research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal decomposition pathway of bis­­(iso­seleno­cyanato-κN)tetra­kis­(pyridine-κN)manganese(II)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 14 April 2023; accepted 18 April 2023; online 21 April 2023)

The reaction of MnCl2·2H2O with KSeCN and pyridine in water leads to the formation of the title complex, [Mn(NCSe)2(C5H5N)4], which is isotypic to its Fe, Co, Ni, Zn and Cd analogues. In its crystal structure, discrete complexes are observed that are located on centres of inversion. The Mn cations are octa­hedrally coordinated by four pyridine coligands and two seleno­cyanate anions that coordinate via the N atom to the metal centres to generate trans-MnN(s)2N(p)4 octa­hedra (s = seleno­cyanate and p = pyridine). In the extended structure, weak C—H⋯Se contacts are observed. Powder X-ray diffraction (PXRD) investigations prove that a pure sample was obtained and in the IR and Raman spectra, the C—N stretching vibrations are observed at 2058 and 2060 cm−1, respectively, in agreement with the terminal coordination of the seleno­cyanate anions. Thermogravimetric investigations reveal that the pyridine coligands are removed in two separate steps. In the first mass loss, a compound with the composition Mn(NCSe)2(C5H5N)2 is formed, whereas in the second mass loss, the remaining pyridine ligands are removed, which is superimposed with the decomposition of Mn(NCSe)2 formed after ligand removal. In the inter­mediate compound Mn(NCSe)2(C5H5N)2, the CN stretching vibration is observed at 2090 cm−1 in the Raman and at 2099 cm−1 in the IR spectra, indicating that the Mn cations are linked by μ-1,3-bridging anionic ligands. PXRD measurements show that a compound has formed that is of poor crystallinity. A comparison of the powder pattern with that calculated for the previously reported Cd(NCSe)2(C5H5N)2 indicates that these compounds are isotypic, which was proven by a Pawley fit.

1. Chemical context

Coordination compounds based on transition-metal thio- and seleno­cyanates can be divided into two major groups. In the first group, the anionic ligands are only terminally coordinated, which leads with monocoordinating ligands to discrete complexes that are of inter­est, for example, in the field of spin-crossover materials (Gütlich et al., 2000[Gütlich, P., Garcia, Y. & Goodwin, H. A. (2000). Chem. Soc. Rev. 29, 419-427.]; Senthil Kumar & Ruben, 2017[Senthil Kumar, K. & Ruben, M. (2017). Coord. Chem. Rev. 346, 176-205.]). In the second group, the anionic ligands act as bridging ligands, which is of structural inter­est, because a variety of structures with one-, two- or three-dimensional networks can form. Moreover, because these ligands can mediate magnetic exchange, they are also of inter­est in the field of mol­ecular magnetism (Shurdha et al., 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]). In this context, compounds based on CoII cations are of special inter­est because of the strong magnetic anisotropy (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]; Rams et al., 2020a[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2020a). Phys. Chem. Chem. Phys. 19, 24534-24544.],b[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020b). Chem. Eur. J. 26, 2837-2851.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]).

In the majority of cases, the synthesis of thio- and seleno­cyanate coordination compounds is performed in solution, that with less chalcophilic metal cations frequently leads to the formation of compounds with terminal anionic ligands. In contrast, the synthesis of compounds with a bridging coordination is more difficult to achieve, even if an excess of the metal salt is used in the synthesis. This behaviour is even more pronounced for seleno­cyanate compounds. In such cases, an alternative approach was developed, in which precursor complexes with terminal thio- or seleno­cyanate anions are thermally decomposed, leading to the removal of the coligands in separate steps (Wriedt & Näther, 2010[Wriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707-4709.]; Wöhlert et al., 2012[Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715-2718.]). In the course of this irreversible reaction, the desired compounds with bridging anionic ligands are obtained in qu­anti­tive yields. This approach is of special inter­est for the synthesis of seleno­cyanate coordination polymers because, on one hand, they are frequently difficult to prepare and, on the other hand, only a few such compounds with paramagnetic metal cations are reported in the literature. This method, how­ever, can always be successfully applied for the synthesis of thio­cyanates, whereas for seleno­cyanates sometimes the thermogravimetric (TG) curves are poorly resolved and in some cases poorly crystalline or even amorphous residues are obtained; the reason for this behavior is unknown (Wriedt & Näther, 2010[Wriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707-4709.]).

[Scheme 1]

This is the case, for example, for compounds with the composition M(NCSe)2(C5H5N)2, with M = Fe, Co or Ni (C5H5N is pyridine). The Fe and Co compounds are isotypic to their thio­cyanate analogs and consist of octa­hedrally coordinated metal cations that are linked by pairs of μ-1,3-bridging anionic ligands into chains (Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]; Boeckmann et al., 2012[Boeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.]). None of these compounds can be prepared from solution but the Fe compound is obtained as a pure crystalline material by thermal decomposition of its precursor, whereas the residue obtained for Co is amorphous. However, the Co compound can be prepared in crystalline form by thermal annealing below the decomposition tem­per­ature obtained from TG measurements (Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]). The Ni compound is also available by thermogravimetry, even if it is of low crystallinity, but comparison of the experimental powder X-ray diffraction (PXRD) pattern obtained after the first mass loss shows that Ni(NCSe)2(C5H5N)2 is not isotypic to M(NCSe)2(C5H5N)2, with M = Fe, Co and Cd (Näther & Boeckmann, 2023[Näther, C. & Boeckmann, J. (2023). Acta Cryst. E79, 90-94.]). Its crystal structure is still unknown and in this context it is mentioned that the occurence of different modifications, including polymorphs or isomers, is frequently observed for such thio­cyanate coordination compounds (Werner et al., 2015[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.]). However, in this case, the question arose if the Mn compound is also available as a crystalline material and if it will adopt the structure type of its Fe, Co and Cd analogs or that of Ni(NCSe)2(C5H5N)2.

To answer this question, much effort was made to synthesize the desired compound Mn(NCSe)2(C5H5N)2 in solution, but the pyridine-rich title compound Mn(NCSe)2(C5H5N)4 was always obtained. Single-crystal X-ray diffraction proved that it is isotypic to its Cd, Zn, Fe, Co and Ni analogs (Boeckmann et al., 2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.], 2012[Boeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.]; Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]; Näther & Boeckmann, 2023[Näther, C. & Boeckmann, J. (2023). Acta Cryst. E79, 90-94.]) and comparison of the experimental PXRD pattern with that calculated from the single-crystal data proves that a pure phase was obtained (Fig. 1[link]). Therefore, this compound was used as a precursor for TG investigations to check if the pyridine-deficient compound Mn(NCSe)2(C5H5N)2 can be prepared and if this compound is isotypic to its Cd, Fe and Co analogs (see Section 4[link], Thermoanalytical investigations).

[Figure 1]
Figure 1
Experimental (top) and calculated PXRD patterns (bottom) of the title compound.

2. Structural commentary

The single-crystal structure determination proves that the title compound, Mn(NCSe)2(C5H5N)4, consists of discrete com­plexes. The asymmetric unit consists of one crystallo­graphi­cally independent Mn2+ cation that is located on a centre of inversion, as well as one seleno­cyanate anion and two pyridine ligands in general positions. The Mn2+ cation is octa­hedrally coordinated by four pyridine coligands and two terminally N-bonded thio­cyanate anions that are in trans positions (Fig. 2[link]); the Mn—N bonds to the anions are notably shorter than the bonds to the pyridine mol­ecules (Table 1[link]) and the bond lengths are similar to those in the corresponding Fe and Co compounds. The cis-N—Mn—N angles deviate from the ideal octa­hedral values by up to 2°, which shows that the octa­hedra are slightly distorted.

Table 1
Selected geometric parameters (Å, °)

Mn1—N1 2.196 (3) Mn1—N21 2.317 (3)
Mn1—N11 2.307 (3)    
       
N1—Mn1—N11i 90.59 (10) N11—Mn1—N21 92.03 (9)
N1—Mn1—N11 89.41 (10) N11—Mn1—N21i 87.97 (9)
N1i—Mn1—N21 90.02 (10) N1—C1—Se1 179.1 (3)
N1—Mn1—N21 89.98 (10) C1—N1—Mn1 151.4 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
The crystal structure of the title compound, showing the atom labelling and with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1.]

It is noted that the title compound is isotypic to its Fe, Co, Zn and Cd analogues, with seleno­cyanate ligands, already described in the literature (Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]; Boeckmann et al., 2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.], 2012[Boeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.]). Moreover, the title compound is also isotypic to its thio­cyanate analogs with Cu (Gary et al., 2004[Gary, J. B., Kautz, J. A., Klausmeyer, K. K. & Wong, C.-W. (2004). Acta Cryst. E60, m328-m329.]; Li & Zhang, 2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1597-m1598.]), Cd (Qu et al., 2004[Qu, Y., Liu, Z.-D., Zhu, H.-L. & Tan, M.-Y. (2004). Acta Cryst. E60, m1013-m1014.]), Ni (Valach et al., 1984[Valach, F., Sivý, P. & Koreň, B. (1984). Acta Cryst. C40, 957-959.]; Wang et al., 2006[Wang, C. F., Zhu, Z. Y., Zhou, X. G., Weng, L. H., Shen, Q. S. & Yan, Y. G. (2006). Inorg. Chem. Commun. 9, 1326-1330.]; Małecki et al., 2010[Małecki, J. G., Świtlicka, A., Groń, T. & Bałanda, M. (2010). Polyhedron, 29, 3198-3206.]), Fe (Søtofte & Rasmussen, 1967[Søtofte, I. & Rasmussen, S. E. (1967). Acta Chem. Scand. 21, 2028-2040.]; Huang & Ogawa, 2006[Huang, W. & Ogawa, T. (2006). J. Mol. Struct. 785, 21-26.]), Mn (Yang et al., 2007[Yang, H., Chen, Y., Li, D. & Wang, D. (2007). Acta Cryst. E63, m3186.]; Małecki et al., 2011[Małecki, J. G., Machura, B., Świtlicka, A., Groń, T. & Bałanda, M. (2011). Polyhedron, 30, 746-753.]), Co (Hartl & Brüdgam, 1980[Hartl, H. & Brüdgam, I. (1980). Acta Cryst. B36, 162-165.]; Li et al., 2007[Li, Y., Zhang, Z. X., Li, Q. S., Song, W. D., Li, K. C., Xu, J. Q., Miao, Y. L. & Pan, L. Y. (2007). J. Coord. Chem. 60, 795-803.]; Deng et al., 2020[Deng, Y. F., Singh, M. K., Gan, D., Xiao, T., Wang, Y., Liu, S., Wang, Z., Ouyang, Z., Zhang, Y. Z. & Dunbar, K. R. (2020). Inorg. Chem. 59, 7622-7630.]), Mg (Lipkowski & Soldatov, 1993[Lipkowski, J. & Soldatov, D. (1993). J. Coord. Chem. 28, 265-269.]), Zn (Wu, 2004[Wu, C.-B. (2004). Acta Cryst. E60, m1490-m1491.]) and Co (Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]) (see Section 5[link], Database survey).

3. Supra­molecular features

In the crystal structure of the title compound, the complexes are arranged into columns that propagate along the crystallographic c-axis direction (Fig. 3[link]). As in the analogous compounds, there is no indication of aromatic ππ stacking inter­actions. Within the structure, the Co(NCSe)2 units form corrugated layers that lie parallel to the the ac plane (Fig. 3[link]). Two C—H⋯Se contacts are observed with C—H⋯Se angles above 150°, which might indicate weak hydrogen-bonding inter­actions (Table 2[link]). There are additional C—H⋯Se and C—H⋯N contacts, but from the distances and angles, it is concluded that they do not correspond to any significant inter­action.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Se1ii 0.95 3.10 3.992 (4) 156
C22—H22⋯Se1iii 0.95 3.11 3.986 (4) 155
C25—H25⋯Se1iv 0.95 3.04 3.757 (3) 133
C25—H25⋯N1i 0.95 2.65 3.247 (4) 121
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 3]
Figure 3
The crystal structure of the title compound, viewed along the crystallographic c-axis direction. C—H⋯Se inter­actions are shown as red dashed lines.

4. Thermoanalytical investigations

To investigate the thermal properties of the title compound, measurements using simultaneous differential thermoanalysis and thermogravimetry coupled to mass spectrometry (DTA–TG–MS) were performed. Upon heating, three mass losses are observed that are accompanied by endothermic events in the DTA curve (Fig. 4[link]). The derivative thermogravimetric (DTG) curve shows that these events are reasonably resolved and from the MS trend scan curve it is obvious that in the first endothermic event, pyridine is removed. The experimental mass loss of 27.0% is in good agreement with that calculated for the removal of two pyridine ligands (Δmcalc = −27.2%), whereas that in the second step is higher with a value of 40.5%, indicating that pyridine removal and the decomposition of Mn(NCSe)2 occur simultaneously. The fact that even in the third step pyridine might be removed indicates that the reaction is more complex, except that the signal at m/z = 79 corresponds to some fragment formed during decomposition.

[Figure 4]
Figure 4
DTG, TG and DTA curves, and the MS trend scan curve for the title compound measured at 4 °C min−1 in helium. The experimental mass loss is given in % and the peak temperatures are given in °C.

However, to identify the product formed in the first mass loss this residue was isolated in a second TG measurement and investigated by IR and Raman spectroscopy, as well as PXRD. The CN stretching vibration of the seleno­cyanate anions is observed at 2099 cm−1 in the Raman and at 2090 cm−1 in the IR spectra, clearly proving that μ-1,3-bridging anionic ligands are present (Fig. S2 in the supporting information). The comparison of the experimental pattern with that calculated for Cd(NCSe)2(C5H5N)2, using single-crystal data retrieved from the literature, indicate that they are isotypic (Fig. S3). The pattern can easily be indexed, leading to a unit cell that is comparable to that of the Cd, Fe and Co compounds. Finally, a Pawley fit of the experimental pattern using the crystallographic data of the cadmium compound (with Mn replacing Cd) as starting model was performed, which supports all these findings. The refined lattice parameters are shown together with the difference plot in Fig. 5[link]. As expected, due to the smaller ionic radii, the unit-cell volume is smaller for the Mn compound compared to its Cd anologue [1117.9 (1) versus 1145.6 (3) Å3] (Boeckmann et al., 2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.]).

[Figure 5]
Figure 5
Pawley fit of Mn(NCSe)2(pyridine)2 obtained by TG measurements of the title compound Mn(NCSe)2(pyridine)4.

5. Database survey

A search in the Cambridge Structural Database (Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) reveals that some seleno­cyanate compounds with pyridine coligands have been reported in the literature. These comprise discrete complexes with an octa­hedral coordination with the composition M(NCSe)2(C5H5N)4, with M = Fe (CSD refcode CAQVEX; Boeckmann et al., 2012[Boeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.]), Co (ITISOU; Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]), Zn (OWOHUE; Boeckmann et al., 2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.]) and Cd (OWOJAM; Boeckmann et al., 2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.]). The isotypic Ni compound M(NCSe)2(pyridine)4 was reported recently (Näther & Boeckmann, 2023[Näther, C. & Boeckmann, J. (2023). Acta Cryst. E79, 90-94.]). For the Co compound, mixed crystals with the composition Co(NCS)x(NCSe)2–x(C5H5N)4 have also been reported (TIXDOW and TIXDOW01; Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]).

As mentioned in the Chemical context section (Section 1[link]) with pyridine, there also exist isotypic pyridine-deficient com­pounds with the composition M(NCSe)2(C5H5N)2, with M = Fe (CAQVIB; Boeckmann et al., 2012[Boeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.]), Co (ITISUA; Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]), Zn (OWOJEQ; Boeckmann et al., 2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.]) and Cd (OWOHOY; Boeckmann et al., 2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.]). In the first compounds, M(NCSe)2 chains are observed, whereas the Zn compound consists of discrete complexes.

One mixed-metal compound with the composition HgSr(NCSe)4(C5H5N)6 (CICLOP; Brodersen et al., 1984[Brodersen, K., Cygan, M. & Hummel, H. U. (1984). Z. Naturforsch. B, 39, 2582-2585.]), a dinuclear complex with the composition [Fe(NCS)2]2(C5H5N)2[(3,5-bis­(pyridin-2-yl)pyrazol­yl]2 (FIZYEU; Sy et al., 2014[Sy, M., Varret, F., Boukheddaden, K., Bouchez, G., Marrot, S., Kawata, S. & Kaizaki, S. (2014). Angew. Chem. Int. Ed. 53, 7539-7542.]) and a complex with the composition Fe(NCSe)2(C5H5N)2(2-methyl­dipyrido[3,2-f:2′,3′-h]quinoxaline) pyridine solvate (TISWOI; Tao et al., 2007[Tao, J. Q., Gu, Z. G., Wang, T. W., Yang, Q. F., Zuo, J. L. & You, X. Z. (2007). Inorg. Chim. Acta, 360, 4125-4132.]) are also reported in the literature.

6. Synthesis and crystallization

MnCl2·2H2O, KNCSe and pyridine were purchased from Alfa Aesar and used without any further purification.

6.1. Synthesis

0.25 mmol (49.7 mg) MnCl2·2H2O and 0.5 mmol (72.0 mg) KNCSe were reacted with a mixture of 1.5 ml of pyridine and 1.5 ml of water. The mixture was stirred for 2 d at room temperature and the precipitate was filtered off, washed with very small amounts of water and dried in air. Single crystals were obtained under the same conditions but without stirring.

It is noted that even if a large excess of MnCl2·2H2O and KNCSe was used in the synthesis, there are no hints for the formation of a pyridine-deficient compound with the composition Mn(NCSe)2(pyridine)2.

6.2. Experimental details

Single-crystal X-ray data were measured using an Image Plate Diffraction System (IPDS-2) from Stoe & Cie. Differential thermal analysis and thermogravimetric (DTA–TG–MS) measurements were performed in a dynamic helium atmosphere in Al2O3 crucibles using a Netzsch thermobalance with a skimmer coupling and a Balzer Quadrupol MS. The PXRD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) with Cu Kα1 radiation equipped with a linear position-sensitive MYTHEN 1K detector from Stoe & Cie. The IR data were measured using a Bruker Alpha-P ATR–IR spectrometer and the Raman spectra were measured with a Bruker Vertex 70 spectrometer.

7. Refinement

H atoms were positioned with idealized geometry (C—H = 0.95 Å) and refined with Uiso(H) = 1.2Ueq(C) using a riding model. Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Mn(NCSe)2(C5H5N)2]
Mr 581.30
Crystal system, space group Monoclinic, C2/c
Temperature (K) 170
a, b, c (Å) 12.5335 (9), 13.4331 (8), 15.1300 (12)
β (°) 108.608 (8)
V3) 2414.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.58
Crystal size (mm) 0.25 × 0.2 × 0.17
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical
Tmin, Tmax 0.332, 0.678
No. of measured, independent and observed [I > 2σ(I)] reflections 8352, 2636, 2124
Rint 0.056
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.088, 1.03
No. of reflections 2636
No. of parameters 142
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.59
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The Pawely fit for the diffraction pattern of Mn(NCSe)2(C5H5N)2 obtained by thermal decomposition was carried out using TOPAS Academic (Version 6.0; Coelho 2018[Coelho, A. A. (2018). J. Appl. Cryst. 51, 210-218.]). Initial lattice parameters were taken from Cd(NCSe)2(C5H5N)2: Rwp = 2.98%, Rexp  = 2.08% and GOF = 1.44.

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(isoselenocyanato-κN)tetrakis(pyridine-κN)manganese(II) top
Crystal data top
[Mn(NCSe)2(C5H5N)2]F(000) = 1148
Mr = 581.30Dx = 1.599 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.5335 (9) ÅCell parameters from 8352 reflections
b = 13.4331 (8) Åθ = 2.4–27.0°
c = 15.1300 (12) ŵ = 3.58 mm1
β = 108.608 (8)°T = 170 K
V = 2414.2 (3) Å3Block, colorless
Z = 40.25 × 0.2 × 0.17 mm
Data collection top
Stoe IPDS-2
diffractometer
2124 reflections with I > 2σ(I)
ω scansRint = 0.056
Absorption correction: numericalθmax = 27.0°, θmin = 2.4°
Tmin = 0.332, Tmax = 0.678h = 1616
8352 measured reflectionsk = 1716
2636 independent reflectionsl = 1819
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0376P)2 + 6.3344P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2636 reflectionsΔρmax = 0.56 e Å3
142 parametersΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.7500000.7500000.5000000.01953 (15)
N110.6262 (2)0.6231 (2)0.43418 (18)0.0238 (6)
C110.6575 (3)0.5279 (3)0.4461 (2)0.0318 (8)
H110.7340430.5132510.4790580.038*
C120.5845 (3)0.4496 (3)0.4129 (3)0.0406 (9)
H120.6100810.3827970.4237200.049*
C130.4740 (3)0.4701 (3)0.3639 (3)0.0454 (10)
H130.4218230.4176440.3401790.054*
C140.4403 (3)0.5677 (3)0.3500 (3)0.0480 (11)
H140.3645970.5838920.3158790.058*
C150.5183 (3)0.6422 (3)0.3864 (3)0.0347 (8)
H150.4943300.7096020.3769950.042*
N210.7901 (2)0.6823 (2)0.64791 (18)0.0222 (5)
C210.7567 (3)0.7256 (3)0.7149 (2)0.0284 (7)
H210.7178150.7872590.7014890.034*
C220.7765 (3)0.6842 (3)0.8025 (2)0.0356 (8)
H220.7522230.7175710.8480600.043*
C230.8319 (3)0.5938 (3)0.8230 (2)0.0322 (8)
H230.8465550.5640510.8826620.039*
C240.8654 (3)0.5481 (3)0.7544 (2)0.0303 (7)
H240.9024870.4854100.7655820.036*
C250.8441 (3)0.5951 (3)0.6690 (2)0.0268 (7)
H250.8692030.5637320.6228870.032*
Se10.41161 (3)0.84748 (3)0.58422 (3)0.03339 (12)
C10.5323 (3)0.8406 (2)0.5460 (2)0.0220 (6)
N10.6105 (2)0.8349 (2)0.5213 (2)0.0291 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0146 (3)0.0198 (3)0.0244 (3)0.0001 (2)0.0065 (2)0.0004 (3)
N110.0202 (12)0.0227 (14)0.0273 (14)0.0022 (10)0.0058 (10)0.0023 (11)
C110.0340 (18)0.0243 (18)0.0366 (19)0.0002 (14)0.0106 (15)0.0059 (14)
C120.054 (2)0.0227 (18)0.048 (2)0.0072 (18)0.0202 (18)0.0072 (17)
C130.042 (2)0.042 (2)0.054 (2)0.0259 (19)0.0172 (18)0.0170 (19)
C140.0282 (18)0.047 (3)0.059 (3)0.0131 (18)0.0003 (18)0.008 (2)
C150.0248 (16)0.0302 (19)0.043 (2)0.0020 (15)0.0023 (15)0.0006 (16)
N210.0169 (12)0.0243 (14)0.0243 (13)0.0015 (10)0.0050 (10)0.0021 (10)
C210.0251 (15)0.0305 (18)0.0289 (17)0.0007 (13)0.0077 (13)0.0075 (13)
C220.0363 (19)0.047 (2)0.0261 (17)0.0025 (17)0.0132 (14)0.0077 (15)
C230.0258 (16)0.045 (2)0.0255 (17)0.0024 (15)0.0076 (13)0.0036 (15)
C240.0242 (15)0.0310 (18)0.0338 (17)0.0053 (14)0.0066 (13)0.0075 (15)
C250.0263 (16)0.0279 (18)0.0257 (16)0.0040 (13)0.0077 (13)0.0007 (12)
Se10.0337 (2)0.0309 (2)0.0452 (2)0.00150 (15)0.02617 (16)0.00001 (16)
C10.0236 (14)0.0158 (14)0.0221 (15)0.0007 (12)0.0010 (12)0.0007 (12)
N10.0211 (13)0.0334 (16)0.0351 (15)0.0070 (12)0.0120 (11)0.0015 (12)
Geometric parameters (Å, º) top
Mn1—N1i2.196 (3)C14—H140.9500
Mn1—N12.196 (3)C15—H150.9500
Mn1—N11i2.307 (3)N21—C251.340 (4)
Mn1—N112.307 (3)N21—C211.346 (4)
Mn1—N212.317 (3)C21—C221.384 (5)
Mn1—N21i2.317 (3)C21—H210.9500
N11—C111.332 (4)C22—C231.384 (5)
N11—C151.339 (4)C22—H220.9500
C11—C121.379 (5)C23—C241.383 (5)
C11—H110.9500C23—H230.9500
C12—C131.374 (6)C24—C251.385 (5)
C12—H120.9500C24—H240.9500
C13—C141.373 (6)C25—H250.9500
C13—H130.9500Se1—C11.786 (3)
C14—C151.384 (5)C1—N11.157 (4)
N1i—Mn1—N1180.00 (15)C13—C14—C15119.1 (4)
N1i—Mn1—N11i89.41 (10)C13—C14—H14120.4
N1—Mn1—N11i90.59 (10)C15—C14—H14120.4
N1i—Mn1—N1190.59 (10)N11—C15—C14122.6 (4)
N1—Mn1—N1189.41 (10)N11—C15—H15118.7
N11i—Mn1—N11180.0C14—C15—H15118.7
N1i—Mn1—N2190.02 (10)C25—N21—C21117.0 (3)
N1—Mn1—N2189.98 (10)C25—N21—Mn1120.7 (2)
N11i—Mn1—N2187.97 (9)C21—N21—Mn1122.3 (2)
N11—Mn1—N2192.03 (9)N21—C21—C22122.9 (3)
N1i—Mn1—N21i89.98 (10)N21—C21—H21118.5
N1—Mn1—N21i90.02 (10)C22—C21—H21118.5
N11i—Mn1—N21i92.03 (9)C21—C22—C23119.4 (3)
N11—Mn1—N21i87.97 (9)C21—C22—H22120.3
N21—Mn1—N21i180.0C23—C22—H22120.3
C11—N11—C15117.4 (3)C24—C23—C22118.2 (3)
C11—N11—Mn1121.5 (2)C24—C23—H23120.9
C15—N11—Mn1121.0 (2)C22—C23—H23120.9
N11—C11—C12123.3 (3)C23—C24—C25118.9 (3)
N11—C11—H11118.3C23—C24—H24120.5
C12—C11—H11118.3C25—C24—H24120.5
C13—C12—C11118.8 (4)N21—C25—C24123.6 (3)
C13—C12—H12120.6N21—C25—H25118.2
C11—C12—H12120.6C24—C25—H25118.2
C14—C13—C12118.7 (3)N1—C1—Se1179.1 (3)
C14—C13—H13120.6C1—N1—Mn1151.4 (3)
C12—C13—H13120.6
Symmetry code: (i) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Se1ii0.953.103.992 (4)156
C22—H22···Se1iii0.953.113.986 (4)155
C25—H25···Se1iv0.953.043.757 (3)133
C25—H25···N1i0.952.653.247 (4)121
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+3/2; (iv) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported by the state of Schleswig-Holstein.

References

First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940–946.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284–5289.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrodersen, K., Cygan, M. & Hummel, H. U. (1984). Z. Naturforsch. B, 39, 2582–2585.  CrossRef Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoelho, A. A. (2018). J. Appl. Cryst. 51, 210–218.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDeng, Y. F., Singh, M. K., Gan, D., Xiao, T., Wang, Y., Liu, S., Wang, Z., Ouyang, Z., Zhang, Y. Z. & Dunbar, K. R. (2020). Inorg. Chem. 59, 7622–7630.  CSD CrossRef CAS PubMed Google Scholar
First citationGary, J. B., Kautz, J. A., Klausmeyer, K. K. & Wong, C.-W. (2004). Acta Cryst. E60, m328–m329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGütlich, P., Garcia, Y. & Goodwin, H. A. (2000). Chem. Soc. Rev. 29, 419–427.  Web of Science CrossRef CAS Google Scholar
First citationHartl, H. & Brüdgam, I. (1980). Acta Cryst. B36, 162–165.  CSD CrossRef IUCr Journals Google Scholar
First citationHuang, W. & Ogawa, T. (2006). J. Mol. Struct. 785, 21–26.  CSD CrossRef CAS Google Scholar
First citationLi, Y., Zhang, Z. X., Li, Q. S., Song, W. D., Li, K. C., Xu, J. Q., Miao, Y. L. & Pan, L. Y. (2007). J. Coord. Chem. 60, 795–803.  CSD CrossRef CAS Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1597–m1598.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLipkowski, J. & Soldatov, D. (1993). J. Coord. Chem. 28, 265–269.  CSD CrossRef CAS Google Scholar
First citationMałecki, J. G., Machura, B., Świtlicka, A., Groń, T. & Bałanda, M. (2011). Polyhedron, 30, 746–753.  Google Scholar
First citationMałecki, J. G., Świtlicka, A., Groń, T. & Bałanda, M. (2010). Polyhedron, 29, 3198–3206.  Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNäther, C. & Boeckmann, J. (2023). Acta Cryst. E79, 90–94.  CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationQu, Y., Liu, Z.-D., Zhu, H.-L. & Tan, M.-Y. (2004). Acta Cryst. E60, m1013–m1014.  CSD CrossRef IUCr Journals Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2020a). Phys. Chem. Chem. Phys. 19, 24534–24544.  CrossRef Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020b). Chem. Eur. J. 26, 2837–2851.  CSD CrossRef CAS PubMed Google Scholar
First citationSenthil Kumar, K. & Ruben, M. (2017). Coord. Chem. Rev. 346, 176–205.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583–10594.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSøtofte, I. & Rasmussen, S. E. (1967). Acta Chem. Scand. 21, 2028–2040.  Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSy, M., Varret, F., Boukheddaden, K., Bouchez, G., Marrot, S., Kawata, S. & Kaizaki, S. (2014). Angew. Chem. Int. Ed. 53, 7539–7542.  Web of Science CSD CrossRef CAS Google Scholar
First citationTao, J. Q., Gu, Z. G., Wang, T. W., Yang, Q. F., Zuo, J. L. & You, X. Z. (2007). Inorg. Chim. Acta, 360, 4125–4132.  Web of Science CSD CrossRef CAS Google Scholar
First citationValach, F., Sivý, P. & Koreň, B. (1984). Acta Cryst. C40, 957–959.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, C. F., Zhu, Z. Y., Zhou, X. G., Weng, L. H., Shen, Q. S. & Yan, Y. G. (2006). Inorg. Chem. Commun. 9, 1326–1330.  CSD CrossRef CAS Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718.  Google Scholar
First citationWriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707–4709.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, C.-B. (2004). Acta Cryst. E60, m1490–m1491.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, H., Chen, Y., Li, D. & Wang, D. (2007). Acta Cryst. E63, m3186.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds