research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a new copper(II) complex based on 5-ethyl-3-(pyridin-2-yl)-1,2,4-triazole

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bEnamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine, and c"PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., GhicaVoda 41A, 700487 Iasi, Romania
*Correspondence e-mail: p.yuliiapetrenko@gmail.com

Edited by J. Reibenspies, Texas A & M University, USA (Received 17 February 2023; accepted 3 April 2023; online 14 April 2023)

The title compound, bis­[μ-3-ethyl-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ido]bis[acetato­(di­methyl­formamide)­copper(II)], [Cu2(C9H9N4)2(C2H3O2)2(C3H7NO)2] or [Cu2(LEt)2(OAc)2(dmf)2], is a triazolate complex, which contains two 3-(2-pyrid­yl)-5-ethyl-triazolates (LEt) in bidentate-bridged coordination modes. Both copper atoms are involved in the formation of a planar six-membered metallocycle Cu–[N—N]2–Cu. The inversion center of the complex is located at the mid-point of the Cu⋯Cu vector. Each CuII atom has a distorted trigonal–bipyramidal environment formed by the three nitro­gen atoms of the deprotonated bridging 3-(2-pyrid­yl)-5-ethyl-triazolate unit, oxygen atoms of the OAc group and dmf mol­ecule. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into chains running along the c-axis direction.

1. Chemical context

The design and construction of coordination complexes based on dinuclear copper(II) compounds have been the subject of intensive study over the past decades (Li et al., 2018[Li, Y., Chen, Y., Liu, Y., Jia, L. & Chen, Y. (2018). Transit. Met. Chem. 43, 731-737.]; Cui et al., 2019[Cui, Y., Wu, L., Yue, W., Lian, F. & Qu, J. (2019). J. Mol. Struct. 1191, 145-151.]; Doroschuk, 2016[Doroschuk, R. (2016). Acta Cryst. E72, 486-488.]). N-containing ligands with polypyridyl (Lee et al., 2017[Lee, L. C. C., Leung, K. K. & Lo, K. K. (2017). Dalton Trans. 46, 16357-16380.]), triazolyl (Kucheriv et al., 2016[Kucheriv, O. I., Oliynyk, V. V., Zagorodnii, V. V., Launets, V. L. & Gural'skiy, I. A. (2016). Sci. Rep. 6, 1-7.]) and pyridyl moieties (Bartual-Murgui et al., 2020[Bartual-Murgui, C., Rubio-Giménez, V., Meneses-Sánchez, M., Valverde-Muñoz, F. J., Tatay, S., Martí-Gastaldo, C., Muñoz, M. C. & Real, J. A. (2020). Appl. Mater. Interfaces, 12, 29461-29472.]) have been widely used for this purpose. Much inter­est has been focused on functional materials with the presence of a triazole ring, which demonstrate inter­esting properties such as catalytic ability (Petrenko et al., 2021[Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442-23449.]), anti­cancer activity (Muhammad & Guo, 2014[Muhammad, N. & Guo, Z. (2014). Curr. Opin. Chem. Biol. 19, 144-153.]) and magnetism (Kuzevanova et al., 2021[Kuzevanova, I. S., Kucheriv, O. I., Hiiuk, V. M., Naumova, D. D., Shova, S., Shylin, S. I., Kotsyubynsky, V. O., Rotaru, A., Fritsky, I. O. & Gural'skiy, I. A. (2021). Dalton Trans. 50, 9250-9258.]). Although a variety of triazolate frameworks with intriguing topologies (Govor et al., 2010[Govor, E. V., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Krautscheid, H. & Domasevitch, K. V. (2010). Z. Anorg. Allg. Chem. 636, 209-217.]; Senchyk et al., 2012[Senchyk, G. A., Lysenko, A. B., Boldog, I., Rusanov, E. B., Chernega, A. N., Krautscheid, H. & Domasevitch, K. V. (2012). Dalton Trans. 41, 8675-8689.]; Lysenko et al., 2016[Lysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S. X. (2016). Inorg. Chem. 55, 239-250.]) have been synthesized to date, making rational control in the construction of coordination compounds is a great challenge in crystal engineering. Derivatives of 3-(2-pyrid­yl)-1,2,4-triazole are among the most widely used ligands that form stable CuII coordination compounds. There are about 127 examples in the Cambridge Structural Database that exhibit this type of ligand, 37 of which complexes include the binuclear unit [Cu2(trz-py)2] with a Cu–[N—N]2–Cu bridge. Among the reported binuclear compounds, there are few reports of 3-(2-pyrid­yl)-1,2,4-triazole compounds obtained with copper(II) acetate (Petrenko et al., 2021[Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442-23449.]; Li et al., 2010[Li, W., Zhang, J., Li, C. & Yang, Y. (2010). Z. Kristallogr. 225, 181-182.]). In all cases, the equatorial coordination consists of metallocentres linked by two deprotonated triazole ligands, where additional ligands (acetate anions or solvent) axially coordinate the copper atom.

[Scheme 1]

2. Structural commentary

The results of the X-ray diffraction study are depicted in Fig. 1[link]. The crystal is built from discrete dinuclear units [Cu2(LEt)2(OAc)2(dmf)2], where the Cu⋯Cu1′ separation is of 4.0159 (8) Å. There are no co-crystallized solvent mol­ecules in the crystals. The complex mol­ecule has its own crystallographically imposed symmetry, being assembled around the inversion centers located at the mid-point of the Cu1⋯Cu1′ distances. Each copper(II) atom exhibits an N3O2 coordination environment in a slightly distorted trigonal–bipyramidal geometry provided by three nitro­gen atoms of the organic ligands and two oxygen atoms from the dmf mol­ecule and the monodentate acetate anion.

[Figure 1]
Figure 1
X-ray mol­ecular structure with atom labelling for [Cu2(LEt)2(OAc)2(dmf)2].

The inner (Cu1/N2/N3–Cu1′/N2′/N3′) core has an almost planar conformation in [Cu2(LEt)2(OAc)2(dmf)2], although for the previously described complex [Cu2(LMe)2(OAc)2(H2O)2] [HLMe = 5-methyl-3-(2-pyrid­yl)-1,2,4-triazole], a twist–boat conformation was observed (Petrenko et al., 2021[Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442-23449.]) for the non-planar six-membered Cu2N4 metal ring. The structures were compared (Fig. 2[link]) using OLEX2 software (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). It was found that in [Cu2(LMe)2(OAc)2(H2O)2], the water mol­ecules are axially coordinated by the central atom from one side of the Cu2N4 plane, and the acetates from the other. Thus, the non-coordinated oxygen of the acetate anion is involved in an inter­molecular hydrogen bond with the coordinated water mol­ecule of an adjacent complex, giving rise to an essentially different crystal motif than was observed for [Cu2(LEt)2(OAc)2(dmf)2]. In the newly reported compound [Cu2(LEt)2(OAc)2(dmf)2], the copper atoms coordinate the dmf mol­ecules and acetate anions in the axial positions in such a manner that they reflect in the symmetry center, which is typical for such a kind of binuclear species. Notably, both [Cu2(LMe)2(OAc)2(H2O)2] and [Cu2(LEt)2(OAc)2(dmf)2] were synthesized using the same conditions. These features can be probably induced by different substituents in the 5-position of the 3-(2-pyrid­yl)-1,2,4-triazole ring in these two compounds, indicating that even negligible changes of the non-coordinating part of the ligand could significantly influence the structure of the complex. The non-typical mol­ecular structure of [Cu2(LMe)2(OAc)2(H2O)2] is supported by the formation of inter­molecular hydrogen bonds. In the case of [Cu2(LEt)2(OAc)2(dmf)2], branching of the non-coordinated part leads to the formation of a less-hindered structure of higher symmetry, similar to those of the previously described 37 compounds, indicating a small difference in the energies of these two topologies, which is probably the result of the formation of additional inter­molecular contacts.

[Figure 2]
Figure 2
Overlay diagram of the mol­ecular structures [Cu2(LMe)2(OAc)2(H2O)2] (green) and [Cu2(LEt)2(OAc)2(dmf)2] (yellow), showing the difference in the spatial arrangement of the ligands.

3. Supra­molecular features

Further analysis of the structure showed that the crystal structure motif is characterized as a parallel packing of discrete supra­molecular chains running along the b-axis direction (Fig. 3[link]). Within a chain, the complex mol­ecules inter­act through weak C—H⋯O hydrogen bonds, where the pyridine H atom acts as acceptor, and the acetate O atom as donor (Table 1[link], Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.59 3.513 (4) 170
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 3]
Figure 3
One-dimensional coordination network viewed along the b-axis.
[Figure 4]
Figure 4
Partial view of the crystal packing showing hydrogen-bond contacts between adjacent mol­ecules.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, update of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) revealed 127 hits for the moiety containing the Cu2(trz-py)2 unit. In addition, the searches were also limited to structures with low R-factor values (R < 0.05). Most similar to the title compound are binuclear copper(II) complexes with two unsubstituted 3-(2-pyrid­yl)-1,2,4-triazole ligands, two anions and two water mol­ecules in the axial positions [DODRIX, DODRET (Prins et al., 1985[Prins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). Inorg. Chem. 24, 4128-4133.]); FIVGEY (Matthews et al., 2003[Matthews, C. J., Horton, P. N. & Hursthouse, M. B. (2003). University of Southampton, Crystal Structure Report Archive, 986.])] and with 3,5-bis­(2-pyrid­yl)-1,2,4-triazole ligands (JUDBIV; Du et al., 2017[Du, C.-C., Fan, J.-Z., Li, J.-P. & Wang, D. Z. (2017). Chin. J. Inorg. Chem. 33, 1352-1353.]). The compounds most closely related to the title complex are binuclear CuII complexes with unsubstituted 3-(2-pyrid­yl)-1,2,4-triazole ligands and a coordinated acetate anion [UQEQUD (Li et al., 2011[Li, Ch.-H., Tan, X.-W., Li, W. & Yang, Y.-Q. (2011). Chin. J. Struct. Chem. 30, 289.]); GUWZEE (Li et al., 2010[Li, W., Zhang, J., Li, C. & Yang, Y. (2010). Z. Kristallogr. 225, 181-182.]); CUSHUV (Li et al., 2015[Li, C. H., Li, W., Hu, H. X. & Hu, B. N. (2015). Chin. J. Struct. Chem. 34, 1553-1557.]) and JUDBOB (Du et al., 2017[Du, C.-C., Fan, J.-Z., Li, J.-P. & Wang, D. Z. (2017). Chin. J. Inorg. Chem. 33, 1352-1353.])].

5. Synthesis and crystallization

Ligand HLEt was prepared according to the synthesis described in the literature (Khomenko et al., 2016[Khomenko, D. M., Doroshchuk, R. O., Vashchenko, O. V. & Lampeka, R. D. (2016). Chem. Heterocycl. Compd, 52, 402-408.]; Zakharchenko et al., 2019[Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973-10984.]). Single crystals of [Cu2(LEt)2(OAc)2(dmf)2] were obtained in dmf. A solution of Cu(OAc)2·H2O (0.50 g, 10 ml, 2.5 mmol) was added to a solution of HLEt (0.48 g, 5 ml, 2.5 mmol). The resulting mixture was stirred with heating for 15 min, and then left in the air for crystallization. The green crystals obtained were filtered off, washed with dmf and dried in air. Yield 0.507 g (55%). Analysis calculated for C28H38Cu2N10O6 (%): C 45.58, H 5.19, N 18.99; found: C 45.57, H 5.17, N 18.96.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C9H9N4)2(C2H3O2)2(C3H7NO)2]
Mr 737.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.4445 (5), 8.9404 (4), 20.2237 (9)
β (°) 93.257 (4)
V3) 1704.88 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.30
Crystal size (mm) 0.3 × 0.2 × 0.15
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlia PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.876, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7405, 3007, 2382
Rint 0.034
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.085, 1.05
No. of reflections 3007
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlia PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.40.53 (Rigaku OD, 2019); cell refinement: CrysAlis PRO 1.171.40.53 (Rigaku OD, 2019); data reduction: CrysAlis PRO 1.171.40.53 (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Bis[µ-3-ethyl-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ido]bis[acetato(dimethylacetamide)copper(II)] top
Crystal data top
[Cu2(C9H9N4)2(C2H3O2)2(C3H7NO)2]F(000) = 764
Mr = 737.76Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4445 (5) ÅCell parameters from 2231 reflections
b = 8.9404 (4) Åθ = 2.0–25.3°
c = 20.2237 (9) ŵ = 1.30 mm1
β = 93.257 (4)°T = 293 K
V = 1704.88 (14) Å3Prism, clear dark blue
Z = 20.3 × 0.2 × 0.15 mm
Data collection top
Xcalibur, Eos
diffractometer
3007 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1593 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 810
Tmin = 0.876, Tmax = 1.000l = 1824
7405 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.6113P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3007 reflectionsΔρmax = 0.31 e Å3
212 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.48907 (4)0.60148 (4)0.58814 (2)0.03442 (13)
O10.4294 (2)0.5477 (2)0.67766 (10)0.0415 (5)
O20.2385 (3)0.4889 (3)0.61484 (12)0.0601 (7)
O30.7170 (2)0.6884 (3)0.60652 (12)0.0528 (6)
N10.5774 (3)0.1842 (3)0.39823 (12)0.0353 (6)
N20.5539 (2)0.3380 (3)0.50737 (11)0.0327 (6)
N30.5690 (2)0.4020 (2)0.56906 (11)0.0327 (6)
N40.6816 (3)0.1801 (3)0.57376 (12)0.0404 (6)
N50.9247 (3)0.7291 (3)0.55819 (14)0.0521 (7)
C10.5741 (3)0.1078 (4)0.34135 (16)0.0457 (8)
H10.5374810.1544250.3029820.055*
C20.6226 (4)0.0369 (4)0.33712 (17)0.0544 (9)
H20.6184260.0868130.2967110.065*
C30.6776 (4)0.1069 (4)0.39395 (19)0.0551 (10)
H30.7123830.2040280.3922200.066*
C40.6800 (3)0.0302 (3)0.45327 (17)0.0461 (8)
H40.7158790.0750950.4921850.055*
C50.6281 (3)0.1149 (3)0.45383 (15)0.0355 (7)
C60.6231 (3)0.2074 (3)0.51308 (14)0.0337 (7)
C70.6464 (3)0.3047 (3)0.60695 (15)0.0376 (7)
C80.6944 (4)0.3322 (4)0.67766 (16)0.0512 (9)
H8A0.6563630.2546260.7051000.061*
H8B0.6567170.4273340.6916530.061*
C90.8546 (4)0.3344 (5)0.6883 (2)0.0881 (14)
H9A0.8920060.4181770.6652220.132*
H9B0.8929830.2434090.6715290.132*
H9C0.8802050.3429770.7347180.132*
C100.7957 (3)0.6721 (3)0.56038 (17)0.0453 (8)
H100.7617560.6154160.5243310.054*
C111.0110 (4)0.7075 (4)0.5014 (2)0.0706 (12)
H11A1.0960940.6546240.5151130.106*
H11B1.0351530.8030300.4835430.106*
H11C0.9583950.6504920.4680590.106*
C120.9843 (5)0.8163 (6)0.6132 (2)0.0978 (16)
H12A0.9750520.9208580.6030180.147*
H12B1.0828300.7917480.6209080.147*
H12C0.9346940.7942170.6521510.147*
C130.3033 (4)0.4974 (3)0.66937 (16)0.0407 (8)
C140.2343 (4)0.4436 (4)0.73102 (18)0.0660 (11)
H14A0.2210060.3372030.7285920.099*
H14B0.1440520.4917200.7339990.099*
H14C0.2942550.4676710.7694700.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0376 (2)0.0393 (2)0.0265 (2)0.00146 (18)0.00264 (15)0.00220 (17)
O10.0415 (14)0.0516 (13)0.0316 (12)0.0047 (11)0.0043 (10)0.0001 (10)
O20.0539 (16)0.0787 (17)0.0469 (15)0.0069 (13)0.0063 (12)0.0004 (13)
O30.0386 (14)0.0636 (15)0.0570 (16)0.0071 (11)0.0085 (12)0.0052 (12)
N10.0375 (15)0.0373 (14)0.0314 (15)0.0007 (12)0.0051 (11)0.0003 (12)
N20.0348 (15)0.0356 (13)0.0276 (14)0.0014 (11)0.0016 (11)0.0052 (11)
N30.0357 (15)0.0376 (13)0.0247 (13)0.0019 (12)0.0009 (11)0.0038 (11)
N40.0430 (16)0.0435 (15)0.0345 (15)0.0071 (13)0.0000 (12)0.0061 (13)
N50.0349 (17)0.0643 (18)0.057 (2)0.0065 (14)0.0026 (14)0.0023 (15)
C10.051 (2)0.049 (2)0.0379 (19)0.0010 (16)0.0040 (16)0.0029 (16)
C20.071 (3)0.048 (2)0.045 (2)0.0043 (19)0.0099 (19)0.0101 (18)
C30.063 (3)0.0392 (18)0.064 (3)0.0001 (17)0.010 (2)0.0086 (18)
C40.048 (2)0.0411 (18)0.049 (2)0.0041 (16)0.0020 (16)0.0061 (16)
C50.0305 (17)0.0371 (17)0.0396 (18)0.0026 (14)0.0069 (13)0.0016 (14)
C60.0298 (17)0.0393 (17)0.0322 (17)0.0000 (14)0.0046 (13)0.0061 (14)
C70.0348 (18)0.0452 (18)0.0327 (18)0.0012 (15)0.0003 (14)0.0082 (15)
C80.059 (2)0.059 (2)0.0346 (19)0.0106 (18)0.0078 (16)0.0043 (17)
C90.072 (3)0.133 (4)0.056 (3)0.007 (3)0.025 (2)0.010 (3)
C100.037 (2)0.0445 (19)0.054 (2)0.0045 (16)0.0035 (16)0.0055 (17)
C110.050 (2)0.088 (3)0.076 (3)0.006 (2)0.016 (2)0.006 (2)
C120.065 (3)0.135 (4)0.094 (4)0.042 (3)0.009 (3)0.035 (3)
C130.046 (2)0.0380 (18)0.038 (2)0.0015 (16)0.0051 (16)0.0002 (14)
C140.064 (3)0.082 (3)0.054 (2)0.018 (2)0.023 (2)0.005 (2)
Geometric parameters (Å, º) top
Cu1—O11.985 (2)C3—C41.381 (4)
Cu1—O32.299 (2)C4—H40.9300
Cu1—N1i2.040 (2)C4—C51.387 (4)
Cu1—N2i2.025 (2)C5—C61.459 (4)
Cu1—N31.983 (2)C7—C81.496 (4)
O1—C131.276 (4)C8—H8A0.9700
O2—C131.233 (4)C8—H8B0.9700
O3—C101.234 (4)C8—C91.516 (5)
N1—C11.337 (4)C9—H9A0.9600
N1—C51.348 (4)C9—H9B0.9600
N2—N31.373 (3)C9—H9C0.9600
N2—C61.340 (3)C10—H100.9300
N3—C71.347 (3)C11—H11A0.9600
N4—C61.339 (3)C11—H11B0.9600
N4—C71.351 (4)C11—H11C0.9600
N5—C101.323 (4)C12—H12A0.9600
N5—C111.459 (4)C12—H12B0.9600
N5—C121.446 (5)C12—H12C0.9600
C1—H10.9300C13—C141.518 (4)
C1—C21.377 (4)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C2—C31.384 (5)C14—H14C0.9600
C3—H30.9300
O1—Cu1—O3104.24 (9)N4—C6—N2114.3 (3)
O1—Cu1—N1i89.93 (9)N4—C6—C5128.2 (3)
O1—Cu1—N2i151.98 (9)N3—C7—N4113.0 (3)
N1i—Cu1—O387.31 (9)N3—C7—C8124.2 (3)
N2i—Cu1—O3101.48 (9)N4—C7—C8122.7 (3)
N2i—Cu1—N1i80.29 (10)C7—C8—H8A109.1
N3—Cu1—O195.20 (9)C7—C8—H8B109.1
N3—Cu1—O388.40 (9)C7—C8—C9112.5 (3)
N3—Cu1—N1i173.99 (10)H8A—C8—H8B107.8
N3—Cu1—N2i96.46 (9)C9—C8—H8A109.1
C13—O1—Cu1106.07 (19)C9—C8—H8B109.1
C10—O3—Cu1115.9 (2)C8—C9—H9A109.5
C1—N1—Cu1i127.1 (2)C8—C9—H9B109.5
C1—N1—C5118.2 (3)C8—C9—H9C109.5
C5—N1—Cu1i114.60 (19)H9A—C9—H9B109.5
N3—N2—Cu1i139.50 (18)H9A—C9—H9C109.5
C6—N2—Cu1i112.67 (19)H9B—C9—H9C109.5
C6—N2—N3105.1 (2)O3—C10—N5125.1 (3)
N2—N3—Cu1122.07 (17)O3—C10—H10117.4
C7—N3—Cu1132.1 (2)N5—C10—H10117.4
C7—N3—N2105.8 (2)N5—C11—H11A109.5
C6—N4—C7101.8 (2)N5—C11—H11B109.5
C10—N5—C11122.1 (3)N5—C11—H11C109.5
C10—N5—C12120.1 (3)H11A—C11—H11B109.5
C12—N5—C11117.8 (3)H11A—C11—H11C109.5
N1—C1—H1118.6H11B—C11—H11C109.5
N1—C1—C2122.8 (3)N5—C12—H12A109.5
C2—C1—H1118.6N5—C12—H12B109.5
C1—C2—H2120.5N5—C12—H12C109.5
C1—C2—C3118.9 (3)H12A—C12—H12B109.5
C3—C2—H2120.5H12A—C12—H12C109.5
C2—C3—H3120.5H12B—C12—H12C109.5
C4—C3—C2119.0 (3)O1—C13—C14116.4 (3)
C4—C3—H3120.5O2—C13—O1123.5 (3)
C3—C4—H4120.6O2—C13—C14120.0 (3)
C3—C4—C5118.9 (3)C13—C14—H14A109.5
C5—C4—H4120.6C13—C14—H14B109.5
N1—C5—C4122.1 (3)C13—C14—H14C109.5
N1—C5—C6113.5 (2)H14A—C14—H14B109.5
C4—C5—C6124.4 (3)H14A—C14—H14C109.5
N2—C6—C5117.5 (3)H14B—C14—H14C109.5
Cu1—O1—C13—O20.5 (4)N3—C7—C8—C9118.2 (4)
Cu1—O1—C13—C14178.2 (2)N4—C7—C8—C959.2 (4)
Cu1—O3—C10—N5172.0 (2)C1—N1—C5—C41.8 (4)
Cu1i—N1—C1—C2179.5 (2)C1—N1—C5—C6178.5 (3)
Cu1i—N1—C5—C4178.8 (2)C1—C2—C3—C41.0 (5)
Cu1i—N1—C5—C60.9 (3)C2—C3—C4—C50.4 (5)
Cu1i—N2—N3—Cu120.3 (4)C3—C4—C5—N11.0 (5)
Cu1i—N2—N3—C7158.4 (2)C3—C4—C5—C6179.3 (3)
Cu1i—N2—C6—N4165.50 (19)C4—C5—C6—N2171.7 (3)
Cu1i—N2—C6—C513.5 (3)C4—C5—C6—N49.4 (5)
Cu1—N3—C7—N4179.03 (19)C5—N1—C1—C21.2 (5)
Cu1—N3—C7—C81.4 (5)C6—N2—N3—Cu1178.70 (18)
N1—C1—C2—C30.2 (5)C6—N2—N3—C70.1 (3)
N1—C5—C6—N28.5 (4)C6—N4—C7—N30.8 (3)
N1—C5—C6—N4170.3 (3)C6—N4—C7—C8176.8 (3)
N2—N3—C7—N40.6 (3)C7—N4—C6—N20.8 (3)
N2—N3—C7—C8177.1 (3)C7—N4—C6—C5178.1 (3)
N3—N2—C6—N40.5 (3)C11—N5—C10—O3178.9 (3)
N3—N2—C6—C5178.5 (2)C12—N5—C10—O31.0 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2ii0.932.593.513 (4)170
Symmetry code: (ii) x+1, y, z+1.
 

Funding information

This work was supported by grants 22BF037–06 obtained from the Ministry of Education and Science of Ukraine.

References

First citationBartual-Murgui, C., Rubio-Giménez, V., Meneses-Sánchez, M., Valverde-Muñoz, F. J., Tatay, S., Martí-Gastaldo, C., Muñoz, M. C. & Real, J. A. (2020). Appl. Mater. Interfaces, 12, 29461–29472.  CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCui, Y., Wu, L., Yue, W., Lian, F. & Qu, J. (2019). J. Mol. Struct. 1191, 145–151.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoroschuk, R. (2016). Acta Cryst. E72, 486–488.  CSD CrossRef IUCr Journals Google Scholar
First citationDu, C.-C., Fan, J.-Z., Li, J.-P. & Wang, D. Z. (2017). Chin. J. Inorg. Chem. 33, 1352–1353.  Google Scholar
First citationGovor, E. V., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Krautscheid, H. & Domasevitch, K. V. (2010). Z. Anorg. Allg. Chem. 636, 209–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhomenko, D. M., Doroshchuk, R. O., Vashchenko, O. V. & Lampeka, R. D. (2016). Chem. Heterocycl. Compd, 52, 402–408.  Web of Science CrossRef CAS Google Scholar
First citationKucheriv, O. I., Oliynyk, V. V., Zagorodnii, V. V., Launets, V. L. & Gural'skiy, I. A. (2016). Sci. Rep. 6, 1–7.  Web of Science CrossRef PubMed Google Scholar
First citationKuzevanova, I. S., Kucheriv, O. I., Hiiuk, V. M., Naumova, D. D., Shova, S., Shylin, S. I., Kotsyubynsky, V. O., Rotaru, A., Fritsky, I. O. & Gural'skiy, I. A. (2021). Dalton Trans. 50, 9250–9258.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, L. C. C., Leung, K. K. & Lo, K. K. (2017). Dalton Trans. 46, 16357–16380.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, C. H., Li, W., Hu, H. X. & Hu, B. N. (2015). Chin. J. Struct. Chem. 34, 1553–1557.  CAS Google Scholar
First citationLi, Ch.-H., Tan, X.-W., Li, W. & Yang, Y.-Q. (2011). Chin. J. Struct. Chem. 30, 289.  Google Scholar
First citationLi, W., Zhang, J., Li, C. & Yang, Y. (2010). Z. Kristallogr. 225, 181–182.  CAS Google Scholar
First citationLi, Y., Chen, Y., Liu, Y., Jia, L. & Chen, Y. (2018). Transit. Met. Chem. 43, 731–737.  Web of Science CSD CrossRef CAS Google Scholar
First citationLysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S. X. (2016). Inorg. Chem. 55, 239–250.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMatthews, C. J., Horton, P. N. & Hursthouse, M. B. (2003). University of Southampton, Crystal Structure Report Archive, 986.  Google Scholar
First citationMuhammad, N. & Guo, Z. (2014). Curr. Opin. Chem. Biol. 19, 144–153.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPetrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442–23449.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPrins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). Inorg. Chem. 24, 4128–4133.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2019). CrysAlia PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSenchyk, G. A., Lysenko, A. B., Boldog, I., Rusanov, E. B., Chernega, A. N., Krautscheid, H. & Domasevitch, K. V. (2012). Dalton Trans. 41, 8675–8689.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973–10984.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds