research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′:4,4′′:4′,4′′′-Quaterpyridine: synthesis, crystal-structure description, and Hirshfeld surface analysis

crossmark logo

aDepartment of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
*Correspondence e-mail: craig.robertson@sheffield.ac.uk

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 8 November 2022; accepted 13 March 2023; online 21 March 2023)

The title compound, 2,2′:4,4′′:4′,4′′′-quaterpyridine (Qtpy), C20H14N4, crystallizes in the triclinic P[\overline{1}] space group and has half of the mol­ecule in the asymmetric unit, corresponding to 4,4′-bi­pyridine (4,4′-bpy) that serves as the building block for the mol­ecule. C4,4′-bpy—N—C4,4′-bpy and/or N—C4,4′-bpy—C4,4′-bpy bond-angle parameters show that the 4,4′-bpy ligands are highly rigid, displaying values lower than the linear bond angle of 180°. In the crystal, the 4,4′-bpy units are seen to be facing each other in relatively close proximity. The most important inter­actions on the Hirshfeld Surface of the compound are C—H⋯N/H⋯N—C inter­actions (constituting 10.6% and 7.6% of the total surface).

1. Chemical context

2,2′:4,4′′:4′,4′′′-Quaterpyridine (Qtpy) is an important bridging ligand used in synthetic inorganic chemistry for the development of many transition-metal complexes (TMCs) employed as DNA-binding probes (Morgan et al., 1991[Morgan, R. J., Chatterjee, S., Baker, A. D. & Strekas, T. C. (1991). Inorg. Chem. 30, 2687-2692.]; Pyle et al., 1989[Pyle, A. M., Rehmann, J. P., Meshoyrer, R., Kumar, C. V., Turro, N. J. & Barton, J. K. (1989). J. Am. Chem. Soc. 111, 3051-3058.]). Previously, bridging ligands that provide low inter-metal communication (due to the absence of conjugation between two ligands subunits connected by saturated carbon chains as experienced in bridging ligands that contain isolated bi­pyridine) have been obtained by the direct fusion of two bpy moieties. However, there has been a surge in interest in ligands that can electronically and coordinatively link two metal centres. In that context, Qtpy represents one of the only instances of a ligand formed from two fused bpy units whose coordination chemistry has been widely explored (Downard et al., 1991[Downard, A. J., Honey, G. E., Phillips, L. F. & Steel, P. J. (1991). Inorg. Chem. 30, 2259-2260.]; Cooper et al., 1990[Cooper, J. B., MacQueen, D. B., Petersen, J. D. & Wertz, D. W. (1990). Inorg. Chem. 29, 3701-3705.]).

[Scheme 1]

In fact, the first report of Qtpy dates back to 1938 when Burstall and colleagues obtained the ligand as a by-product of the reaction between 4,4′-bi­pyridine (4,4′-bpy) and iodine (Burstall, 1938[Burstall, F. H. (1938). J. Chem. Soc. pp. 1662-1672.]). However, since the 1990s, studies in the use of the ligand as a building block for the construction of oligonuclear supra­molecular assemblies of photoactive and redox-active chromophoric sites have multiplied (Gorczyński et al., 2016[Gorczyński, A., Harrowfield, J. M., Patroniak, V. & Stefankiewicz, A. R. (2016). Chem. Rev. 116, 14620-14674.]). Qtpy's suitability for such a role arises from its possession of both a bidentate di­imine site that can coordinate through chelation to a metal centre, and also two monodentate imine sites, which can both coordinate to other metal centres (see scheme).

In a number of studies, we have employed Qtpy as a bridging ligand to synthesize novel luminescent TMCs towards therapeutic, diagnostic, theranostic and bioimaging ends. This work has mostly involved RuII and other d6-metal ions (de Wolf et al., 2006[Wolf, P. de, Waywell, P., Hanson, M., Heath, S. L., Meijer, A. J. H. M., Teat, S. J. & Thomas, J. A. (2006). Chem. Eur. J. 12, 2188-2195.]; Ghosh et al., 2009[Ghosh, D., Ahmad, H. & Thomas, J. A. (2009). Chem. Commun. pp. 2947-2949.]; Ahmad et al., 2011[Ahmad, H., Meijer, A. J. H. M. & Thomas, J. A. (2011). Chem. Asian J. 6, 2339-2351.], 2013[Ahmad, H., Hazel, B. W., Meijer, A. J. H. M., Thomas, J. A. & Wilkinson, K. A. (2013). Chem. Eur. J. 19, 5081-5087.], 2014a[Ahmad, H., Ghosh, D. & Thomas, J. A. (2014a). Chem. Commun. 50, 3859-3861.],b[Ahmad, H., Wragg, A., Cullen, W., Wombwell, C., Meijer, A. J. H. M. & Thomas, J. A. (2014b). Chem. Eur. J. 20, 3089-3096.]; Walker et al., 2016[Walker, M. G., Jarman, P. J., Gill, M. R., Tian, X., Ahmad, H., Reddy, P. A. N., McKenzie, L., Weinstein, J. A., Meijer, A. J. H. M., Battaglia, G., Smythe, C. G. W. & Thomas, J. A. (2016). Chem. Eur. J. 22, 5996-6000.]) . Despite its structural simplicity and synthetic significance, there is no report of the single-crystal structure of pure crystalline Qtpy.

2. Structural commentary and supra­molecular Features

Qtpy (Fig. 1[link]) crystallizes in the triclinic space group P[\overline{1}]. The asymmetric unit comprises of half of a single mol­ecule, which sits on special position 1g (0.000, 1/2, 1/2). The 2,2′ bi­pyridine rings are planar within 0.00 (12)° and the mean torsion angle between the 4,4′-bi­pyridine rings is 34.7 (2)°. Two types of weak inter­molecular hydrogen bonds are observed between Qtpy and adjacent mol­ecules (Table 1[link]). A single linear contact between the sp2 hydrogen atom H9 and atom N1 of an adjacent mol­ecule (x + 1, y + 1, z) and a dimeric hydrogen bond between a pair of H11 and N10 atoms in a another adjacent mol­ecule (−x + 1, −y + 2, −z.). Both pyridine rings are engaged in ππ inter­actions (Fig. 2[link]) between their symmetry-equivalent rings in adjacent mol­ecules, both above and below, packing in ππ-stacked columns parallel to the (100) plane (Fig. 3[link]). The N1/C2–C6 rings pack with a distance between their centroids of 3.779 (1) Å with a shift of 1.629 Å and an angle of 0°. The C7–C9/N10/C11–C12 rings also pack with an inter­centroid distance of 3.779 (1) Å, with a shorter shift distance of 1.385 Å and an angle of 0°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1i 0.95 2.60 3.420 (2) 144
C11—H11⋯N10ii 0.95 2.62 3.410 (2) 141
Symmetry codes: (i) x+1, y+1, z; (ii) [-x+1, -y+2, -z].
[Figure 1]
Figure 1
The mol­ecular structure of Qtpy showing 50% displacement ellipsoids. Half of the molecule is generated by symmetry (symmetry operation: −x, −y + 1, −z + 1).
[Figure 2]
Figure 2
Unit cell of Qtpy with completed fragments showing the ππ stacking of the aromatic rings. Hydrogen atoms omitted for clarity.
[Figure 3]
Figure 3
View along the a axis of the crystal packing showing the columnar ππ stacking through the crystal structure. Hydrogen atoms are omitted for clarity.

3. Database survey

Qtpy is a bridging ligand used in synthetic inorganic chemistry popular for the development of multinuclear TMCs. As such, a search in the Cambridge Structural Database (WebCSD, September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows there are 19 reported structures of Qtpy utilized as a ligand: in all cases, the 2,2′-bi­pyridine has the cis configuration and thus acts as a bidentate chelating ligand. In seven of these structures, the monodentate 4-pyridine coordinates to a different metal centre. There are three crystal structures of modified Qtpy substrates, which are uncoordinated to metal centres. In each of these cases, as we see in our structure of Qtpy, the 2,2′-bi­pyridine is in the trans configuration, which is the lower energy conformation.

4. Hirshfeld Surface Analysis

A Hirshfeld surface analysis (HSA) was undertaken and fingerprint plots for Qtpy were generated using Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). HSA is an established technique to understand the various inter­molecular inter­actions present in a compound and qu­antify weak inter­actions. In mapping such inter­actions, inter­nal consistency is highly crucial when comparing structures. As such, all reported Hirshfeld surfaces reported herein have their bond lengths set to hydrogen atoms are set to typical neutron values (C—H = 1.083 Å, N—H = 1.009 Å and O—H = 0.98 3Å). A Hirshfeld surface is unique for a given crystal structure and a set of spherical atomic electron densities. It can help structural chemists gain additional insight into the inter­molecular inter­actions present in mol­ecular crystals (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The dnorm values are mapped onto the Hirshfeld surface by using a red–blue–white colour scheme, where red signifies shorter contacts, white represents contacts around the van der Waals separation and blue indicates longer contacts (Montazerozohori et al., 2016[Montazerozohori, M., Farokhiyani, S., Masoudiasl, A. & White, J. M. (2016). RSC Adv. 6, 23866-23878.]). The 2D fingerprint plot presents the decomposition of Hirshfeld surfaces into the contribution of different inter­molecular inter­actions present in a crystal structure; 2D fingerprint plots of Hirshfeld surfaces are usually given as plots of di against de (Montazerozohori et al., 2016[Montazerozohori, M., Farokhiyani, S., Masoudiasl, A. & White, J. M. (2016). RSC Adv. 6, 23866-23878.]).

Hirshfeld surfaces of Qtpy ligand are given in Figs. 4[link]–6[link][link] and two-dimensional fingerprint plots in Figs. 7[link] and 8[link]. To visualize the calculated mol­ecular structure, the surfaces were set to be transparent (Jayendran et al., 2019[Jayendran, M., Sithambaresan, M., Begum, P. M. S. & Kurup, M. R. P. (2019). Polyhedron, 158, 386-397.]). The inter­molecular inter­actions (Table 2[link]) are summarized effectively in the spots with large circular depressions (deep red) visible on the dnorm surfaces indicative of hydrogen-bonding contacts and other weak contacts. The major contact points of the inter­molecular inter­actions in the ligand involve H⋯H, as shown by the clearly visible light red spots on the dnorm surface (Hu et al., 2019[Hu, Q., Yue, Y. H., Chai, L. Q. & Tang, L. J. (2019). J. Mol. Struct. 1197, 508-518.]; Pan et al., 2020[Pan, Y. Q., Zhang, Y., Yu, M., Zhang, Y. & Wang, L. (2020). Appl. Organomet. Chem. 34, e5441.]). The shape-index is used to identify complementary hollows (red) and bumps (blue) where two mol­ecular surfaces touch one another. On the Hirshfeld surface mapped with the shape-index function, C—H⋯π inter­actions appear as hollow orange areas (π⋯H) and bulging blue areas (H⋯π). On the Hirshfeld surface mapped with shape-index for the ligand, these inter­actions manifest as hollow orange areas and bulging blue areas. Curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The ππ stacking inter­actions are further evidenced by the appearance of flat surfaces towards the bottom of the compound as clearly visible on the curvedness surface.

Table 2
Summary of the percentages of inter­molecular contacts contributed to the HSA surface of Qtpy ligand

Inside atom Outside atom Total contributions
  N C H  
C 3.2 15.5 6.7 25.5
H 7.6 4.2 48.5 60.4
N 0.4 3.1 10.6 14.2
Total contributions 11.2 22.8 65.8  
[Figure 4]
Figure 4
Hirshfeld surfaces of Qtpy ligand mapped over dnorm for all the inter­actions (left) and N⋯H/H⋯N inter­actions (right).
[Figure 5]
Figure 5
Hirshfeld surfaces of Qtpy ligand mapped with di (left) and de (right) for all the inter­actions.
[Figure 6]
Figure 6
Hirshfeld surfaces of Qtpy ligand mapped with shape index (left) and curvedness (right) for all the inter­actions.
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for the Qtpy ligand for all the inter­actions (left), H⋯H inter­actions (middle) and C⋯C inter­actions (right).
[Figure 8]
Figure 8
Two-dimensional fingerprint plots for the Qtpy ligand for N⋯H inter­action (left) and H⋯N inter­actions (right).

5. Synthesis and crystallization

Qtpy was synthesized (Fig. 9[link]) according to the published method given by Morgan & Baker (1990[Morgan, R. J. & Baker, A. D. (1990). J. Org. Chem. 55, 1986-1993.]). 4,4′-bpy (20.42 g, 70.19 mmol) was weighed into a 500 mL two-neck round-bottom flask to which fresh Pd/C (2.20 g) was added. DMF (300 mL) that had been deaerated for ca 15 min was then transferred into the flask. The reaction was left to progress under an N2 atmosphere while being refluxed at 426 K for ca 120 h. Once the reaction was complete and the mixture had cooled down to room temperature, DMF was removed by rotary evaporation to afford a mass of black residue. Chloro­form (100 mL) was added to the black residue, and the mixture was allowed to reflux under stirring for a further ca 30 min. Once cooled, the Pd/C catalyst was filtered off through celite to yield a clear yellow solution. Afterwards, chloro­form was removed in vacuo and the crude mass obtained was left to stir in acetone (60 mL) for ca 30 min to remove any unreacted 4,4′-bpy. The mixture was filtered under vacuum, and the residue was collected. The filtrate was concentrated by rotary evaporation to yield more portions of the desired product. There were several repetitions of this process, and the various portions of the product were reunited. The compound obtained was then recrystallized from EtOH to yield crystals of Qtpy ligand 6.84 g (33.7%) as a creamy solid but sometimes an off-white solid. 1H NMR (400 MHz, d3-CDCl3): δH = 8.85 (dd, J = 5.1, 2H), 8.81– 8.79 (m, 6H), 7.71 (dd, J = 4.5, 1.6 Hz, 4H), 7.63 (dd, J = 5.1, 1.8 Hz, 2H). ESI–MS, m/z: 311 [MH]+.

[Figure 9]
Figure 9
Reaction scheme to synthesize Qtpy.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were placed in calculated positions with idealized geometries C—H = 0.95 Å) and then refined using a riding model and isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Table 3
Experimental details

Crystal data
Chemical formula C20H14N4
Mr 310.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 110
a, b, c (Å) 3.7794 (9), 9.132 (2), 11.115 (3)
α, β, γ (°) 106.477 (2), 96.768 (2), 92.720 (2)
V3) 363.98 (15)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.4 × 0.35 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.689, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 6826, 1617, 1176
Rint 0.036
(sin θ/λ)max−1) 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.07
No. of reflections 1617
No. of parameters 109
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.27
Computer programs: APEX2 (Bruker, 2016[Bruker (2016). APEXII and SAINT. Bruker AxXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEXII and SAINT. Bruker AxXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT V8.38A (Bruker, 2016); data reduction: SAINT V8.38A (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

2,2':4,4'':4',4'''-Quaterpyridine top
Crystal data top
C20H14N4Z = 1
Mr = 310.35F(000) = 162
Triclinic, P1Dx = 1.416 Mg m3
a = 3.7794 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.132 (2) ÅCell parameters from 1538 reflections
c = 11.115 (3) Åθ = 2.3–27.1°
α = 106.477 (2)°µ = 0.09 mm1
β = 96.768 (2)°T = 110 K
γ = 92.720 (2)°Plate, colourless
V = 363.98 (15) Å30.4 × 0.35 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1176 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Krause et al., 2016)
θmax = 27.3°, θmin = 1.9°
Tmin = 0.689, Tmax = 0.746h = 44
6826 measured reflectionsk = 1111
1617 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.0983P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1617 reflectionsΔρmax = 0.32 e Å3
109 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A crystal with dimensions 0.1 x 0.3 x 0.3?mm was selected and intensity data was collected on a Bruker SMART APEX-II CCD diffractometer operating with a MoKα sealed-tube X-ray source of the crystal mounted in fomblin oil on a MicroMount (MiTeGen, USA) and cooled to 110?K in a stream of cold nitrogen gas using an Oxford Cryosystems 700 Cryostream. Data were corrected for absorption using empirical methods (SADABS; Bruker, 2016) based upon symmetry equivalent reflections combined with measurements at different azimuthal angles (Krause et al., 2015). The crystal structures were solved and refined against F2 values using ShelXT (Sheldrick, 2015a) for solution and ShelXL (Sheldrick, 2015b) for refinement accessed via the Olex2 program (Dolomanov et al., 2009). Non-hydrogen atoms were refined anisotropically. The Qtpy structure displayed here has been refined anisotropically with Final R indexes [I>2σ (I)] value of 0.0473.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0725 (4)0.34513 (15)0.36534 (13)0.0199 (3)
N100.5896 (4)0.98051 (16)0.15939 (14)0.0255 (4)
C20.0647 (4)0.48982 (18)0.43797 (14)0.0172 (4)
C30.1688 (4)0.61573 (18)0.40043 (15)0.0181 (4)
H30.1635190.7163370.4552100.022*
C40.2805 (4)0.59466 (18)0.28298 (15)0.0177 (4)
C50.2848 (4)0.44507 (18)0.20739 (15)0.0190 (4)
H50.3573800.4250030.1257030.023*
C60.1820 (4)0.32596 (18)0.25263 (15)0.0206 (4)
H60.1897930.2242020.2003260.025*
C70.3904 (4)0.72786 (18)0.24004 (15)0.0181 (4)
C80.5635 (4)0.86115 (18)0.32469 (16)0.0213 (4)
H80.6161250.8689560.4120990.026*
C90.6585 (5)0.98241 (19)0.28053 (16)0.0238 (4)
H90.7796731.0722680.3396630.029*
C110.4220 (5)0.85210 (19)0.07885 (17)0.0240 (4)
H110.3700050.8478370.0078600.029*
C120.3199 (4)0.72498 (19)0.11441 (16)0.0213 (4)
H120.2019790.6361460.0529930.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0216 (8)0.0177 (7)0.0212 (8)0.0007 (6)0.0036 (6)0.0068 (6)
N100.0314 (9)0.0205 (8)0.0279 (9)0.0025 (6)0.0094 (7)0.0102 (7)
C20.0159 (8)0.0174 (8)0.0187 (9)0.0013 (6)0.0005 (6)0.0073 (7)
C30.0179 (9)0.0161 (8)0.0205 (9)0.0001 (6)0.0010 (7)0.0068 (7)
C40.0150 (8)0.0174 (8)0.0212 (9)0.0003 (6)0.0003 (6)0.0073 (7)
C50.0190 (9)0.0210 (9)0.0178 (9)0.0001 (7)0.0028 (7)0.0071 (7)
C60.0235 (9)0.0163 (8)0.0215 (9)0.0016 (7)0.0037 (7)0.0042 (7)
C70.0175 (9)0.0174 (8)0.0218 (9)0.0032 (6)0.0058 (7)0.0082 (7)
C80.0234 (9)0.0207 (9)0.0210 (9)0.0018 (7)0.0041 (7)0.0076 (7)
C90.0266 (10)0.0188 (9)0.0253 (9)0.0003 (7)0.0049 (7)0.0051 (7)
C110.0293 (10)0.0227 (9)0.0220 (9)0.0031 (7)0.0065 (7)0.0085 (7)
C120.0246 (9)0.0186 (9)0.0212 (9)0.0003 (7)0.0041 (7)0.0067 (7)
Geometric parameters (Å, º) top
N1—C21.343 (2)C5—C61.379 (2)
N1—C61.333 (2)C6—H60.9500
N10—C91.336 (2)C7—C81.387 (2)
N10—C111.333 (2)C7—C121.383 (2)
C2—C2i1.482 (3)C8—H80.9500
C2—C31.385 (2)C8—C91.381 (2)
C3—H30.9500C9—H90.9500
C3—C41.384 (2)C11—H110.9500
C4—C51.388 (2)C11—C121.381 (2)
C4—C71.486 (2)C12—H120.9500
C5—H50.9500
C6—N1—C2117.10 (13)C5—C6—H6118.0
C11—N10—C9116.52 (14)C8—C7—C4121.35 (15)
N1—C2—C2i116.76 (17)C12—C7—C4121.41 (15)
N1—C2—C3122.60 (15)C12—C7—C8117.23 (14)
C3—C2—C2i120.64 (18)C7—C8—H8120.4
C2—C3—H3120.1C9—C8—C7119.30 (15)
C4—C3—C2119.86 (15)C9—C8—H8120.4
C4—C3—H3120.1N10—C9—C8123.72 (16)
C3—C4—C5117.50 (14)N10—C9—H9118.1
C3—C4—C7120.90 (15)C8—C9—H9118.1
C5—C4—C7121.60 (14)N10—C11—H11118.2
C4—C5—H5120.5N10—C11—C12123.68 (16)
C6—C5—C4119.02 (15)C12—C11—H11118.2
C6—C5—H5120.5C7—C12—H12120.2
N1—C6—C5123.91 (15)C11—C12—C7119.54 (16)
N1—C6—H6118.0C11—C12—H12120.2
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N1ii0.952.603.420 (2)144
C11—H11···N10iii0.952.623.410 (2)141
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y+2, z.
Summary of the percentages of intermolecular contacts contributed to the HSA surface of Qtpy ligand top
Inside AtomOutside AtomTotal Contributions
NCH
C3.215.56.725.5
H7.64.248.560.4
N0.43.110.614.2
Total Contributions11.222.865.8
1 top
Inside AtomOutside AtomTotal Contributions
NCH
C3.215.56.725.4
H7.64.248.560.3
N0.43.110.614.1
Total Contributions11.222.865.8

Acknowledgements

We are grateful for funding from the University of Sheffield's Faculty of Science and Doctoral Academy for a studentship for SA, as well as the University of Sheffield Institutional Open Access Fund.

Funding information

Funding for this research was provided by: University of Sheffield (studentship to Stephen O. Aderinto).

References

First citationAhmad, H., Ghosh, D. & Thomas, J. A. (2014a). Chem. Commun. 50, 3859–3861.  Web of Science CrossRef CAS Google Scholar
First citationAhmad, H., Hazel, B. W., Meijer, A. J. H. M., Thomas, J. A. & Wilkinson, K. A. (2013). Chem. Eur. J. 19, 5081–5087.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAhmad, H., Meijer, A. J. H. M. & Thomas, J. A. (2011). Chem. Asian J. 6, 2339–2351.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAhmad, H., Wragg, A., Cullen, W., Wombwell, C., Meijer, A. J. H. M. & Thomas, J. A. (2014b). Chem. Eur. J. 20, 3089–3096.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEXII and SAINT. Bruker AxXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurstall, F. H. (1938). J. Chem. Soc. pp. 1662–1672.  CrossRef Google Scholar
First citationCooper, J. B., MacQueen, D. B., Petersen, J. D. & Wertz, D. W. (1990). Inorg. Chem. 29, 3701–3705.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDownard, A. J., Honey, G. E., Phillips, L. F. & Steel, P. J. (1991). Inorg. Chem. 30, 2259–2260.  CrossRef CAS Web of Science Google Scholar
First citationGhosh, D., Ahmad, H. & Thomas, J. A. (2009). Chem. Commun. pp. 2947–2949.  Web of Science CrossRef Google Scholar
First citationGorczyński, A., Harrowfield, J. M., Patroniak, V. & Stefankiewicz, A. R. (2016). Chem. Rev. 116, 14620–14674.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, Q., Yue, Y. H., Chai, L. Q. & Tang, L. J. (2019). J. Mol. Struct. 1197, 508–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationJayendran, M., Sithambaresan, M., Begum, P. M. S. & Kurup, M. R. P. (2019). Polyhedron, 158, 386–397.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMontazerozohori, M., Farokhiyani, S., Masoudiasl, A. & White, J. M. (2016). RSC Adv. 6, 23866–23878.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorgan, R. J. & Baker, A. D. (1990). J. Org. Chem. 55, 1986–1993.  CrossRef CAS Web of Science Google Scholar
First citationMorgan, R. J., Chatterjee, S., Baker, A. D. & Strekas, T. C. (1991). Inorg. Chem. 30, 2687–2692.  CrossRef CAS Web of Science Google Scholar
First citationPan, Y. Q., Zhang, Y., Yu, M., Zhang, Y. & Wang, L. (2020). Appl. Organomet. Chem. 34, e5441.  Web of Science CSD CrossRef Google Scholar
First citationPyle, A. M., Rehmann, J. P., Meshoyrer, R., Kumar, C. V., Turro, N. J. & Barton, J. K. (1989). J. Am. Chem. Soc. 111, 3051–3058.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, M. G., Jarman, P. J., Gill, M. R., Tian, X., Ahmad, H., Reddy, P. A. N., McKenzie, L., Weinstein, J. A., Meijer, A. J. H. M., Battaglia, G., Smythe, C. G. W. & Thomas, J. A. (2016). Chem. Eur. J. 22, 5996–6000.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWolf, P. de, Waywell, P., Hanson, M., Heath, S. L., Meijer, A. J. H. M., Teat, S. J. & Thomas, J. A. (2006). Chem. Eur. J. 12, 2188–2195.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds