research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of N-(5-acetyl-4-methyl­pyrimidin-2-yl)benzene­sulfonamide

crossmark logo

aChemistry of Natural & Microbial Products Department, National Research Center, Cairo, Egypt, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, United Kingdom, and cDepartment of Chemistry, Helwan University, Cairo, Egypt
*Correspondence e-mail: rashaazzam8@gmail.com

Edited by C. Schulzke, Universität Greifswald, Germany (Received 7 February 2023; accepted 28 February 2023; online 15 March 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

N-(5-Acetyl-4-methyl­pyrimidin-2-yl)benzene­sulfonamide, C13H13N3O3S, was sythesized and characterized by single-crystal X-ray diffraction. In the crystal, ππ inter­actions between the phenyl and pyrimidine groups of neighbouring mol­ecules form mol­ecular chains parallel to [010]. Adjacent mol­ecular chains are linked by N—H⋯N hydrogen-bonding inter­actions between the pyrimidine and amine groups of neighbouring mol­ecules, resulting in a three-dimensional network.

1. Chemical context

Sulfonamide-bearing mol­ecules with one or several pharmacological scaffolds constitute a class of drugs with anti­viral, anti­cancer, anti-carbonic anhydrase (CA), diuretic, cyclo­oxigenase 2 (COX2) inhibitory, protease inhibitory, and/or anti­bacterial activities (Supuran, 2003[Supuran, C. T. (2003). Expert Opin. Investig. Drugs, 12, 283-287.]; Scozzafava et al., 2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]; Casini & Scozzafava, 2002[Casini, A. & Scozzafava, A. (2002). Expert Opin. Ther. Pat. 12, 1307-1327.]). It is noteworthy that the sulfonamide moiety is one of the significant, privileged building blocks that medicinal chemists frequently find in potent drugs (Elgemeie et al., 2019[Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099-1131.]). Thus, many widely marketed drugs incorporate this moiety. Several pyrimidine sulfonamides and other pyrim­idine analogues that could be incorporated in new designs for bioactive mol­ecules with medicinal applications have already been considered (Azzam, 2019[Azzam, R. A. (2019). J. Heterocycl. Chem. 56, 619-627.]; Azzam & Elgemeie, 2019[Azzam, R. A. & Elgemeie, G. H. (2019). Med. Chem. Res. 28, 62-70.]; Azzam et al., 2017[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1041-1043.], 2019[Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367-371.]; Mohamed-Ezzat et al., 2021[Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547-550.], 2022[Mohamed-Ezzat, R. A., Kariuki, B. M. & Azzam, R. A. (2022). IUCrData, 7, x221033.]; Elgemeie et al., 2015a[Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015a). Acta Cryst. E71, 1322-1324.],b[Elgemeie, G. H., Salah, A. M., Mohamed, R. A. & Jones, P. G. (2015b). Acta Cryst. E71, 1319-1321.], 2017[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 213-223.]). The synthesis of N-(5-acetyl-4-methyl­pyrimidin-2-yl)benzene­sulfonamide (AMBS) was reported several decades ago (Gutsche et al., 1964[Gutsche, K., Harwart, A., Horstmann, H., Priewe, H., Raspe, G., Schraufstaetter, E., Wirtz, S. & Woerffel, U. (1964). Arzneim.-Forsch. 14, 373-376.]). In this article, we describe an alternative novel one-pot reaction methodology for the synthesis of this compound, which was also crystallized and crystallographically investigated.

[Scheme 1]

2. Structural commentary

N-(5-Acetyl-4-methyl­pyrimidin-2-yl)benzene­sulfonamide (AMBS) crystallizes in the monoclinic system, space group P21/c and contains four mol­ecules in the unit cell (Z = 4). The asymmetric unit is shown in Fig. 1[link]. The acetaldehyde group of the mol­ecule is disordered with two components related by a twist of 31.3 (1)° about the Car—C bond. Apart from a slight twist of the aldehyde group associated with the disorder, the 1-(2-amino-4-methyl­pyrimidin-5-yl)ethan-1-one segment of the mol­ecule is essentially planar, the sulfonamide atom S1 being located only 0.423 (1) Å away from the plane of the pyrimidine group. The mol­ecule exhibits a C7—N1—S1—C1 torsion angle of −79.0 (2)°, while the twist between the planes of the phenyl group and the pyrimidine ring comprises a dihedral angle of 63.07 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labels and 50% probability atomic displacement ellipsoids.

3. Supra­molecular features

The packing of AMBS is shown in Fig. 2[link]. In the crystal, partial ππ overlap is observed between the phenyl group of one mol­ecule and the pyrimidine group of an adjacent one related by 21 symmetry (1 − x, −[{1\over 2}] + y, [{1\over 2}] − z or 1 − x, [{1\over 2}] + y, [{1\over 2}] − z). The dihedral angle between the planes of the rings is 9.04 (10)° with a ring centroid-to-centroid distance of 3.769 (1) Å (Fig. 3[link]). The slippage distances between the overlapping rings are 1.44 Å (1 − x, −[{1\over 2}] + y, [{1\over 2}] − z) and 1.58 Å (1 − x, [{1\over 2}] + y, [{1\over 2}] − z). These ππ inter­actions form chains in the structure in which one AMBS mol­ecule comprises the linker between two further mol­ecules. The bent nature of the mol­ecule results in a zigzag pattern of chains propagating parallel to [010].

[Figure 2]
Figure 2
Crystal packing viewed down the a axis with N—H⋯N hydrogen bonds shown as dotted lines.
[Figure 3]
Figure 3
A segment of the crystal structure showing a chain of mol­ecules linked by ππ inter­actions. The dotted lines connect the centroids of the mol­ecules involved.

The hydrogen-bonding inter­actions in the crystal are summarized in Table 1[link]. Two linear N—H⋯N hydrogen bonds, with N⋯N distances of 2.891 (2) Å, occur between two neighbouring mol­ecules related by inversion symmetry (1 − x, 1 − y, 1 − z). A pair of hydrogen bonds is formed between the pyrimidine and amine groups of the two mol­ecules, resulting in a R22(8) geometry (Fig. 2[link]). The hydrogen bonds link the mol­ecular chains formed by the ππ inter­actions and are perpendicular to the chains' protrusion. Additionally, non-classical hydrogen-bonding contacts of the C—H⋯O type with C⋯O distances in the range of ca 2.7–3.4 Å help to consolidate the structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.83 (2) 2.06 (2) 2.891 (2) 179 (2)
C6—H6⋯O2ii 0.93 2.62 3.338 (3) 135
C10—H10⋯O1i 0.93 2.54 3.243 (3) 133
C11—H11B⋯O3A 0.96 2.26 2.769 (7) 113
C13A—H13E⋯O1iii 0.96 2.50 3.40 (3) 156
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; accessed February 2023) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for structures containing the N-(pyrimidin-2-yl)benzene­sulfonamide group gave 164 hits, i.e. too many for them all to be analysed in detail.

An example of a closely related compound is 4,5,6-tri­meth­yl-2-[(phenyl­sulfon­yl)amino]­pyrimidine (TPAP) (ref­code VENKIJ; Li & Yang, 2006[Li, G.-C. & Yang, F.-L. (2006). Acta Cryst. E62, o4154-o4155.]). In this structure, the dihedral angle between the planes through the phenyl and pyrimidine rings is 91.9°, larger than that observed for the title compound AMBS [63.07 (7)°]. In contrast to AMBS, ππ inter­actions are only observed between the pyrimidine rings in TPAP, resulting in stacking along the a-axis with inter­planar distances of 3.81 Å.

Another closely related compound is N-(pyrimidin-2-yl)benzene­sulfonamide (PBS) (refcode XIFKAZ01; Coles et al., 2000[Coles, S. J., Hursthouse, M. B., Mayer, T. A. & Threlfall, T. L. (2000). University of Southampton, Crystal Structure Report Archive, 188.]). In PBS, the dihedral angle between the planes through the phenyl and pyrimidine rings is 74.5°, again larger than for AMBS. Also unlike in AMBS, ππ inter­actions occur in PBS between pairs of mol­ecules involving only the pyrim­idine rings and with an inter­planar distance of 3.5 Å. Similarly to AMBS, two linear N—H⋯N hydrogen bonds are observed in PBS between the pyrimidine and amine groups of neighbouring mol­ecules, resulting in similar R22(8) motifs.

5. Synthesis and crystallization

Phenyl­sulfonyl guanidine 1 is a common starting material for the synthesis of several heterocyclic compounds and has been utilized effectively in the generation of a range of biologically active compounds. Our approach was based on synthesizing the substituted sulfonyl derivative 4 by reacting the sulfonyl guanidine 1 with tri­ethyl­orthoformate 2 and acetyl acetone 3 (Fig. 4[link]). The target product was identified by NMR spectroscopy and X-ray crystallography.

[Figure 4]
Figure 4
The synthesis of the title compound (4). Reagents & Conditions: (i) reflux; 6 h.

Synthesis of compound 4: Tri­ethyl­orthoformate (5 ml) was added to a mixture of phenyl­sulfonyl guanidine (0.05 mol) and acetyl acetone (0.1 mol). The reaction mixture was then refluxed for 6 h. After cooling, the resulting precipitate was filtered and crystallized from ethanol.

Orange crystals; yield 45%; m.p. 469 K. 1H NMR (400 MHz, DMSO-d6): δ 2.49 (s, 3H, CH3), 2.52 (s, 3H, CH3), 7.57–7.66 (m, 3H, Ar-H), 8.00–8.02 (m, 2H, Ar-H), 8.93 (s, 1H, CH-pyrimidine), 12.34 (s, 1H, NH). Analysis calculated for C13H13N3O3S (291.33): C, 53.60; H, 4.50; N, 14.42; S, 11.01. Found: C, 53.60; H, 4.49; N, 14.41; S, 11.00.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H hydrogen was refined freely. The remaining hydrogen atoms were positioned geometrically and using a riding model [C—H = 0.93–0.96 Å with Uiso(H) = 1.2 or 1.5 Ueq(C). The acetaldehyde group of the mol­ecule is disordered with two components related by a twist of 31.3 (1)° about the Car—C bond. In the refinement, the two components were restrained to have similar geometry (SAME in SHELXL) and atomic displacement parameters (SIMU and ISOR). The occupancies of the two components refined to 0.591 (11)/0.409 (11).

Table 2
Experimental details

Crystal data
Chemical formula C13H13N3O3S
Mr 291.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.0699 (6), 14.7429 (6), 10.5212 (7)
β (°) 113.900 (7)
V3) 1428.04 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.44 × 0.24 × 0.16
 
Data collection
Diffractometer Rigaku SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.484, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12642, 3532, 2548
Rint 0.026
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.07
No. of reflections 3532
No. of parameters 216
No. of restraints 84
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.29
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.54a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.42.54a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.54a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020), ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2020).

N-(5-Acetyl-4-methylpyrimidin-2-yl)benzenesulfonamide top
Crystal data top
C13H13N3O3SF(000) = 608
Mr = 291.32Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0699 (6) ÅCell parameters from 5035 reflections
b = 14.7429 (6) Åθ = 3.9–27.7°
c = 10.5212 (7) ŵ = 0.24 mm1
β = 113.900 (7)°T = 293 K
V = 1428.04 (16) Å3Block, orange
Z = 40.44 × 0.24 × 0.16 mm
Data collection top
Rigaku SuperNova, Dual, Cu at home/near, Atlas
diffractometer
2548 reflections with I > 2σ(I)
ω scansRint = 0.026
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
θmax = 29.5°, θmin = 3.5°
Tmin = 0.484, Tmax = 1.000h = 1310
12642 measured reflectionsk = 1818
3532 independent reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.420P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3532 reflectionsΔρmax = 0.23 e Å3
216 parametersΔρmin = 0.29 e Å3
84 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5229 (2)0.75192 (12)0.26887 (19)0.0461 (4)
C20.6205 (2)0.76291 (14)0.2086 (2)0.0552 (5)
H20.6305700.7187270.1500410.066*
C30.7033 (2)0.84155 (15)0.2374 (3)0.0651 (6)
H30.7688690.8509290.1968250.078*
C40.6886 (3)0.90550 (15)0.3257 (3)0.0712 (7)
H40.7462480.9572790.3464730.085*
C50.5901 (3)0.89393 (15)0.3833 (2)0.0696 (6)
H50.5798900.9382590.4416390.083*
C60.5065 (3)0.81732 (14)0.3555 (2)0.0580 (5)
H60.4392610.8093070.3944620.070*
C70.6186 (2)0.52796 (12)0.37144 (19)0.0463 (4)
C80.8002 (2)0.49089 (16)0.3045 (2)0.0579 (5)
C100.7564 (2)0.40722 (14)0.4752 (2)0.0568 (5)
H100.7800680.3599960.5392030.068*
C110.8767 (3)0.5141 (2)0.2123 (3)0.0835 (8)
H11A0.8538700.4694090.1401650.125*
H11B0.9796630.5149760.2664570.125*
H11C0.8453640.5727100.1714100.125*
N10.50291 (19)0.58192 (11)0.35938 (18)0.0508 (4)
N20.69070 (18)0.54638 (11)0.29291 (17)0.0537 (4)
N30.64728 (17)0.46152 (10)0.46533 (16)0.0496 (4)
O10.28821 (16)0.67414 (10)0.25840 (16)0.0653 (4)
O20.39885 (17)0.61859 (10)0.10316 (14)0.0621 (4)
S10.41467 (5)0.65419 (3)0.23421 (5)0.04929 (17)
C90.8367 (2)0.41647 (16)0.3968 (2)0.0600 (5)0.591 (11)
C120.9420 (7)0.3432 (4)0.3990 (8)0.0750 (19)0.591 (11)
C130.9860 (17)0.2756 (10)0.5150 (18)0.098 (4)0.591 (11)
H13A1.0538000.2333750.5052980.148*0.591 (11)
H13B0.9016650.2435360.5117020.148*0.591 (11)
H13C1.0306230.3066000.6024340.148*0.591 (11)
O30.9931 (8)0.3397 (4)0.3128 (8)0.110 (2)0.591 (11)
C9A0.8367 (2)0.41647 (16)0.3968 (2)0.0600 (5)0.409 (11)
C12A0.9727 (9)0.3620 (7)0.4306 (12)0.079 (3)0.409 (11)
C13A0.990 (2)0.2750 (12)0.509 (3)0.089 (4)0.409 (11)
H13D1.0824860.2487220.5252150.133*0.409 (11)
H13E0.9139880.2337960.4548910.133*0.409 (11)
H13F0.9835940.2867570.5958310.133*0.409 (11)
O3A1.0616 (8)0.3857 (7)0.3876 (10)0.106 (3)0.409 (11)
H10.458 (2)0.5700 (14)0.409 (2)0.054 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0557 (11)0.0456 (9)0.0403 (10)0.0056 (8)0.0228 (9)0.0082 (7)
C20.0619 (13)0.0559 (11)0.0551 (12)0.0062 (9)0.0311 (10)0.0070 (9)
C30.0567 (13)0.0676 (14)0.0760 (16)0.0015 (10)0.0320 (12)0.0183 (11)
C40.0695 (15)0.0511 (12)0.0789 (17)0.0026 (10)0.0157 (13)0.0080 (11)
C50.0897 (18)0.0535 (12)0.0634 (14)0.0051 (11)0.0287 (13)0.0043 (10)
C60.0754 (15)0.0552 (11)0.0510 (12)0.0089 (10)0.0335 (11)0.0040 (9)
C70.0469 (11)0.0518 (10)0.0433 (10)0.0003 (8)0.0215 (9)0.0043 (7)
C80.0491 (12)0.0804 (14)0.0498 (12)0.0014 (10)0.0258 (10)0.0012 (10)
C100.0515 (12)0.0632 (12)0.0570 (12)0.0109 (9)0.0233 (10)0.0133 (9)
C110.0691 (16)0.125 (2)0.0738 (17)0.0090 (15)0.0472 (14)0.0168 (15)
N10.0595 (10)0.0514 (9)0.0521 (10)0.0093 (7)0.0336 (8)0.0141 (7)
N20.0550 (10)0.0635 (10)0.0499 (10)0.0001 (8)0.0289 (8)0.0072 (7)
N30.0506 (9)0.0558 (9)0.0481 (9)0.0081 (7)0.0259 (8)0.0112 (7)
O10.0542 (9)0.0753 (9)0.0733 (10)0.0134 (7)0.0331 (8)0.0233 (8)
O20.0792 (11)0.0595 (8)0.0457 (8)0.0060 (7)0.0234 (7)0.0020 (6)
S10.0546 (3)0.0506 (3)0.0465 (3)0.0042 (2)0.0244 (2)0.00978 (19)
C90.0466 (11)0.0798 (14)0.0577 (13)0.0102 (10)0.0254 (10)0.0069 (10)
C120.045 (2)0.101 (3)0.084 (4)0.011 (2)0.030 (3)0.006 (3)
C130.081 (6)0.098 (5)0.094 (6)0.048 (5)0.012 (5)0.016 (5)
O30.096 (4)0.128 (4)0.144 (5)0.037 (3)0.087 (4)0.017 (3)
C9A0.0466 (11)0.0798 (14)0.0577 (13)0.0102 (10)0.0254 (10)0.0069 (10)
C12A0.054 (4)0.105 (4)0.077 (4)0.025 (4)0.025 (4)0.001 (4)
C13A0.072 (7)0.107 (8)0.086 (7)0.025 (7)0.032 (6)0.007 (7)
O3A0.070 (4)0.144 (6)0.127 (6)0.026 (4)0.062 (4)0.009 (4)
Geometric parameters (Å, º) top
C1—C21.378 (3)C10—C91.376 (3)
C1—C61.382 (3)C10—H100.9300
C1—S11.7538 (19)C11—H11A0.9600
C2—C31.388 (3)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.373 (3)N1—S11.6465 (16)
C3—H30.9300N1—H10.83 (2)
C4—C51.367 (3)O1—S11.4267 (15)
C4—H40.9300O2—S11.4226 (15)
C5—C61.368 (3)C9—C121.507 (4)
C5—H50.9300C12—O31.211 (5)
C6—H60.9300C12—C131.497 (6)
C7—N21.330 (2)C13—H13A0.9600
C7—N31.337 (2)C13—H13B0.9600
C7—N11.374 (2)C13—H13C0.9600
C8—N21.338 (3)C9A—C12A1.501 (5)
C8—C9A1.412 (3)C12A—O3A1.207 (5)
C8—C91.412 (3)C12A—C13A1.495 (6)
C8—C111.502 (3)C13A—H13D0.9600
C10—N31.329 (2)C13A—H13E0.9600
C10—C9A1.376 (3)C13A—H13F0.9600
C2—C1—C6121.33 (19)C7—N1—S1127.69 (14)
C2—C1—S1120.01 (15)C7—N1—H1118.2 (14)
C6—C1—S1118.66 (15)S1—N1—H1112.6 (15)
C1—C2—C3118.4 (2)C7—N2—C8117.10 (17)
C1—C2—H2120.8C10—N3—C7115.02 (17)
C3—C2—H2120.8O2—S1—O1119.43 (10)
C4—C3—C2120.1 (2)O2—S1—N1110.41 (9)
C4—C3—H3120.0O1—S1—N1102.84 (9)
C2—C3—H3120.0O2—S1—C1108.71 (9)
C5—C4—C3120.8 (2)O1—S1—C1108.55 (9)
C5—C4—H4119.6N1—S1—C1106.06 (9)
C3—C4—H4119.6C10—C9—C8115.92 (19)
C4—C5—C6120.2 (2)C10—C9—C12120.0 (3)
C4—C5—H5119.9C8—C9—C12123.6 (3)
C6—C5—H5119.9O3—C12—C13120.4 (5)
C5—C6—C1119.3 (2)O3—C12—C9121.9 (4)
C5—C6—H6120.3C13—C12—C9117.6 (5)
C1—C6—H6120.3C12—C13—H13A109.5
N2—C7—N3126.86 (17)C12—C13—H13B109.5
N2—C7—N1118.71 (17)H13A—C13—H13B109.5
N3—C7—N1114.43 (16)C12—C13—H13C109.5
N2—C8—C9A120.86 (18)H13A—C13—H13C109.5
N2—C8—C9120.86 (18)H13B—C13—H13C109.5
N2—C8—C11114.9 (2)C10—C9A—C8115.92 (19)
C9A—C8—C11124.2 (2)C10—C9A—C12A120.4 (3)
C9—C8—C11124.2 (2)C8—C9A—C12A122.5 (3)
N3—C10—C9A124.15 (19)O3A—C12A—C13A121.1 (5)
N3—C10—C9124.15 (19)O3A—C12A—C9A120.1 (5)
N3—C10—H10117.9C13A—C12A—C9A118.6 (6)
C9—C10—H10117.9C12A—C13A—H13D109.5
C8—C11—H11A109.5C12A—C13A—H13E109.5
C8—C11—H11B109.5H13D—C13A—H13E109.5
H11A—C11—H11B109.5C12A—C13A—H13F109.5
C8—C11—H11C109.5H13D—C13A—H13F109.5
H11A—C11—H11C109.5H13E—C13A—H13F109.5
H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.83 (2)2.06 (2)2.891 (2)179 (2)
C6—H6···O2ii0.932.623.338 (3)135
C10—H10···O1i0.932.543.243 (3)133
C11—H11B···O3A0.962.262.769 (7)113
C13A—H13E···O1iii0.962.503.40 (3)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Funding information

We thank Helwan University for funding this research.

References

First citationAzzam, R. A. (2019). J. Heterocycl. Chem. 56, 619–627.  Web of Science CrossRef CAS Google Scholar
First citationAzzam, R. A. & Elgemeie, G. H. (2019). Med. Chem. Res. 28, 62–70.  Web of Science CrossRef CAS Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1041–1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasini, A. & Scozzafava, A. (2002). Expert Opin. Ther. Pat. 12, 1307–1327.  Web of Science CrossRef CAS Google Scholar
First citationColes, S. J., Hursthouse, M. B., Mayer, T. A. & Threlfall, T. L. (2000). University of Southampton, Crystal Structure Report Archive, 188.  Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099–1131.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015a). Acta Cryst. E71, 1322–1324.  CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 213–223.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Salah, A. M., Mohamed, R. A. & Jones, P. G. (2015b). Acta Cryst. E71, 1319–1321.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGutsche, K., Harwart, A., Horstmann, H., Priewe, H., Raspe, G., Schraufstaetter, E., Wirtz, S. & Woerffel, U. (1964). Arzneim.-Forsch. 14, 373–376.  CAS Google Scholar
First citationLi, G.-C. & Yang, F.-L. (2006). Acta Cryst. E62, o4154–o4155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547–550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A., Kariuki, B. M. & Azzam, R. A. (2022). IUCrData, 7, x221033.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSupuran, C. T. (2003). Expert Opin. Investig. Drugs, 12, 283–287.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds