research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (12E)-12-(4-benzyl­­idene)-7,7,16-tri­methyl-3-(4-methyl­phen­yl)-1-oxa-16-aza­tetra­cyclo­[11.2.1.02,11.04,9]hexa­deca-2(11),4(9)-dien-5-one and (12E)-12-(4-bromo­benzyl­­idene)-73-(4-bromo­phen­yl)-,7,16-tri­methyl-10-oxa-16-aza­tetra­cyclo­[11.2.1.02,11.04,9]hexa­deca-2(11),4(9)-dien-5-one

crossmark logo

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, cPG & Research Department of Physics, Government Arts College, Melur 625 106, India, and dDepartment of Physics, Bhairahawa M. Campus, Tribhuvan University, Nepal
*Correspondence e-mail: shalikaa.bh@gmail.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 20 February 2023; accepted 23 March 2023; online 28 March 2023)

The title compounds, C32H35NO2, (I), and C30H29Br2NO2, (II), differ by the presence of a bromine atom instead of a methyl atom in the para position of two benzene rings of compound (II). The two compounds have a structural overlap r.m.s. deviation of 0.27 Å. The pyran and seven-membered cyclo­heptene rings in both structures adopt boat and boat-sofa conformations, respectively. Intra- and inter­molecular C—H⋯O hydrogen bonds are responsible for the consolidation of the crystal packing of both mol­ecules. In addition to this, weak C—H⋯π inter­actions are also observed. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis.

1. Chemical context

The tropane skeleton is found widely in both natural and manufactured medications. It is the fundamental component of many beneficial alkaloids, including atropine, scopolamine, and cocaine, whose derivatives are important in the treatment of neurological and psychiatric conditions such depression and panic disorder (Cheenpracha et al., 2013[Cheenpracha, S., Ritthiwigrom, T. & Laphookhieo, S. (2013). J. Nat. Prod. 76, 723-726.]; Afewerki et al., 2019[Afewerki, S., Wang, J. X., Liao, W. W. & Córdova, A. (2019). Alkaloids Chem. Biol. 81, 151-233.]; Dongbang et al., 2021[Dongbang, S., Confair, D. N. & Ellman, J. A. (2021). Acc. Chem. Res. 54, 1766-1778.]). It is also a key component in the synthesis of newer types of drugs. Tropane derivatives are used to treat irritable bowel syndrome, peptic ulcers, colic, cystitis, and pancreatitis thanks to their anti-spasmodic properties. In view of the above importance, we have undertaken a single-crystal X-ray diffraction study for the title compounds, and the results are presented herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compounds (I)[link] and (II)[link] are illustrated in Figs. 1[link] and 2[link], respectively. Fig. 3[link] shows the superposition of the two compounds except for atom C21 using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]); the r.m.s. deviation is 0.27 Å. The methyl­phenyl rings in (I)[link] are oriented at a dihedral angle of 57.7 (1)°. The methyl atoms C31 and C32 in (I)[link] deviate by −0.036 (1) and 0.053 (1) Å, respectively, from the rings to which they are attached. The bromo­phenyl rings in (II)[link] are oriented at a dihedral angle of 54.3 (1)°. Bromine atoms Br1 and Br2 deviate by 0.050 (1) and 0.037 (1) Å, respectively, from the rings to which they are attached.

[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
Superposition of compound (I)[link] (violet) and compound (II)[link] (brown) except for atoms Br1, Br2 and C21.

The seven-membered ring (C1–C7) in both compounds has a boat-sofa conformation, with puckering parameters (Boessenkool & Boeyens, 1980[Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]) q2 = 1.021 (2) and q3 = 0.391 (2) Å in (I)[link] and q2 = 1.053 (2) and q3 = 0.374 (2) Å in (II)[link]. The piperidine ring (N1/C4–C7/C1) has a half-boat conformation in both compounds, with atoms C4–C7/C1 in the plane and atom N1 deviating by −0.793 (1) [in (I)] or 0.785 (1) Å [in (II)] from this plane. The pyran ring (C6/O1/C15/C20/C21/C7) adopts boat conformation in both structures with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) q2 = QT = 0.185 (2) Å and φ = 43.9 (1)° [in (I)] and q2 = QT = 0.087 (1) Å and φ = 47.1 (1)° [in (II)]. The cyclo­hexene ring (C15–C20) has a distorted sofa conformation in both (I)[link] and (II)[link], with ΔCs(C17) asymmetry parameters (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]) of 0.058 (1) and 0.004 (1), respectively.

Intra­molecular C—H⋯O hydrogen bonds are observed (Tables 1[link] and 2[link])

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg is the centroid of the C22–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.93 2.37 2.766 (2) 105
C14—H14⋯O2i 0.93 2.59 3.285 (2) 131
C3—H3BCgi 0.97 2.88 3.795 (2) 152
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.93 2.36 2.742 (3) 105
C30—H30A⋯O2i 0.96 2.58 3.306 (5) 132
C3—H3BCgii 0.97 2.84 3.798 (3) 169
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+2, -y+2, -z].

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules associate via C—H⋯O inter­molecular inter­actions (C14—H14⋯O2i, Table 1[link]), forming chains propagating along the [100] direction, see Fig. 4[link]. In addition to this, inversion-related mol­ecules are linked into chains by C—H⋯π inter­actions [C3—H3BCg, where Cg is the centroid of the C22–C27 benzene ring of the symmetry-related mol­ecule at (−[{1\over 2}] + x, [{3\over 2}] − y, −z), see Fig. 4[link]]. These two inter­actions form chains running in a helical manner along [101].

[Figure 4]
Figure 4
The crystal packing of the title compound (I)[link] viewed along b axis. The C—H⋯O and C—H⋯π inter­molecular inter­actions are shown as dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.

In the crystal of (II)[link], mol­ecules are also linked via C—H⋯O inter­molecular inter­action (C30—H30A⋯O2i, Table 2[link]), here forming centrosymmetrical dimers with an R22(12) ring motif (Fig. 5[link]). The dimers are further linked into chains by C—H⋯π inter­actions (C3—H3BCg, where Cg is the centroid of the C9–C14 benzene ring of the symmetry-related mol­ecule at (2 − x, 2 − y, −z), see Fig. 4[link]]. These two inter­actions form chains running diagonally along [110].

[Figure 5]
Figure 5
The centrosymmetrical dimer formed in compound (II)[link] via C—H⋯O hydrogen bonds (dashed lines). The dimers are linked by C—H⋯π inter­actions (dashed lines). For clarity H atoms, not involved in these inter­actions have been omitted.

4. Hirshfeld surface analysis

To further characterize the inter­molecular inter­actions in the title compound, we carried out a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and generated the associated two dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The HS mapped over dnorm in the range −0.0701 to +1.6693 a.u. for compound (I)[link] and −0.1162 to +1.5964 a.u. for compound (II)[link] are illustrated in Figs. 6[link] and 7[link], using colours to indicate contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]).

[Figure 6]
Figure 6
A view of the Hirshfeld surface mapped over dnorm in the range −0.0701 to +1.6693 arbitrary units for compound (I)[link].
[Figure 7]
Figure 7
A view of the Hirshfeld surface mapped over dnorm in the range −0.1162 to +1.5964 arbitrary units for compound (II)[link].

The two-dimensional fingerprint plots provide qu­anti­tative information about the non-covalent inter­actions and the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]). The HS analysis reveals that H⋯H (74.2%) and H⋯C/C⋯H (16.2%) contacts are the main contributors to the crystal packing, followed by O⋯H/H⋯O (8.2%) and N⋯H/H⋯N (1.3%) contacts for compound (I)[link] (Fig. 8[link]). In compound (II)[link], H⋯H (51.2%) and H⋯Br/Br⋯H (20.9%) contacts are the main contributors to the crystal packing, followed by C⋯H/H⋯C (14%) and O⋯H/H⋯O (8.5%) contacts (Fig. 9[link]). The fragment patches on the HS provide an easy way to investigate the nearest neighbour coordination environment of a mol­ecule (coordination number), which is 14 for compound (I)[link] and 15 for compound (II)[link].

[Figure 8]
Figure 8
Two-dimensional fingerprint plots for compound (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 9]
Figure 9
Two-dimensional fingerprint plots for compound (II)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Synthesis and crystallization

Compound (I)[link] was synthesized from a mixture of 8-methyl-8-aza­bicyclo­[3.2.1]octan-3-one and two equivalents of 4-methyl­benzaldehyde and 5,5-di­methyl­cyclo­hexane-1,3-dione dissolved in ethanol/acetic acid and refluxed for 12 h. After completion of the reaction, as indicated by thin layer chromatography (TLC), the mixture was cooled to room temperature, poured into ice-cold water and neutralized with a saturated solution of sodium bicarbonate. The compound was further recrystallized from ethanol to obtain crystals suitable for single crystal X-ray analysis.

Compound (II)[link] was synthesized from a mixture of 8-methyl-8-aza­bicyclo­[3.2.1]octan-3-one, two equivalents of 4-bromo­benzaldehyde and 5,5-di­methyl­cyclo­hexane-1,3-dione dis­solved in ethanol/acetic acid and refluxed for 12 h. After completion of the reaction, as indicated by thin layer chromatography (TLC), the mixture was cooled to room temperature, poured into ice-cold water and neutralized with a saturated solution of sodium bicarbonate. The compound was further recrystallized from ethanol to obtain crystals suitable for single crystal X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In both (I)[link] and (II)[link], H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.98 Å, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C32H35NO2 C30H29Br2NO2
Mr 465.61 595.36
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/n
Temperature (K) 293 293
a, b, c (Å) 16.7576 (6), 16.3223 (7), 19.2416 (8) 16.051 (3), 9.7793 (17), 17.005 (3)
α, β, γ (°) 90, 90, 90 90, 96.312 (5), 90
V3) 5263.0 (4) 2653.1 (8)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.07 3.08
Crystal size (mm) 0.21 × 0.18 × 0.16 0.20 × 0.17 × 0.15
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 186331, 8013, 5206 133143, 6556, 4933
Rint 0.097 0.091
(sin θ/λ)max−1) 0.714 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.213, 1.04 0.050, 0.141, 1.09
No. of reflections 8013 6556
No. of parameters 319 316
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.23 0.54, −0.71
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b) and PLATON (Spek, 2020).

(12E)-12-(4-Benzylidene)-7,7,16-trimethyl-3-(4-methylphenyl)-1-oxa-16-azatetracyclo[11.2.1.02,11.04,9]hexadeca-2(11),4(9)-dien-5-one (I) top
Crystal data top
C32H35NO2Dx = 1.175 Mg m3
Mr = 465.61Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 118400 reflections
a = 16.7576 (6) Åθ = 3.1–27.8°
b = 16.3223 (7) ŵ = 0.07 mm1
c = 19.2416 (8) ÅT = 293 K
V = 5263.0 (4) Å3Block, colourless
Z = 80.21 × 0.18 × 0.16 mm
F(000) = 2000
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.097
Radiation source: fine-focus sealed tubeθmax = 30.5°, θmin = 2.9°
ω and φ scansh = 2323
186331 measured reflectionsk = 2323
8013 independent reflectionsl = 2727
5206 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.1059P)2 + 1.8765P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.213(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.31 e Å3
8013 reflectionsΔρmin = 0.23 e Å3
319 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0063 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21074 (7)0.58367 (7)0.03767 (7)0.0427 (3)
O20.34366 (9)0.72866 (9)0.13951 (8)0.0577 (4)
N10.16512 (8)0.78470 (9)0.16257 (8)0.0424 (3)
C10.18856 (10)0.80464 (10)0.09126 (10)0.0405 (4)
H10.2284350.8485510.0904240.049*
C20.10849 (11)0.83394 (11)0.06103 (11)0.0463 (4)
H2A0.1058070.8239890.0113810.056*
H2B0.1003100.8918660.0697470.056*
C30.04652 (10)0.78136 (11)0.10060 (11)0.0459 (4)
H3A0.0090620.8158150.1255550.055*
H3B0.0171410.7464450.0688280.055*
C40.09680 (10)0.72978 (10)0.15142 (9)0.0400 (4)
H40.0677710.7208680.1949820.048*
C50.12141 (9)0.64808 (10)0.11912 (9)0.0370 (3)
C60.18632 (9)0.65699 (9)0.06908 (9)0.0371 (3)
C70.21783 (9)0.72967 (10)0.05213 (9)0.0376 (3)
C80.08674 (10)0.57522 (10)0.13228 (9)0.0396 (4)
H80.1092490.5298780.1105390.048*
C90.01749 (10)0.55924 (10)0.17700 (9)0.0382 (3)
C100.01149 (11)0.48435 (10)0.21179 (10)0.0435 (4)
H100.0509980.4450400.2054450.052*
C110.05206 (12)0.46743 (11)0.25556 (10)0.0475 (4)
H110.0536420.4175040.2788010.057*
C120.11325 (11)0.52321 (11)0.26546 (10)0.0452 (4)
C130.10909 (12)0.59637 (12)0.22870 (11)0.0511 (5)
H130.1498840.6345510.2336780.061*
C140.04585 (11)0.61396 (11)0.18485 (11)0.0486 (4)
H140.0455780.6630090.1602610.058*
C150.25631 (10)0.59020 (10)0.02083 (9)0.0377 (3)
C160.26745 (11)0.50897 (11)0.05506 (10)0.0447 (4)
H16A0.2182600.4936610.0782420.054*
H16B0.2783800.4680830.0197340.054*
C170.33577 (11)0.50880 (11)0.10836 (10)0.0459 (4)
C180.32508 (13)0.58496 (12)0.15407 (10)0.0511 (4)
H18A0.3691170.5877930.1866980.061*
H18B0.2763200.5790140.1807590.061*
C190.32134 (10)0.66405 (11)0.11423 (9)0.0420 (4)
C200.28567 (9)0.66154 (10)0.04453 (9)0.0368 (3)
C210.28068 (9)0.73973 (10)0.00295 (9)0.0386 (3)
H210.2645010.7842370.0340950.046*
C220.36107 (10)0.76184 (11)0.02941 (10)0.0418 (4)
C230.39866 (12)0.83551 (12)0.01558 (13)0.0555 (5)
H230.3750680.8730400.0144210.067*
C240.47229 (14)0.85379 (15)0.04666 (15)0.0689 (7)
H240.4966230.9037240.0370330.083*
C250.50927 (12)0.79995 (16)0.09086 (13)0.0624 (6)
C260.47107 (13)0.72732 (17)0.10501 (14)0.0688 (6)
H260.4945390.6900360.1353130.083*
C270.39826 (12)0.70872 (14)0.07493 (13)0.0596 (5)
H270.3737500.6591820.0856420.071*
C280.22827 (13)0.75329 (15)0.20727 (12)0.0588 (5)
H28A0.2069810.7421530.2526170.088*
H28B0.2493910.7037010.1877340.088*
H28C0.2700440.7933020.2109160.088*
C290.33113 (16)0.43051 (14)0.15184 (14)0.0669 (6)
H29A0.3379670.3837350.1221840.100*
H29B0.2800250.4275420.1742480.100*
H29C0.3724690.4311120.1863700.100*
C300.41730 (12)0.51242 (14)0.07213 (13)0.0590 (5)
H30A0.4206290.5614540.0447260.088*
H30B0.4233970.4654850.0425380.088*
H30C0.4588650.5126000.1064630.088*
C310.18224 (15)0.50520 (14)0.31352 (13)0.0645 (6)
H31A0.1983850.4491510.3079780.097*
H31B0.2261480.5406330.3024140.097*
H31C0.1660580.5143700.3607470.097*
C320.59000 (14)0.8188 (2)0.12213 (18)0.0941 (10)
H32A0.6059580.8731550.1091060.141*
H32B0.6285250.7800550.1052910.141*
H32C0.5867660.8151380.1718470.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0463 (6)0.0325 (6)0.0492 (7)0.0009 (5)0.0145 (5)0.0013 (5)
O20.0641 (9)0.0546 (8)0.0545 (8)0.0103 (6)0.0075 (7)0.0150 (6)
N10.0379 (7)0.0422 (8)0.0471 (8)0.0005 (6)0.0033 (6)0.0055 (6)
C10.0366 (7)0.0319 (7)0.0530 (10)0.0008 (6)0.0002 (7)0.0028 (7)
C20.0473 (9)0.0391 (9)0.0525 (10)0.0060 (7)0.0018 (8)0.0024 (7)
C30.0367 (8)0.0425 (9)0.0585 (11)0.0037 (7)0.0035 (7)0.0012 (8)
C40.0364 (7)0.0396 (8)0.0442 (9)0.0021 (6)0.0024 (6)0.0032 (7)
C50.0334 (7)0.0377 (8)0.0400 (8)0.0012 (6)0.0020 (6)0.0010 (6)
C60.0361 (7)0.0327 (7)0.0424 (8)0.0013 (6)0.0035 (6)0.0000 (6)
C70.0323 (7)0.0346 (8)0.0460 (9)0.0001 (6)0.0003 (6)0.0004 (6)
C80.0377 (8)0.0374 (8)0.0437 (9)0.0020 (6)0.0041 (6)0.0028 (7)
C90.0391 (8)0.0360 (8)0.0395 (8)0.0014 (6)0.0010 (6)0.0042 (6)
C100.0477 (9)0.0359 (8)0.0468 (9)0.0039 (7)0.0027 (7)0.0051 (7)
C110.0587 (11)0.0376 (8)0.0460 (10)0.0014 (8)0.0041 (8)0.0098 (7)
C120.0485 (9)0.0413 (9)0.0459 (10)0.0049 (7)0.0073 (7)0.0027 (7)
C130.0441 (9)0.0442 (10)0.0649 (12)0.0032 (7)0.0139 (8)0.0083 (8)
C140.0420 (9)0.0422 (9)0.0617 (11)0.0027 (7)0.0073 (8)0.0168 (8)
C150.0343 (7)0.0379 (8)0.0410 (8)0.0003 (6)0.0052 (6)0.0025 (6)
C160.0452 (9)0.0362 (8)0.0526 (10)0.0033 (7)0.0095 (8)0.0028 (7)
C170.0479 (9)0.0410 (9)0.0489 (10)0.0037 (7)0.0111 (8)0.0010 (7)
C180.0616 (11)0.0527 (11)0.0390 (9)0.0050 (9)0.0069 (8)0.0044 (8)
C190.0353 (7)0.0464 (9)0.0442 (9)0.0007 (7)0.0010 (6)0.0084 (7)
C200.0337 (7)0.0359 (8)0.0409 (8)0.0003 (6)0.0019 (6)0.0038 (6)
C210.0362 (7)0.0322 (7)0.0475 (9)0.0008 (6)0.0039 (6)0.0051 (6)
C220.0360 (8)0.0395 (8)0.0499 (9)0.0043 (6)0.0069 (7)0.0033 (7)
C230.0500 (10)0.0446 (10)0.0720 (14)0.0095 (8)0.0080 (9)0.0017 (9)
C240.0543 (12)0.0584 (13)0.0940 (18)0.0226 (10)0.0181 (12)0.0237 (13)
C250.0369 (9)0.0826 (15)0.0677 (13)0.0041 (10)0.0078 (9)0.0285 (12)
C260.0439 (10)0.0877 (17)0.0748 (15)0.0026 (10)0.0091 (10)0.0013 (13)
C270.0437 (10)0.0609 (12)0.0741 (14)0.0087 (9)0.0059 (9)0.0121 (11)
C280.0528 (11)0.0680 (13)0.0557 (12)0.0042 (10)0.0169 (9)0.0056 (10)
C290.0819 (16)0.0496 (11)0.0690 (14)0.0036 (11)0.0217 (12)0.0115 (10)
C300.0459 (10)0.0580 (12)0.0730 (14)0.0081 (9)0.0069 (9)0.0132 (10)
C310.0683 (13)0.0578 (12)0.0674 (14)0.0054 (10)0.0250 (11)0.0097 (10)
C320.0405 (11)0.129 (3)0.112 (2)0.0109 (14)0.0027 (13)0.055 (2)
Geometric parameters (Å, º) top
O1—C151.364 (2)C16—H16B0.9700
O1—C61.4018 (19)C17—C291.529 (3)
O2—C191.220 (2)C17—C181.533 (3)
N1—C281.457 (2)C17—C301.535 (3)
N1—C11.464 (2)C18—C191.503 (3)
N1—C41.470 (2)C18—H18A0.9700
C1—C71.518 (2)C18—H18B0.9700
C1—C21.539 (2)C19—C201.469 (2)
C1—H10.9800C20—C211.509 (2)
C2—C31.547 (3)C21—C221.527 (2)
C2—H2A0.9700C21—H210.9800
C2—H2B0.9700C22—C271.381 (3)
C3—C41.541 (2)C22—C231.383 (2)
C3—H3A0.9700C23—C241.403 (3)
C3—H3B0.9700C23—H230.9300
C4—C51.528 (2)C24—C251.371 (4)
C4—H40.9800C24—H240.9300
C5—C81.348 (2)C25—C261.375 (4)
C5—C61.460 (2)C25—C321.512 (3)
C6—C71.339 (2)C26—C271.384 (3)
C7—C211.503 (2)C26—H260.9300
C8—C91.468 (2)C27—H270.9300
C8—H80.9300C28—H28A0.9600
C9—C141.395 (2)C28—H28B0.9600
C9—C101.397 (2)C28—H28C0.9600
C10—C111.385 (3)C29—H29A0.9600
C10—H100.9300C29—H29B0.9600
C11—C121.384 (3)C29—H29C0.9600
C11—H110.9300C30—H30A0.9600
C12—C131.390 (3)C30—H30B0.9600
C12—C311.509 (3)C30—H30C0.9600
C13—C141.385 (3)C31—H31A0.9600
C13—H130.9300C31—H31B0.9600
C14—H140.9300C31—H31C0.9600
C15—C201.344 (2)C32—H32A0.9600
C15—C161.492 (2)C32—H32B0.9600
C16—C171.537 (2)C32—H32C0.9600
C16—H16A0.9700
C15—O1—C6116.89 (12)C29—C17—C16109.18 (16)
C28—N1—C1115.90 (15)C18—C17—C16107.11 (15)
C28—N1—C4115.93 (15)C30—C17—C16111.09 (17)
C1—N1—C4102.00 (13)C19—C18—C17114.13 (16)
N1—C1—C7111.86 (14)C19—C18—H18A108.7
N1—C1—C2100.92 (14)C17—C18—H18A108.7
C7—C1—C2110.16 (15)C19—C18—H18B108.7
N1—C1—H1111.2C17—C18—H18B108.7
C7—C1—H1111.2H18A—C18—H18B107.6
C2—C1—H1111.2O2—C19—C20120.85 (17)
C1—C2—C3103.11 (14)O2—C19—C18121.77 (17)
C1—C2—H2A111.1C20—C19—C18117.30 (15)
C3—C2—H2A111.1C15—C20—C19118.89 (15)
C1—C2—H2B111.1C15—C20—C21122.19 (15)
C3—C2—H2B111.1C19—C20—C21118.89 (14)
H2A—C2—H2B109.1C7—C21—C20108.68 (13)
C4—C3—C2104.38 (14)C7—C21—C22110.88 (15)
C4—C3—H3A110.9C20—C21—C22111.55 (13)
C2—C3—H3A110.9C7—C21—H21108.6
C4—C3—H3B110.9C20—C21—H21108.6
C2—C3—H3B110.9C22—C21—H21108.6
H3A—C3—H3B108.9C27—C22—C23117.53 (18)
N1—C4—C5112.42 (13)C27—C22—C21120.54 (16)
N1—C4—C3100.68 (13)C23—C22—C21121.92 (17)
C5—C4—C3111.48 (15)C22—C23—C24120.2 (2)
N1—C4—H4110.6C22—C23—H23119.9
C5—C4—H4110.6C24—C23—H23119.9
C3—C4—H4110.6C25—C24—C23121.7 (2)
C8—C5—C6122.22 (15)C25—C24—H24119.1
C8—C5—C4125.27 (15)C23—C24—H24119.1
C6—C5—C4112.48 (13)C24—C25—C26117.7 (2)
C7—C6—O1122.44 (15)C24—C25—C32121.4 (2)
C7—C6—C5122.87 (15)C26—C25—C32120.9 (3)
O1—C6—C5114.63 (13)C25—C26—C27121.1 (2)
C6—C7—C21123.02 (15)C25—C26—H26119.4
C6—C7—C1117.77 (15)C27—C26—H26119.4
C21—C7—C1119.21 (14)C22—C27—C26121.7 (2)
C5—C8—C9127.43 (16)C22—C27—H27119.2
C5—C8—H8116.3C26—C27—H27119.2
C9—C8—H8116.3N1—C28—H28A109.5
C14—C9—C10116.96 (15)N1—C28—H28B109.5
C14—C9—C8123.43 (15)H28A—C28—H28B109.5
C10—C9—C8119.55 (15)N1—C28—H28C109.5
C11—C10—C9121.39 (16)H28A—C28—H28C109.5
C11—C10—H10119.3H28B—C28—H28C109.5
C9—C10—H10119.3C17—C29—H29A109.5
C10—C11—C12121.46 (16)C17—C29—H29B109.5
C10—C11—H11119.3H29A—C29—H29B109.5
C12—C11—H11119.3C17—C29—H29C109.5
C11—C12—C13117.25 (17)H29A—C29—H29C109.5
C11—C12—C31121.57 (17)H29B—C29—H29C109.5
C13—C12—C31121.17 (18)C17—C30—H30A109.5
C14—C13—C12121.78 (17)C17—C30—H30B109.5
C14—C13—H13119.1H30A—C30—H30B109.5
C12—C13—H13119.1C17—C30—H30C109.5
C13—C14—C9121.03 (16)H30A—C30—H30C109.5
C13—C14—H14119.5H30B—C30—H30C109.5
C9—C14—H14119.5C12—C31—H31A109.5
C20—C15—O1123.55 (15)C12—C31—H31B109.5
C20—C15—C16125.05 (15)H31A—C31—H31B109.5
O1—C15—C16111.39 (13)C12—C31—H31C109.5
C15—C16—C17112.91 (14)H31A—C31—H31C109.5
C15—C16—H16A109.0H31B—C31—H31C109.5
C17—C16—H16A109.0C25—C32—H32A109.5
C15—C16—H16B109.0C25—C32—H32B109.5
C17—C16—H16B109.0H32A—C32—H32B109.5
H16A—C16—H16B107.8C25—C32—H32C109.5
C29—C17—C18110.96 (18)H32A—C32—H32C109.5
C29—C17—C30109.03 (18)H32B—C32—H32C109.5
C18—C17—C30109.47 (16)
C28—N1—C1—C762.30 (19)C8—C9—C14—C13178.88 (19)
C4—N1—C1—C764.57 (16)C6—O1—C15—C207.7 (2)
C28—N1—C1—C2179.41 (15)C6—O1—C15—C16171.12 (14)
C4—N1—C1—C252.53 (15)C20—C15—C16—C1717.0 (3)
N1—C1—C2—C332.38 (17)O1—C15—C16—C17164.20 (15)
C7—C1—C2—C385.97 (17)C15—C16—C17—C29167.58 (18)
C1—C2—C3—C42.13 (18)C15—C16—C17—C1847.4 (2)
C28—N1—C4—C558.9 (2)C15—C16—C17—C3072.1 (2)
C1—N1—C4—C567.99 (16)C29—C17—C18—C19174.65 (17)
C28—N1—C4—C3177.62 (16)C30—C17—C18—C1965.0 (2)
C1—N1—C4—C350.76 (15)C16—C17—C18—C1955.6 (2)
C2—C3—C4—N128.68 (17)C17—C18—C19—O2150.97 (18)
C2—C3—C4—C590.75 (17)C17—C18—C19—C2032.2 (2)
N1—C4—C5—C8146.10 (17)O1—C15—C20—C19168.96 (15)
C3—C4—C5—C8101.7 (2)C16—C15—C20—C199.7 (3)
N1—C4—C5—C636.0 (2)O1—C15—C20—C218.9 (3)
C3—C4—C5—C676.16 (18)C16—C15—C20—C21172.43 (16)
C15—O1—C6—C712.9 (2)O2—C19—C20—C15174.93 (17)
C15—O1—C6—C5164.29 (14)C18—C19—C20—C151.9 (2)
C8—C5—C6—C7175.52 (17)O2—C19—C20—C213.0 (2)
C4—C5—C6—C72.4 (2)C18—C19—C20—C21179.88 (15)
C8—C5—C6—O11.7 (2)C6—C7—C21—C2013.3 (2)
C4—C5—C6—O1179.63 (14)C1—C7—C21—C20167.26 (14)
O1—C6—C7—C211.4 (3)C6—C7—C21—C22109.67 (18)
C5—C6—C7—C21175.61 (15)C1—C7—C21—C2269.79 (19)
O1—C6—C7—C1178.09 (15)C15—C20—C21—C718.3 (2)
C5—C6—C7—C14.9 (3)C19—C20—C21—C7159.56 (14)
N1—C1—C7—C630.9 (2)C15—C20—C21—C22104.24 (18)
C2—C1—C7—C680.5 (2)C19—C20—C21—C2277.90 (19)
N1—C1—C7—C21148.60 (15)C7—C21—C22—C2761.8 (2)
C2—C1—C7—C21100.01 (17)C20—C21—C22—C2759.5 (2)
C6—C5—C8—C9174.93 (16)C7—C21—C22—C23117.10 (19)
C4—C5—C8—C92.7 (3)C20—C21—C22—C23121.62 (19)
C5—C8—C9—C1433.7 (3)C27—C22—C23—C240.7 (3)
C5—C8—C9—C10149.18 (19)C21—C22—C23—C24179.61 (18)
C14—C9—C10—C114.0 (3)C22—C23—C24—C250.4 (3)
C8—C9—C10—C11178.71 (17)C23—C24—C25—C261.2 (3)
C9—C10—C11—C121.5 (3)C23—C24—C25—C32177.8 (2)
C10—C11—C12—C131.1 (3)C24—C25—C26—C270.8 (4)
C10—C11—C12—C31179.5 (2)C32—C25—C26—C27178.1 (2)
C11—C12—C13—C141.2 (3)C23—C22—C27—C261.0 (3)
C31—C12—C13—C14179.5 (2)C21—C22—C27—C26179.9 (2)
C12—C13—C14—C91.4 (3)C25—C26—C27—C220.2 (4)
C10—C9—C14—C133.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.372.766 (2)105
C14—H14···O2i0.932.593.285 (2)131
C3—H3B···Cgi0.972.883.795 (2)152
Symmetry code: (i) x1/2, y+3/2, z.
(12E)-12-(4-Bromobenzylidene)-73-(4-bromophenyl)-,7,16-trimethyl-10-oxa-16-azatetracyclo[11.2.1.02,11.04,9]hexadeca-2(11),4(9)-dien-5-one (II) top
Crystal data top
C30H29Br2NO2F(000) = 1208
Mr = 595.36Dx = 1.491 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.051 (3) ÅCell parameters from 102112 reflections
b = 9.7793 (17) Åθ = 3.5–27.5°
c = 17.005 (3) ŵ = 3.08 mm1
β = 96.312 (5)°T = 293 K
V = 2653.1 (8) Å3Block, colourless
Z = 40.20 × 0.17 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.091
Radiation source: fine-focus sealed tubeθmax = 28.3°, θmin = 3.3°
ω and φ scansh = 2121
133143 measured reflectionsk = 1313
6556 independent reflectionsl = 2222
4933 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0695P)2 + 2.235P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.004
6556 reflectionsΔρmax = 0.54 e Å3
316 parametersΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.13657 (3)1.48892 (4)0.08618 (3)0.07424 (18)
Br20.33512 (2)0.92555 (5)0.21664 (2)0.05914 (15)
O10.74355 (12)0.8697 (2)0.04204 (11)0.0324 (4)
O20.60743 (18)0.5052 (3)0.07177 (15)0.0552 (7)
N10.77700 (15)1.1142 (3)0.15803 (14)0.0350 (5)
C10.75767 (19)0.9713 (3)0.17268 (16)0.0349 (6)
H10.7154990.9639080.2099860.042*
C20.8429 (2)0.9194 (4)0.21006 (17)0.0429 (7)
H2A0.8480640.8213310.2033530.052*
H2B0.8518610.9412650.2659870.052*
C30.90510 (19)0.9981 (3)0.16300 (17)0.0367 (6)
H3A0.9472461.0448480.1984760.044*
H3B0.9327930.9365040.1294810.044*
C40.84906 (17)1.1019 (3)0.11262 (16)0.0299 (6)
H40.8776851.1900030.1097100.036*
C50.82292 (16)1.0451 (3)0.03006 (16)0.0278 (5)
C60.76206 (16)0.9339 (3)0.03146 (15)0.0277 (5)
C70.73047 (16)0.8929 (3)0.09691 (15)0.0280 (5)
C80.85228 (18)1.0867 (3)0.03686 (16)0.0319 (6)
H80.8274541.0478260.0835930.038*
C90.91934 (18)1.1868 (3)0.04467 (17)0.0327 (6)
C100.9139 (2)1.2727 (4)0.11047 (19)0.0451 (8)
H100.8665851.2688590.1472410.054*
C110.9776 (2)1.3637 (4)0.1222 (2)0.0529 (9)
H110.9727881.4209180.1661400.064*
C121.0477 (2)1.3684 (3)0.0684 (2)0.0443 (8)
C131.05595 (19)1.2852 (3)0.0033 (2)0.0445 (7)
H131.1038201.2896740.0327290.053*
C140.99204 (18)1.1939 (3)0.00834 (18)0.0385 (7)
H140.9978391.1365800.0522420.046*
C150.69997 (16)0.7497 (3)0.04300 (15)0.0280 (5)
C160.69721 (19)0.6819 (3)0.12194 (16)0.0370 (7)
H16A0.7499080.6349790.1254060.044*
H16B0.6913020.7514300.1628760.044*
C170.6257 (2)0.5797 (3)0.13722 (18)0.0415 (7)
C180.6246 (3)0.4881 (4)0.0646 (2)0.0509 (9)
H18A0.5733070.4347980.0705230.061*
H18B0.6710800.4244470.0634390.061*
C190.63029 (19)0.5615 (3)0.01397 (18)0.0367 (6)
C200.66752 (16)0.6980 (3)0.01977 (16)0.0283 (5)
C210.67489 (16)0.7691 (3)0.09920 (15)0.0274 (5)
H210.7025920.7056380.1383230.033*
C220.59016 (16)0.8069 (3)0.12632 (15)0.0276 (5)
C230.57771 (17)0.7910 (3)0.20543 (16)0.0332 (6)
H230.6205450.7552040.2407210.040*
C240.50238 (18)0.8278 (3)0.23264 (17)0.0363 (6)
H240.4946370.8176170.2857270.044*
C250.43931 (17)0.8796 (3)0.17940 (18)0.0354 (6)
C260.44916 (19)0.8963 (4)0.10059 (18)0.0412 (7)
H260.4057440.9309130.0654910.049*
C270.52543 (19)0.8603 (3)0.07442 (17)0.0382 (7)
H270.5331200.8721860.0214380.046*
C280.7072 (2)1.1975 (4)0.1221 (2)0.0519 (9)
H28A0.7262191.2892610.1149430.078*
H28B0.6862601.1595190.0717270.078*
H28C0.6632301.1984140.1561230.078*
C290.6372 (3)0.4933 (4)0.2101 (2)0.0601 (11)
H29A0.5917920.4292840.2191970.090*
H29B0.6377050.5518160.2553930.090*
H29C0.6892840.4444880.2015900.090*
C300.5420 (2)0.6584 (5)0.1527 (2)0.0626 (11)
H30A0.4966770.5944380.1623360.094*
H30B0.5339140.7130770.1072530.094*
H30C0.5435370.7164710.1979800.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0454 (2)0.0471 (2)0.1313 (4)0.01677 (16)0.0145 (2)0.0214 (2)
Br20.03657 (19)0.0783 (3)0.0654 (3)0.01380 (17)0.01814 (16)0.00151 (19)
O10.0402 (11)0.0323 (10)0.0253 (9)0.0166 (8)0.0059 (8)0.0024 (8)
O20.0722 (17)0.0448 (14)0.0517 (14)0.0212 (12)0.0207 (13)0.0075 (11)
N10.0362 (13)0.0354 (13)0.0337 (12)0.0015 (10)0.0056 (10)0.0114 (10)
C10.0394 (15)0.0426 (16)0.0234 (13)0.0106 (13)0.0066 (11)0.0059 (12)
C20.0471 (18)0.0498 (19)0.0301 (14)0.0089 (14)0.0039 (13)0.0040 (13)
C30.0332 (14)0.0429 (17)0.0324 (14)0.0025 (12)0.0036 (11)0.0013 (12)
C40.0300 (13)0.0301 (13)0.0294 (13)0.0059 (11)0.0018 (10)0.0052 (11)
C50.0275 (12)0.0268 (13)0.0286 (13)0.0040 (10)0.0007 (10)0.0023 (10)
C60.0287 (12)0.0276 (13)0.0260 (12)0.0067 (10)0.0002 (10)0.0020 (10)
C70.0260 (12)0.0318 (13)0.0262 (12)0.0039 (10)0.0036 (10)0.0035 (11)
C80.0342 (14)0.0321 (14)0.0289 (13)0.0085 (11)0.0014 (11)0.0017 (11)
C90.0354 (14)0.0273 (13)0.0360 (14)0.0064 (11)0.0064 (11)0.0034 (11)
C100.0436 (17)0.0460 (18)0.0444 (17)0.0138 (14)0.0003 (14)0.0095 (14)
C110.055 (2)0.0427 (19)0.061 (2)0.0121 (16)0.0045 (17)0.0216 (16)
C120.0358 (15)0.0281 (15)0.070 (2)0.0075 (12)0.0128 (15)0.0017 (15)
C130.0317 (15)0.0413 (17)0.060 (2)0.0050 (13)0.0021 (14)0.0040 (15)
C140.0361 (15)0.0357 (16)0.0439 (16)0.0044 (12)0.0054 (13)0.0050 (13)
C150.0258 (12)0.0285 (13)0.0300 (13)0.0077 (10)0.0035 (10)0.0024 (11)
C160.0402 (15)0.0423 (16)0.0303 (14)0.0176 (13)0.0123 (12)0.0092 (12)
C170.0429 (16)0.0484 (18)0.0340 (15)0.0232 (14)0.0079 (13)0.0104 (13)
C180.065 (2)0.0374 (18)0.0516 (19)0.0236 (16)0.0127 (17)0.0066 (15)
C190.0369 (15)0.0321 (15)0.0422 (16)0.0084 (12)0.0095 (12)0.0013 (13)
C200.0267 (12)0.0274 (13)0.0317 (13)0.0044 (10)0.0075 (10)0.0009 (11)
C210.0264 (12)0.0304 (13)0.0256 (12)0.0019 (10)0.0036 (10)0.0043 (10)
C220.0267 (12)0.0273 (13)0.0294 (13)0.0032 (10)0.0052 (10)0.0044 (10)
C230.0315 (13)0.0398 (15)0.0288 (13)0.0026 (12)0.0048 (11)0.0076 (12)
C240.0373 (15)0.0426 (16)0.0305 (14)0.0011 (13)0.0107 (12)0.0044 (12)
C250.0285 (13)0.0360 (15)0.0430 (16)0.0017 (11)0.0093 (12)0.0006 (12)
C260.0333 (15)0.0524 (19)0.0374 (15)0.0102 (13)0.0014 (12)0.0091 (14)
C270.0381 (15)0.0481 (18)0.0287 (14)0.0040 (13)0.0052 (12)0.0097 (13)
C280.0456 (18)0.049 (2)0.061 (2)0.0079 (16)0.0042 (16)0.0160 (17)
C290.074 (3)0.059 (2)0.049 (2)0.037 (2)0.0153 (18)0.0224 (17)
C300.0434 (19)0.088 (3)0.054 (2)0.014 (2)0.0024 (16)0.001 (2)
Geometric parameters (Å, º) top
Br1—C121.899 (3)C15—C201.338 (4)
Br2—C251.906 (3)C15—C161.493 (4)
O1—C151.365 (3)C16—C171.524 (4)
O1—C61.401 (3)C16—H16A0.9700
O2—C191.218 (4)C16—H16B0.9700
N1—C11.458 (4)C17—C291.528 (5)
N1—C41.464 (4)C17—C181.528 (5)
N1—C281.464 (4)C17—C301.544 (5)
C1—C71.522 (4)C18—C191.510 (5)
C1—C21.531 (4)C18—H18A0.9700
C1—H10.9800C18—H18B0.9700
C2—C31.550 (4)C19—C201.462 (4)
C2—H2A0.9700C20—C211.512 (4)
C2—H2B0.9700C21—C221.529 (4)
C3—C41.551 (4)C21—H210.9800
C3—H3A0.9700C22—C271.389 (4)
C3—H3B0.9700C22—C231.390 (4)
C4—C51.525 (4)C23—C241.389 (4)
C4—H40.9800C23—H230.9300
C5—C81.342 (4)C24—C251.378 (4)
C5—C61.464 (4)C24—H240.9300
C6—C71.335 (4)C25—C261.376 (4)
C7—C211.507 (4)C26—C271.393 (4)
C8—C91.472 (4)C26—H260.9300
C8—H80.9300C27—H270.9300
C9—C101.394 (4)C28—H28A0.9600
C9—C141.396 (4)C28—H28B0.9600
C10—C111.386 (4)C28—H28C0.9600
C10—H100.9300C29—H29A0.9600
C11—C121.371 (5)C29—H29B0.9600
C11—H110.9300C29—H29C0.9600
C12—C131.368 (5)C30—H30A0.9600
C13—C141.391 (4)C30—H30B0.9600
C13—H130.9300C30—H30C0.9600
C14—H140.9300
C15—O1—C6117.0 (2)C15—C16—H16B109.0
C1—N1—C4101.9 (2)C17—C16—H16B109.0
C1—N1—C28115.9 (3)H16A—C16—H16B107.8
C4—N1—C28116.0 (3)C16—C17—C29110.2 (3)
N1—C1—C7112.6 (2)C16—C17—C18108.8 (3)
N1—C1—C2101.0 (2)C29—C17—C18110.2 (3)
C7—C1—C2110.1 (3)C16—C17—C30109.1 (3)
N1—C1—H1110.9C29—C17—C30108.5 (3)
C7—C1—H1110.9C18—C17—C30110.1 (3)
C2—C1—H1110.9C19—C18—C17115.5 (3)
C1—C2—C3102.6 (2)C19—C18—H18A108.4
C1—C2—H2A111.3C17—C18—H18A108.4
C3—C2—H2A111.3C19—C18—H18B108.4
C1—C2—H2B111.3C17—C18—H18B108.4
C3—C2—H2B111.3H18A—C18—H18B107.5
H2A—C2—H2B109.2O2—C19—C20121.0 (3)
C4—C3—C2104.1 (2)O2—C19—C18120.3 (3)
C4—C3—H3A110.9C20—C19—C18118.6 (3)
C2—C3—H3A110.9C15—C20—C19118.9 (2)
C4—C3—H3B110.9C15—C20—C21122.7 (2)
C2—C3—H3B110.9C19—C20—C21118.1 (2)
H3A—C3—H3B109.0C7—C21—C20109.6 (2)
N1—C4—C5111.2 (2)C7—C21—C22111.3 (2)
N1—C4—C3101.9 (2)C20—C21—C22113.3 (2)
C5—C4—C3110.7 (2)C7—C21—H21107.5
N1—C4—H4110.9C20—C21—H21107.5
C5—C4—H4110.9C22—C21—H21107.5
C3—C4—H4110.9C27—C22—C23118.7 (3)
C8—C5—C6122.4 (2)C27—C22—C21121.8 (2)
C8—C5—C4125.7 (2)C23—C22—C21119.5 (2)
C6—C5—C4111.9 (2)C24—C23—C22121.1 (3)
C7—C6—O1123.1 (2)C24—C23—H23119.4
C7—C6—C5123.5 (2)C22—C23—H23119.4
O1—C6—C5113.2 (2)C25—C24—C23118.7 (3)
C6—C7—C21122.9 (2)C25—C24—H24120.7
C6—C7—C1117.0 (2)C23—C24—H24120.7
C21—C7—C1119.9 (2)C26—C25—C24121.9 (3)
C5—C8—C9127.3 (3)C26—C25—Br2119.6 (2)
C5—C8—H8116.3C24—C25—Br2118.4 (2)
C9—C8—H8116.3C25—C26—C27118.7 (3)
C10—C9—C14117.5 (3)C25—C26—H26120.7
C10—C9—C8119.4 (3)C27—C26—H26120.7
C14—C9—C8122.9 (3)C22—C27—C26121.0 (3)
C11—C10—C9121.4 (3)C22—C27—H27119.5
C11—C10—H10119.3C26—C27—H27119.5
C9—C10—H10119.3N1—C28—H28A109.5
C12—C11—C10119.4 (3)N1—C28—H28B109.5
C12—C11—H11120.3H28A—C28—H28B109.5
C10—C11—H11120.3N1—C28—H28C109.5
C13—C12—C11121.2 (3)H28A—C28—H28C109.5
C13—C12—Br1119.4 (2)H28B—C28—H28C109.5
C11—C12—Br1119.4 (3)C17—C29—H29A109.5
C12—C13—C14119.4 (3)C17—C29—H29B109.5
C12—C13—H13120.3H29A—C29—H29B109.5
C14—C13—H13120.3C17—C29—H29C109.5
C13—C14—C9121.1 (3)H29A—C29—H29C109.5
C13—C14—H14119.4H29B—C29—H29C109.5
C9—C14—H14119.4C17—C30—H30A109.5
C20—C15—O1124.0 (2)C17—C30—H30B109.5
C20—C15—C16125.0 (2)H30A—C30—H30B109.5
O1—C15—C16110.9 (2)C17—C30—H30C109.5
C15—C16—C17113.1 (2)H30A—C30—H30C109.5
C15—C16—H16A109.0H30B—C30—H30C109.5
C17—C16—H16A109.0
C4—N1—C1—C763.9 (3)C8—C9—C14—C13176.6 (3)
C28—N1—C1—C763.1 (3)C6—O1—C15—C206.7 (4)
C4—N1—C1—C253.6 (2)C6—O1—C15—C16170.6 (2)
C28—N1—C1—C2179.4 (3)C20—C15—C16—C1723.8 (4)
N1—C1—C2—C336.9 (3)O1—C15—C16—C17158.9 (3)
C7—C1—C2—C382.4 (3)C15—C16—C17—C29168.1 (3)
C1—C2—C3—C48.1 (3)C15—C16—C17—C1847.3 (4)
C1—N1—C4—C570.2 (3)C15—C16—C17—C3072.8 (3)
C28—N1—C4—C556.7 (3)C16—C17—C18—C1947.9 (4)
C1—N1—C4—C347.8 (2)C29—C17—C18—C19168.7 (3)
C28—N1—C4—C3174.7 (2)C30—C17—C18—C1971.6 (4)
C2—C3—C4—N123.3 (3)C17—C18—C19—O2159.9 (3)
C2—C3—C4—C595.1 (3)C17—C18—C19—C2023.2 (5)
N1—C4—C5—C8140.3 (3)O1—C15—C20—C19173.2 (3)
C3—C4—C5—C8107.1 (3)C16—C15—C20—C193.7 (4)
N1—C4—C5—C641.3 (3)O1—C15—C20—C210.8 (4)
C3—C4—C5—C671.2 (3)C16—C15—C20—C21177.8 (3)
C15—O1—C6—C78.7 (4)O2—C19—C20—C15172.8 (3)
C15—O1—C6—C5168.1 (2)C18—C19—C20—C154.1 (4)
C8—C5—C6—C7178.4 (3)O2—C19—C20—C211.5 (4)
C4—C5—C6—C73.2 (4)C18—C19—C20—C21178.5 (3)
C8—C5—C6—O14.8 (4)C6—C7—C21—C204.1 (4)
C4—C5—C6—O1173.6 (2)C1—C7—C21—C20171.7 (2)
O1—C6—C7—C213.0 (4)C6—C7—C21—C22122.0 (3)
C5—C6—C7—C21173.5 (2)C1—C7—C21—C2262.2 (3)
O1—C6—C7—C1178.9 (2)C15—C20—C21—C76.0 (4)
C5—C6—C7—C12.4 (4)C19—C20—C21—C7168.1 (2)
N1—C1—C7—C629.9 (4)C15—C20—C21—C22118.9 (3)
C2—C1—C7—C682.1 (3)C19—C20—C21—C2267.0 (3)
N1—C1—C7—C21154.1 (2)C7—C21—C22—C2782.3 (3)
C2—C1—C7—C2193.9 (3)C20—C21—C22—C2741.7 (4)
C6—C5—C8—C9173.3 (3)C7—C21—C22—C2396.0 (3)
C4—C5—C8—C94.9 (5)C20—C21—C22—C23140.0 (3)
C5—C8—C9—C10145.2 (3)C27—C22—C23—C240.1 (4)
C5—C8—C9—C1439.5 (5)C21—C22—C23—C24178.2 (3)
C14—C9—C10—C111.1 (5)C22—C23—C24—C250.5 (5)
C8—C9—C10—C11176.7 (3)C23—C24—C25—C260.3 (5)
C9—C10—C11—C120.6 (6)C23—C24—C25—Br2178.4 (2)
C10—C11—C12—C130.1 (6)C24—C25—C26—C270.4 (5)
C10—C11—C12—Br1178.0 (3)Br2—C25—C26—C27179.1 (3)
C11—C12—C13—C140.1 (5)C23—C22—C27—C260.6 (5)
Br1—C12—C13—C14178.0 (2)C21—C22—C27—C26178.9 (3)
C12—C13—C14—C90.7 (5)C25—C26—C27—C220.8 (5)
C10—C9—C14—C131.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.362.742 (3)105
C30—H30A···O2i0.962.583.306 (5)132
C3—H3B···Cgii0.972.843.798 (3)169
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z.
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

Acknowledgements

The authors wish to thank the Management of The Madura College for their support

References

First citationAfewerki, S., Wang, J. X., Liao, W. W. & Córdova, A. (2019). Alkaloids Chem. Biol. 81, 151–233.  CrossRef CAS PubMed Google Scholar
First citationAshfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211–31225.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationCheenpracha, S., Ritthiwigrom, T. & Laphookhieo, S. (2013). J. Nat. Prod. 76, 723–726.  CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDongbang, S., Confair, D. N. & Ellman, J. A. (2021). Acc. Chem. Res. 54, 1766–1778.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds