
C110.74552 (9)1.22472 (19)0.48433 (6)0.0181 (2)
H110.8097691.3269210.5070800.022*
C120.73238 (9)1.0110 (2)0.52331 (6)0.0166 (2)
C130.63891 (9)0.86102 (19)0.48899 (6)0.0161 (2)
H130.6308230.7143630.5155810.019*
H2O0.7856 (15)0.832 (3)0.6202 (11)0.050 (5)*
H1N0.0948 (13)0.324 (3)0.2186 (9)0.034 (4)*
H3O0.0335 (16)0.039 (4)0.2091 (11)0.062 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0251 (4)0.0272 (5)0.0228 (4)0.0081 (3)0.0032 (3)0.0089 (3)
O20.0178 (4)0.0239 (4)0.0194 (4)0.0044 (3)0.0012 (3)0.0032 (3)
O30.0218 (5)0.0193 (6)0.0208 (5)0.0000.0046 (4)0.000
N10.0170 (4)0.0199 (5)0.0176 (4)0.0025 (4)0.0025 (3)0.0010 (4)
C10.0176 (5)0.0187 (5)0.0171 (5)0.0015 (4)0.0044 (4)0.0011 (4)
C20.0214 (5)0.0256 (6)0.0167 (5)0.0024 (4)0.0000 (4)0.0025 (4)
C30.0172 (5)0.0277 (6)0.0182 (5)0.0011 (4)0.0015 (4)0.0008 (4)
C40.0145 (5)0.0173 (5)0.0163 (5)0.0006 (4)0.0045 (4)0.0010 (4)
C50.0173 (5)0.0189 (5)0.0167 (5)0.0002 (4)0.0043 (4)0.0013 (4)
C60.0183 (5)0.0185 (5)0.0166 (5)0.0009 (4)0.0040 (4)0.0019 (4)
C70.0176 (5)0.0170 (5)0.0176 (5)0.0003 (4)0.0051 (4)0.0014 (4)
C80.0153 (5)0.0165 (5)0.0156 (5)0.0011 (4)0.0056 (4)0.0016 (4)
C90.0190 (5)0.0180 (5)0.0150 (5)0.0017 (4)0.0043 (4)0.0002 (4)
C100.0232 (5)0.0144 (5)0.0191 (5)0.0002 (4)0.0083 (4)0.0007 (4)
C110.0176 (5)0.0176 (5)0.0195 (5)0.0038 (4)0.0055 (4)0.0030 (4)
C120.0150 (5)0.0196 (5)0.0147 (5)0.0017 (4)0.0034 (4)0.0014 (4)
C130.0172 (5)0.0147 (5)0.0170 (5)0.0005 (4)0.0059 (4)0.0008 (4)
Geometric parameters (Å, º) top
O1—C51.2417 (13)C5—C61.4748 (14)
O2—C121.3683 (12)C6—C71.3362 (14)
O2—H2O0.901 (19)C6—H60.9500
O3—H3O0.864 (18)C7—C81.4642 (14)
O3—H3Oi0.864 (18)C7—H70.9500
N1—C31.3484 (13)C8—C131.3973 (14)
N1—C41.3749 (13)C8—C91.4015 (15)
N1—H1N0.888 (17)C9—C101.3879 (15)
C1—C41.3906 (14)C9—H90.9500
C1—C21.4056 (14)C10—C111.3932 (14)
C1—H1A0.9500C10—H100.9500
C2—C31.3804 (17)C11—C121.3902 (15)
C2—H2A0.9500C11—H110.9500
C3—H30.9500C12—C131.3903 (15)
C4—C51.4429 (14)C13—H130.9500
C12—O2—H2O109.4 (11)C5—C6—H6119.7
H3O—O3—H3Oi108 (3)C6—C7—C8127.97 (10)
C3—N1—C4109.61 (9)C6—C7—H7116.0
C3—N1—H1N122.9 (10)C8—C7—H7116.0
C4—N1—H1N127.4 (10)C13—C8—C9119.15 (9)
C4—C1—C2107.27 (10)C13—C8—C7117.69 (9)
C4—C1—H1A126.4C9—C8—C7123.14 (9)
C2—C1—H1A126.4C10—C9—C8119.53 (9)
C3—C2—C1107.15 (9)C10—C9—H9120.2
C3—C2—H2A126.4C8—C9—H9120.2
C1—C2—H2A126.4C9—C10—C11121.19 (10)
N1—C3—C2108.67 (10)C9—C10—H10119.4
N1—C3—H3125.7C11—C10—H10119.4
C2—C3—H3125.7C12—C11—C10119.33 (10)
N1—C4—C1107.30 (9)C12—C11—H11120.3
N1—C4—C5120.68 (9)C10—C11—H11120.3
C1—C4—C5132.01 (10)O2—C12—C11118.55 (9)
O1—C5—C4120.80 (10)O2—C12—C13121.51 (10)
O1—C5—C6121.48 (9)C11—C12—C13119.94 (9)
C4—C5—C6117.73 (9)C12—C13—C8120.84 (10)
C7—C6—C5120.54 (10)C12—C13—H13119.6
C7—C6—H6119.7C8—C13—H13119.6
C4—C1—C2—C30.20 (12)C5—C6—C7—C8178.53 (9)
C4—N1—C3—C20.25 (13)C6—C7—C8—C13175.38 (10)
C1—C2—C3—N10.03 (13)C6—C7—C8—C96.06 (17)
C3—N1—C4—C10.38 (12)C13—C8—C9—C100.72 (14)
C3—N1—C4—C5179.58 (9)C7—C8—C9—C10179.26 (9)
C2—C1—C4—N10.35 (12)C8—C9—C10—C110.54 (15)
C2—C1—C4—C5179.42 (11)C9—C10—C11—C120.24 (16)
N1—C4—C5—O11.17 (16)C10—C11—C12—O2179.10 (9)
C1—C4—C5—O1179.86 (11)C10—C11—C12—C130.84 (15)
N1—C4—C5—C6178.55 (9)O2—C12—C13—C8179.27 (9)
C1—C4—C5—C60.42 (17)C11—C12—C13—C80.67 (15)
O1—C5—C6—C70.66 (16)C9—C8—C13—C120.12 (15)
C4—C5—C6—C7179.62 (10)C7—C8—C13—C12178.74 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1ii0.901 (19)1.828 (19)2.7257 (11)174.2 (16)
N1—H1N···O30.888 (17)2.041 (17)2.8722 (13)155.4 (14)
C13—H13···O1ii0.952.513.2050 (13)130
O3—H3O···O2iii0.864 (18)2.320 (18)2.9430 (7)129.2 (16)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1, y+1, z1/2.
Percentage contribution of interatomic contacts to the calculated Hirshfeld surfaces for the individual constituents in the asymmetric unit of 3HPPP top
ContactPercentage contribution
3HPPPWater
H···H40.916.2
H···O/O···H19.448.7
H···C/C···H32.429.8
H···N/N···H2.04.6
 

Funding information

The authors acknowledge the Ministry of Higher Education, Malaysia under the Fundamental Research Grant Scheme (FRGS) (grant No. FRGS/1/2018/STG01/UPM/02/8; vote number of 55401477) and Universiti Putra Malaysia under the Putra grant – Putra Graduates Initiative (IPS)(GP-IPS/2018/9618500) for their financial support.

References

First citationAnandkumar, D., Ganesan, S., Rajakumar, P. & Maruthamuthu, P. (2017). New J. Chem. 41, 11238–11249.  Web of Science CrossRef CAS Google Scholar
First citationAttarde, M., Vora, A., Varghese, A. & Kachwala, Y. (2010). Org. Chem. Ind. J. 10(5), 192–204.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCamarillo, E. A., Flores, H., Amador, P. & Bernès, S. (2007). Acta Cryst. E63, o2593–o2594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanko, M., Andics, A., Kosa, C., Hrdlovic, P. & Vegh, D. (2012). Dyes Pigments, 92, 1257–1265.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunasekharan, M., Choi, T. I., Rukayadi, Y., Mohammad Latif, M. A., Karunakaran, T., Mohd Faudzi, S. M. & Kim, C. H. (2021). Molecules, 26, 5314.  Web of Science CrossRef PubMed Google Scholar
First citationJones, P. (2013). Private communication (refcode RICFEP01, CCDC 969887). CCDC, Cambridge, England.  Google Scholar
First citationKar Mahapatra, D., Asati, V. & Bharti, S. K. (2019). Expert Opin. Ther. Pat. 29, 385–406.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMohd Faudzi, S. M., Abdullah, M. A., Abdull Manap, M. R., Ismail, A. Z., Rullah, K., Mohd Aluwi, M. F. F., Mazila Ramli, A. N., Abas, F. & Lajis, N. H. (2020). Bioorg. Chem. 94, 103376.  Web of Science CSD CrossRef PubMed Google Scholar
First citationNorsten, T. B., McDonald, R. & Branda, N. R. (1999). Chem. Commun. pp. 719–720.  Web of Science CSD CrossRef Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Chen, H., Cao, D., Liu, Z., Chen, H., Deng, Y. & Fang, Q. (2012). J. Photochem. Photobiol. Chem. 244, 65–70.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds