research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-fluoro­phen­yl)-N-iso­propyl-2-(methyl­sulfon­yl)acetamide

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Science and Humanities, PES University, BSK III Stage, Bengaluru-560 085, India, cDepartment of Chemistry, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, dHoneychem Pharma Research Pvt. Ltd., Peenya Industrial Area, Bengaluru-560 058, India, and eDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: ybb2706@gmail.com, yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 13 April 2023; accepted 22 April 2023; online 28 April 2023)

The synthesis and crystal structure of the title compound, C12H16FNO3S, which is related to the herbicide flufenacet, are presented. The dihedral angle between the amide group and the fluorinated benzene ring is 87.30 (5)° and the N—C—C—S torsion angle defining the orientation of the methyl­sulfonyl substituent relative to the amide group is 106.91 (11)°. In the crystal, inversion-related mol­ecules form dimers as a result of pairwise C—H⋯O hydrogen bonds, which appear to be reinforced by short O⋯π contacts [O⋯Cg = 3.0643 (11) Å]. A Hirshfeld surface analysis was used to qu­antify the various types of inter­molecular contacts, which are dominated by H atoms.

1. Chemical context

N-(Substituted phen­yl)acetamides have a variety of biological activities. For example, substituted phenyl­acetamides and their use as protease inhibitors was reported by Kreutter et al. (2009[Kreutter, K. D., Lee, L., Lu, T., Mohan, V., Patel, S., Huang, H., Xu, G. & Fitzgerald, M. (2009). US Patent 7.550,474 B2.]) and a description of the syntheses and anti­oxidant studies of N-substituted benz­yl/phenyl-2-[3,4-dimethyl-5,5-dioxido­pyrazolo­[4,3-c][1,2]benzo­thia­zin-2(4H)-yl]acetamides was given by Ahmad et al. (2013[Ahmad, M., Siddiqui, H. L., Gardiner, J. M., Parvez, M. & Aslam, S. (2013). Med. Chem. Res. 22, 794-805.]). The syntheses and biological evaluation of N4-substituted sulfonamide–acetamide derivatives as di­hydro­folate reductase (DHFR) inhibitors was reported by Hussein et al. (2019[Hussein, E. M., Al-Rooqi, M. M., Abd El-Galil, S. M. & Ahmed, S. A. (2019). BMC Chem. 13, 91.]) and the synthesis of N-(substituted phen­yl)-N-(substituted)acetamide derivatives as potent analgesic agents was described by Verma et al. (2020[Verma, V., Yogi, B. & Gupta, S. K. (2020). Res. J. Pharm. Techn. 13, 5158-5164.]). Lastly, the evaluation of new 2-hy­droxy-N-(4-oxo-2-substituted phenyl-1,3-thia­zolidin-3-yl)-2-phenyl­acetamide derivatives as potential anti­mycobacterial agents was reported by Güzel-Akdemir et al. (2020[Güzel-Akdemir, O., Demir-Yazıcı, K., Trawally, M., Dingiş-Birgül, S. I. & Akdemir, A. (2020). Org. Commun. 13, 33-50.]).

[Scheme 1]

Flufenacet (C14H13F4N3O2S), systematic name N-(4-fluoro­phen­yl)-N-propan-2-yl-2-{[5-(tri­fluoro­meth­yl)-1,3,4-thia­diazol-2-yl]­oxy}acetamide, is an herbi­cide, xenobiotic and environmental contaminant (Rouchaud et al., 2001[Rouchaud, J., Neus, O., Eelen, H. & Bulcke, R. (2001). Bull. Environ. Contam. Toxicol. 67, 609-616.]; Zimmerman et al., 2002[Zimmerman, L. R., Schneider, R. J. & Thurman, E. M. (2002). J. Agric. Food Chem. 50, 1045-1052.]). This paper reports the synthesis, crystal structure and a Hirshfeld surface analysis of the related title compound, C12H16FNO3S (I) (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of I showing 50% displacement ellipsoids.

2. Structural commentary

In the crystal structure of I, the nitro­gen atom of the amide group is close to planar, the sum of bond angles about N1 being 358.92 (19)°, which places N1 0.0862 (14) Å from the plane passing through C1, C4, and C7. The amide group is also almost planar, having an r.m.s. deviation from the mean plane of N1, C1, O1, C2 of 0.0095 Å [maximum = 0.0165 (11) Å for C1], and is almost perpendicular to the fluoro­benzene ring (C7–C12), subtending a dihedral angle of 87.30 (5)°. The overall conformation of the mol­ecule is defined by the torsion angles C7—N1—C1—C2 [14.68 (17)°], N1—C1—C2—S1 [106.91 (11)°], C1—C2—S1—C3 [74.53 (10)°] and by the orientation of the ipropyl group, e.g., C1—N1—C4—C6 [139.85 (13)°]. Otherwise, all bond lengths and angles lie within the expected ranges.

3. Supra­molecular features

There are no strong hydrogen bonds in the crystal structure of I (Fig. 2[link]), but there are a number of weaker C—H⋯O and C—H⋯F inter­actions, which are qu­anti­fied in Table 1[link]. The most prominent supra­molecular constructs are dimers in which inversion-related mol­ecules are linked by C2—H2A⋯O3i and C2i—H2Ai⋯O3 hydrogen bonds [symmetry code: (i) 1 – x, 1 – y, 1 – z]. These dimers also feature close contacts between the sulfone O3 atom and the inversion-related benzene ring to give an O3⋯Cg(C7–C12)i distance of 3.0643 (11) Å (e.g. Gung et al., 2008[Gung, B. W., Zou, Y., Xu, Z., Amicangelo, J. C., Irwin, D. G., Ma, S. & Zhou, H. C. (2008). J. Org. Chem. 73, 689-693.] and see also Section 4: Database survey). The other weak C—H⋯O inter­actions involve inversion, translation, and c-glide related mol­ecules (Table 1[link], Fig. 3[link]a). A Hirshfeld surface analysis using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) shows that almost all atom–atom contacts involve the hydrogen atoms (Fig. 3[link]bf).

Table 1
Weak hydrogen bonds and other short inter­molecular contacts (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.99 2.31 3.2025 (16) 150
C3—H3B⋯O1ii 0.98 2.55 3.5196 (17) 170
C5—H5A⋯F1iii 0.98 2.50 3.4295 (18) 158
C11—H11⋯O1iv 0.95 2.39 3.1851 (16) 141
C12—H12⋯O2iv 0.95 2.56 3.2955 (16) 134
O3⋯Cg(C7–C12)i     3.0643 (11)  
Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y, −z + 1; (iii) x, y − 1, z; (iv) x, −y + [{1\over 2}], z + [{1\over 2}].
[Figure 2]
Figure 2
A partial packing plot of I, showing inversion dimers resulting from pairs of C—H⋯O weak hydrogen bonds, augmented by O⋯Cg(ring) contacts. Hydrogen atoms not involved in the hydrogen bonds are omitted.
[Figure 3]
Figure 3
(a) The Hirshfeld surface of I expressed over dnorm, with C—H⋯O and C—H⋯F inter­actions drawn as dashed lines and as dark- and light-red regions on the Hirshfeld surface, respectively; (b) fingerprint plot of H⋯H contacts; (c) H⋯O/O⋯H contacts; (d) H⋯F/F⋯H contacts; (e) H⋯C/C⋯H contacts; (f) C⋯O/O⋯C contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, v5.43 with updates through November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a mol­ecular fragment consisting of N-phenyl­acetamide with `any non-H group' attached at the nitro­gen atom, the 4-position of the benzene ring, and replacing one hydrogen of the methyl group, yielded 259 hits. A similar fragment, but with `any halogen' at the 4-position on the ring, gave 92 hits. With the halogen restricted to fluorine, twelve hits were returned, and with an isopropyl group attached to the nitro­gen atom, only one match was found: CSD refcode QEMHOG (Gao & Ng, 2006[Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3515-o3516.]): this structure has a 1,3-benzo­thia­zol-2-yl-oxy group attached to the methyl­ene carbon atom of the search fragment.

A search of the CSD for non-bonded close contacts (up to 3.1Å) between S=O oxygen atoms and a benzene-ring centroid (with `any substituent') returned 154 hits, none of which have much else in common with I. A crystallographic and computational study of inter­actions between oxygen lone pairs and aromatic rings (albeit involving carbon-bound oxygen atoms) was presented by Gung et al. (2008[Gung, B. W., Zou, Y., Xu, Z., Amicangelo, J. C., Irwin, D. G., Ma, S. & Zhou, H. C. (2008). J. Org. Chem. 73, 689-693.]).

There are several other related structures in the CSD, namely: thia­mphenicol, D-threo-2,2-di­chloro-N-{2-hy­droxy-1-(hy­droxy­meth­yl)-2-[4-(methyl­sulfon­yl)phen­yl]eth­yl}acet­a­­mide (CABCIR01; Ghosh et al., 1987[Ghosh, M., Basak, A. K., Mazumdar, S. K., Párkányi, L. & Kálmán, A. (1987). Acta Cryst. C43, 1552-1555.]), 2,2-di­chloro-N-{[1-(fluoro­meth­yl)-2-hy­droxy-2-[4- (methyl­sulfon­yl)phen­yl]eth­yl}acetamide (GAWNIC; Cheng et al., 2005[Cheng, J., Wang, N.-X. & Yang, G.-F. (2005). Acta Cryst. E61, o3628-o3629.]), N-(2,6-di­methyl­phen­yl)-2-(2-{3-[4-(methyl­sulfon­yl)phen­yl]-1,2,4-oxa­diazol-5-yl}phen­oxy)acetamide (AFIFIF; Wang et al., 2007[Wang, H.-B., Yin, J. & Xing, Z.-T. (2007). Acta Cryst. E63, o3668.]), N-(4-chloro-2-nitro­phen­yl)-N-(methyl­sulfon­yl)acetamide (WOGWEV; Zia-ur-Rehman et al., 2008[Zia-ur-Rehman, M., Akbar, N., Arshad, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o2092.]), N-(4-meth­oxy-2-nitro-phen­yl)-N-(methyl­sulfon­yl)acetamide (QOTNAP; Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Sepehrianazar, A., Ali, M., Siddiqui, W. A. & Çaylak, N. (2009). Acta Cryst. E65, o941.]), 2-chloro-N-(4-chloro-2-(2-chloro­benzo­yl)phen­yl)acetamide (DUPLUW; Dutkiewicz et al., 2010[Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o499.]), 2-chloro-N-[2-(2-fluoro­benzo­yl)-4-nitro­phen­yl]-N-methyl­acetamide (EXIVEN; Siddaraju et al., 2011[Siddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2537-o2538.]), 2-phenyl-N-(pyrazin-2-yl)acetamide (ROJNAH; Nayak et al., 2014[Nayak, S. P., Narayana, B., Anthal, S., Gupta, V. K. & Kant, R. (2014). Mol. Cryst. Liq. Cryst. 592, 199-208.]) and 2-(perfluoro­phen­yl)acetamide (LAMRAW; Novikov et al., 2022[Novikov, A. P., Bezdomnikov, A. A., Grigoriev, M. S. & German, K. E. (2022). Acta Cryst. E78, 80-83.]).

5. Synthesis, crystallization and spectroscopic details

In a 250 ml flask (with a nitro­gen inlet and a septum) was placed 5 g of 4-fluoro-N-iso­propyl­benzenamine dissolved in 50 ml of aceto­nitrile. After cooling to 273 K, 6.7 g of tri­ethyl­amine and 4.11 g of 2-(methyl­thio)­acetyl chloride were added. The mixture was stirred at room temperature for 5 h. After this, 100 ml of water were added and the mixture was extracted three times, each with 100 ml of methyl tert-butyl ether (MTBE). The combined organic phases were dried over MgSO4 and the solvent was evaporated under reduced pressure. The crude product, N-(4-fluoro­phen­yl)-N-isopropyl-2-(methyl­thio)­acetamide, was used for the next stage with purification (7.5 g).

To a 250 ml round-bottomed flask (with a nitro­gen inlet and a septum) was added 7.5 g of N-(4-fluoro­phen­yl)-N-isopropyl-2-(methyl­thio)­acetamide dissolved in 150 ml of di­chloro­methane. After cooling to 263–273 K, 13.37 g of meta-chloro­perbenzoic acid in 100 ml di­chloro­methane was added slowly at the same temperature. The mixture was stirred at room temperature for 5 h. After this, 200 ml of water were added and the organic layer was separated, and washed with 100 ml of 10% sodium bicarbonate twice. The organic phases were dried over MgSO4 and the solvent was evaporated under reduced pressure. The crude product was purified by chromatography over SiO2 (hexa­ne:ethyl acetate 9:1 v/v). The title compound was recrystallized from diethyl ether solution in the form of colorless plates. The overall reaction scheme is shown in Fig. 4[link].

[Figure 4]
Figure 4
A reaction scheme for the synthesis of I. DCM is di­chloro­methane, mCPBA is meta-chloro­perbenzoic acid.

1H NMR: CDCl3 (400 MHz, δ ppm): 1.097–1.08 [6H, d, (CH3)2]; 3.198 (3H, s, –CH3); 3.664 (2H, s, CH2); 5.006–4.938 (1H, m, –CH); 7.273–7.132 (4H, m, ar H). MS m/z: 273.45 (M)+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were found in difference-Fourier maps, but subsequently included in the refinement using riding models, with constrained C—H distances set to 0.95 Å (Csp2H), 0.98 Å (RCH3), 0.99 Å (R2CH2) and 1.00 Å (R3CH). Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached atom.

Table 2
Experimental details

Crystal data
Chemical formula C12H16FNO3S
Mr 273.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 90
a, b, c (Å) 12.9530 (3), 8.7657 (2), 11.7723 (3)
β (°) 100.457 (1)
V3) 1314.45 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.32 × 0.31 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.833, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 22801, 3010, 2678
Rint 0.030
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.05
No. of reflections 3010
No. of parameters 166
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.37
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and CrystalExplorer (Spackman et al., 2021); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

N-(4-Fluorophenyl)-2-(methylsulfonyl)-N-(propan-2-yl)acetamide top
Crystal data top
C12H16FNO3SF(000) = 576
Mr = 273.32Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9530 (3) ÅCell parameters from 9889 reflections
b = 8.7657 (2) Åθ = 2.8–27.5°
c = 11.7723 (3) ŵ = 0.26 mm1
β = 100.457 (1)°T = 90 K
V = 1314.45 (5) Å3Rounded plate, colourless
Z = 40.32 × 0.31 × 0.09 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
3010 independent reflections
Radiation source: microsource2678 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.030
φ and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.833, Tmax = 0.971k = 1111
22801 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.7883P]
where P = (Fo2 + 2Fc2)/3
3010 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54145 (2)0.29322 (3)0.38570 (3)0.01394 (9)
F10.77308 (7)0.83954 (10)0.77262 (8)0.0265 (2)
C10.70051 (10)0.18349 (15)0.54790 (11)0.0153 (3)
N10.78957 (9)0.26470 (13)0.58233 (10)0.0169 (2)
O10.69978 (7)0.04745 (11)0.52217 (8)0.0193 (2)
C20.59691 (10)0.26923 (15)0.53498 (11)0.0154 (3)
H2A0.6087490.3703780.5724950.018*
H2AB0.5474290.2117000.5737870.018*
O20.62454 (7)0.33486 (11)0.32511 (8)0.0208 (2)
O30.45431 (7)0.39662 (11)0.38023 (8)0.0201 (2)
C30.49181 (11)0.11358 (15)0.33711 (12)0.0208 (3)
H3A0.4592990.1202030.2553300.031*
H3B0.4391820.0810740.3822980.031*
H3C0.5492470.0392480.3466000.031*
C90.7902 (1)0.68848 (16)0.61179 (12)0.0191 (3)
H90.7945290.7775620.5669310.023*
C80.79425 (10)0.54409 (16)0.56408 (12)0.0188 (3)
H80.8011450.5334260.4854960.023*
C70.7882 (1)0.41507 (15)0.63150 (11)0.0154 (3)
C60.97208 (12)0.2845 (2)0.54665 (14)0.0295 (3)
H6A1.0360510.2253480.5452520.044*
H6B0.9888780.3726110.5978860.044*
H6C0.9430280.3198750.4684110.044*
C50.93224 (12)0.1303 (2)0.71320 (14)0.0309 (4)
H5A0.8775060.0707980.7404270.046*
H5B0.9506920.2187250.7637980.046*
H5C0.9945310.0664680.7144440.046*
C40.89195 (10)0.18467 (16)0.59065 (13)0.0216 (3)
H40.8800490.0924620.5399390.026*
C100.77975 (10)0.69895 (15)0.72594 (12)0.0180 (3)
C110.77354 (10)0.57396 (16)0.79470 (11)0.0174 (3)
H110.7662840.5857280.8730820.021*
C120.77814 (10)0.42986 (15)0.74673 (11)0.0162 (3)
H120.7744160.3414860.7925310.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01361 (16)0.01232 (15)0.01522 (16)0.00096 (11)0.00086 (11)0.00046 (11)
F10.0312 (5)0.0167 (4)0.0308 (5)0.0009 (3)0.0033 (4)0.0072 (3)
C10.0176 (6)0.0165 (6)0.0114 (6)0.0028 (5)0.0012 (5)0.0006 (5)
N10.0158 (5)0.0159 (5)0.0179 (5)0.0033 (4)0.0001 (4)0.0022 (4)
O10.0224 (5)0.0142 (5)0.0202 (5)0.0033 (4)0.0015 (4)0.0020 (4)
C20.0164 (6)0.0151 (6)0.0142 (6)0.0012 (5)0.0016 (5)0.0018 (5)
O20.0210 (5)0.0217 (5)0.0208 (5)0.0013 (4)0.0070 (4)0.0049 (4)
O30.0170 (5)0.0180 (5)0.0237 (5)0.0049 (4)0.0007 (4)0.0018 (4)
C30.0208 (7)0.0155 (6)0.0243 (7)0.0016 (5)0.0004 (5)0.0058 (5)
C90.0184 (6)0.0176 (6)0.0212 (7)0.0010 (5)0.0030 (5)0.0043 (5)
C80.0194 (6)0.0220 (7)0.0152 (6)0.0020 (5)0.0038 (5)0.0017 (5)
C70.0124 (6)0.0158 (6)0.0171 (6)0.0004 (5)0.0002 (5)0.0017 (5)
C60.0227 (7)0.0418 (9)0.0258 (8)0.0094 (7)0.0093 (6)0.0081 (7)
C50.0184 (7)0.0345 (9)0.0389 (9)0.0043 (6)0.0030 (6)0.0195 (7)
C40.0155 (6)0.0222 (7)0.0258 (7)0.0052 (5)0.0003 (5)0.0036 (6)
C100.0147 (6)0.0158 (6)0.0227 (7)0.0007 (5)0.0010 (5)0.0035 (5)
C110.0148 (6)0.0225 (7)0.0148 (6)0.0027 (5)0.0021 (5)0.0026 (5)
C120.0140 (6)0.0181 (6)0.0160 (6)0.0021 (5)0.0010 (5)0.0025 (5)
Geometric parameters (Å, º) top
S1—O31.4399 (9)C9—H90.9500
S1—O21.4419 (10)C8—C71.3920 (18)
S1—C31.7570 (13)C8—H80.9500
S1—C21.7862 (13)C7—C121.3922 (18)
F1—C101.3586 (15)C6—C41.519 (2)
C1—O11.2300 (16)C6—H6A0.9800
C1—N11.3535 (17)C6—H6B0.9800
C1—C21.5213 (17)C6—H6C0.9800
N1—C71.4411 (16)C5—C41.519 (2)
N1—C41.4876 (16)C5—H5A0.9800
C2—H2A0.9900C5—H5B0.9800
C2—H2AB0.9900C5—H5C0.9800
C3—H3A0.9800C4—H41.0000
C3—H3B0.9800C10—C111.3732 (19)
C3—H3C0.9800C11—C121.3892 (19)
C9—C101.378 (2)C11—H110.9500
C9—C81.3896 (19)C12—H120.9500
O3—S1—O2117.90 (6)C8—C7—C12120.32 (12)
O3—S1—C3108.18 (6)C8—C7—N1120.53 (12)
O2—S1—C3109.13 (7)C12—C7—N1119.13 (12)
O3—S1—C2106.87 (6)C4—C6—H6A109.5
O2—S1—C2108.27 (6)C4—C6—H6B109.5
C3—S1—C2105.84 (7)H6A—C6—H6B109.5
O1—C1—N1123.48 (12)C4—C6—H6C109.5
O1—C1—C2119.15 (12)H6A—C6—H6C109.5
N1—C1—C2117.29 (11)H6B—C6—H6C109.5
C1—N1—C7121.96 (11)C4—C5—H5A109.5
C1—N1—C4118.22 (11)C4—C5—H5B109.5
C7—N1—C4118.74 (11)H5A—C5—H5B109.5
C1—C2—S1110.27 (9)C4—C5—H5C109.5
C1—C2—H2A109.6H5A—C5—H5C109.5
S1—C2—H2A109.6H5B—C5—H5C109.5
C1—C2—H2AB109.6N1—C4—C6111.23 (12)
S1—C2—H2AB109.6N1—C4—C5111.03 (12)
H2A—C2—H2AB108.1C6—C4—C5111.49 (12)
S1—C3—H3A109.5N1—C4—H4107.6
S1—C3—H3B109.5C6—C4—H4107.6
H3A—C3—H3B109.5C5—C4—H4107.6
S1—C3—H3C109.5F1—C10—C11118.07 (12)
H3A—C3—H3C109.5F1—C10—C9118.66 (12)
H3B—C3—H3C109.5C11—C10—C9123.26 (12)
C10—C9—C8118.19 (12)C10—C11—C12118.32 (12)
C10—C9—H9120.9C10—C11—H11120.8
C8—C9—H9120.9C12—C11—H11120.8
C9—C8—C7119.96 (12)C11—C12—C7119.94 (12)
C9—C8—H8120.0C11—C12—H12120.0
C7—C8—H8120.0C7—C12—H12120.0
O1—C1—N1—C7168.59 (12)C1—N1—C7—C1278.93 (16)
C2—C1—N1—C714.68 (17)C4—N1—C7—C1288.93 (15)
O1—C1—N1—C40.67 (19)C1—N1—C4—C6139.85 (13)
C2—C1—N1—C4177.40 (11)C7—N1—C4—C651.84 (16)
O1—C1—C2—S169.97 (14)C1—N1—C4—C595.38 (15)
N1—C1—C2—S1106.91 (11)C7—N1—C4—C572.93 (16)
O3—S1—C2—C1170.32 (9)C8—C9—C10—F1178.38 (11)
O2—S1—C2—C142.36 (11)C8—C9—C10—C110.2 (2)
C3—S1—C2—C174.53 (10)F1—C10—C11—C12178.69 (11)
C10—C9—C8—C70.3 (2)C9—C10—C11—C120.1 (2)
C9—C8—C7—C120.03 (19)C10—C11—C12—C70.36 (19)
C9—C8—C7—N1178.39 (12)C8—C7—C12—C110.34 (19)
C1—N1—C7—C899.51 (15)N1—C7—C12—C11178.10 (11)
C4—N1—C7—C892.63 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.992.313.2025 (16)150
C3—H3B···O1ii0.982.553.5196 (17)170
C5—H5A···F1iii0.982.503.4295 (18)158
C11—H11···O1iv0.952.393.1851 (16)141
C12—H12···O2iv0.952.563.2955 (16)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x, y+1/2, z+1/2.
Weak hydrogen bonds and other short intermolecular contacts (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.992.313.2025 (16)150
C3—H3B···O1ii0.982.553.5196 (17)170
C5—H5A···F1iii0.982.503.4295 (18)158
C11—H11···O1iv0.952.393.1851 (16)141
C12—H12···O2iv0.952.563.2955 (16)134
O3···Cg(C7–C12)i3.0643 (11)
Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x, y - 1, z; (iv) x, -y + 1/2, z + 1/2.
 

Acknowledgements

DG is grateful to the DOS in Chemistry, University of Mysore for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

References

First citationAhmad, M., Siddiqui, H. L., Gardiner, J. M., Parvez, M. & Aslam, S. (2013). Med. Chem. Res. 22, 794–805.  CrossRef CAS Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J., Wang, N.-X. & Yang, G.-F. (2005). Acta Cryst. E61, o3628–o3629.  CrossRef IUCr Journals Google Scholar
First citationDutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3515–o3516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhosh, M., Basak, A. K., Mazumdar, S. K., Párkányi, L. & Kálmán, A. (1987). Acta Cryst. C43, 1552–1555.  CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGung, B. W., Zou, Y., Xu, Z., Amicangelo, J. C., Irwin, D. G., Ma, S. & Zhou, H. C. (2008). J. Org. Chem. 73, 689–693.  CrossRef PubMed CAS Google Scholar
First citationGüzel-Akdemir, O., Demir-Yazıcı, K., Trawally, M., Dingiş-Birgül, S. I. & Akdemir, A. (2020). Org. Commun. 13, 33–50.  Google Scholar
First citationHussein, E. M., Al-Rooqi, M. M., Abd El-Galil, S. M. & Ahmed, S. A. (2019). BMC Chem. 13, 91.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKreutter, K. D., Lee, L., Lu, T., Mohan, V., Patel, S., Huang, H., Xu, G. & Fitzgerald, M. (2009). US Patent 7.550,474 B2.  Google Scholar
First citationNayak, S. P., Narayana, B., Anthal, S., Gupta, V. K. & Kant, R. (2014). Mol. Cryst. Liq. Cryst. 592, 199–208.  CrossRef CAS Google Scholar
First citationNovikov, A. P., Bezdomnikov, A. A., Grigoriev, M. S. & German, K. E. (2022). Acta Cryst. E78, 80–83.  CrossRef IUCr Journals Google Scholar
First citationRouchaud, J., Neus, O., Eelen, H. & Bulcke, R. (2001). Bull. Environ. Contam. Toxicol. 67, 609–616.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, o2537–o2538.  CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerma, V., Yogi, B. & Gupta, S. K. (2020). Res. J. Pharm. Techn. 13, 5158–5164.  Google Scholar
First citationWang, H.-B., Yin, J. & Xing, Z.-T. (2007). Acta Cryst. E63, o3668.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Akbar, N., Arshad, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Sepehrianazar, A., Ali, M., Siddiqui, W. A. & Çaylak, N. (2009). Acta Cryst. E65, o941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZimmerman, L. R., Schneider, R. J. & Thurman, E. M. (2002). J. Agric. Food Chem. 50, 1045–1052.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds