research communications
Synthesis and
of a new copper(II) complex based on 5-ethyl-3-(pyridin-2-yl)-1,2,4-triazoleaDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bEnamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine, and c"PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., GhicaVoda 41A, 700487 Iasi, Romania
*Correspondence e-mail: p.yuliiapetrenko@gmail.com
The title compound, bis[μ-3-ethyl-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ido]bis[acetato(dimethylformamide)copper(II)], [Cu2(C9H9N4)2(C2H3O2)2(C3H7NO)2] or [Cu2(LEt)2(OAc)2(dmf)2], is a triazolate complex, which contains two 3-(2-pyridyl)-5-ethyl-triazolates (LEt)− in bidentate-bridged coordination modes. Both copper atoms are involved in the formation of a planar six-membered metallocycle Cu–[N—N]2–Cu. The inversion center of the complex is located at the mid-point of the Cu⋯Cu vector. Each CuII atom has a distorted trigonal–bipyramidal environment formed by the three nitrogen atoms of the deprotonated bridging 3-(2-pyridyl)-5-ethyl-triazolate unit, oxygen atoms of the OAc− group and dmf molecule. In the crystal, C—H⋯O hydrogen bonds link the molecules into chains running along the c-axis direction.
Keywords: copper(II) complex; X-ray crystallography; acetate anion; 3-(2-pyridyl)-1,2,4-triazole; crystal packing.
CCDC reference: 2253664
1. Chemical context
The design and construction of coordination complexes based on dinuclear copper(II) compounds have been the subject of intensive study over the past decades (Li et al., 2018; Cui et al., 2019; Doroschuk, 2016). N-containing ligands with polypyridyl (Lee et al., 2017), triazolyl (Kucheriv et al., 2016) and pyridyl moieties (Bartual-Murgui et al., 2020) have been widely used for this purpose. Much interest has been focused on functional materials with the presence of a triazole ring, which demonstrate interesting properties such as catalytic ability (Petrenko et al., 2021), anticancer activity (Muhammad & Guo, 2014) and magnetism (Kuzevanova et al., 2021). Although a variety of triazolate frameworks with intriguing topologies (Govor et al., 2010; Senchyk et al., 2012; Lysenko et al., 2016) have been synthesized to date, making rational control in the construction of coordination compounds is a great challenge in crystal engineering. Derivatives of 3-(2-pyridyl)-1,2,4-triazole are among the most widely used ligands that form stable CuII coordination compounds. There are about 127 examples in the Cambridge Structural Database that exhibit this type of ligand, 37 of which complexes include the binuclear unit [Cu2(trz-py)2] with a Cu–[N—N]2–Cu bridge. Among the reported binuclear compounds, there are few reports of 3-(2-pyridyl)-1,2,4-triazole compounds obtained with copper(II) acetate (Petrenko et al., 2021; Li et al., 2010). In all cases, the equatorial coordination consists of metallocentres linked by two deprotonated triazole ligands, where additional ligands (acetate anions or solvent) axially coordinate the copper atom.
2. Structural commentary
The results of the X-ray diffraction study are depicted in Fig. 1. The crystal is built from discrete dinuclear units [Cu2(LEt)2(OAc)2(dmf)2], where the Cu⋯Cu1′ separation is of 4.0159 (8) Å. There are no co-crystallized solvent molecules in the crystals. The complex molecule has its own crystallographically imposed symmetry, being assembled around the inversion centers located at the mid-point of the Cu1⋯Cu1′ distances. Each copper(II) atom exhibits an N3O2 coordination environment in a slightly distorted trigonal–bipyramidal geometry provided by three nitrogen atoms of the organic ligands and two oxygen atoms from the dmf molecule and the monodentate acetate anion.
The inner (Cu1/N2/N3–Cu1′/N2′/N3′) core has an almost planar conformation in [Cu2(LEt)2(OAc)2(dmf)2], although for the previously described complex [Cu2(LMe)2(OAc)2(H2O)2] [HLMe = 5-methyl-3-(2-pyridyl)-1,2,4-triazole], a twist–boat conformation was observed (Petrenko et al., 2021) for the non-planar six-membered Cu2N4 metal ring. The structures were compared (Fig. 2) using OLEX2 software (Dolomanov et al., 2009). It was found that in [Cu2(LMe)2(OAc)2(H2O)2], the water molecules are axially coordinated by the central atom from one side of the Cu2N4 plane, and the acetates from the other. Thus, the non-coordinated oxygen of the acetate anion is involved in an intermolecular hydrogen bond with the coordinated water molecule of an adjacent complex, giving rise to an essentially different crystal motif than was observed for [Cu2(LEt)2(OAc)2(dmf)2]. In the newly reported compound [Cu2(LEt)2(OAc)2(dmf)2], the copper atoms coordinate the dmf molecules and acetate anions in the axial positions in such a manner that they reflect in the symmetry center, which is typical for such a kind of binuclear species. Notably, both [Cu2(LMe)2(OAc)2(H2O)2] and [Cu2(LEt)2(OAc)2(dmf)2] were synthesized using the same conditions. These features can be probably induced by different substituents in the 5-position of the 3-(2-pyridyl)-1,2,4-triazole ring in these two compounds, indicating that even negligible changes of the non-coordinating part of the ligand could significantly influence the structure of the complex. The non-typical molecular structure of [Cu2(LMe)2(OAc)2(H2O)2] is supported by the formation of intermolecular hydrogen bonds. In the case of [Cu2(LEt)2(OAc)2(dmf)2], branching of the non-coordinated part leads to the formation of a less-hindered structure of higher symmetry, similar to those of the previously described 37 compounds, indicating a small difference in the energies of these two topologies, which is probably the result of the formation of additional intermolecular contacts.
3. Supramolecular features
Further analysis of the structure showed that the b-axis direction (Fig. 3). Within a chain, the complex molecules interact through weak C—H⋯O hydrogen bonds, where the pyridine H atom acts as acceptor, and the acetate O atom as donor (Table 1, Fig. 4).
motif is characterized as a parallel packing of discrete supramolecular chains running along the4. Database survey
A search of the Cambridge Structural Database (CSD version 5.43, update of March 2022; Groom et al., 2016) using ConQuest (Bruno et al., 2002) revealed 127 hits for the moiety containing the Cu2(trz-py)2 unit. In addition, the searches were also limited to structures with low R-factor values (R < 0.05). Most similar to the title compound are binuclear copper(II) complexes with two unsubstituted 3-(2-pyridyl)-1,2,4-triazole ligands, two anions and two water molecules in the axial positions [DODRIX, DODRET (Prins et al., 1985); FIVGEY (Matthews et al., 2003)] and with 3,5-bis(2-pyridyl)-1,2,4-triazole ligands (JUDBIV; Du et al., 2017). The compounds most closely related to the title complex are binuclear CuII complexes with unsubstituted 3-(2-pyridyl)-1,2,4-triazole ligands and a coordinated acetate anion [UQEQUD (Li et al., 2011); GUWZEE (Li et al., 2010); CUSHUV (Li et al., 2015) and JUDBOB (Du et al., 2017)].
5. Synthesis and crystallization
Ligand HLEt was prepared according to the synthesis described in the literature (Khomenko et al., 2016; Zakharchenko et al., 2019). Single crystals of [Cu2(LEt)2(OAc)2(dmf)2] were obtained in dmf. A solution of Cu(OAc)2·H2O (0.50 g, 10 ml, 2.5 mmol) was added to a solution of HLEt (0.48 g, 5 ml, 2.5 mmol). The resulting mixture was stirred with heating for 15 min, and then left in the air for crystallization. The green crystals obtained were filtered off, washed with dmf and dried in air. Yield 0.507 g (55%). Analysis calculated for C28H38Cu2N10O6 (%): C 45.58, H 5.19, N 18.99; found: C 45.57, H 5.17, N 18.96.
6. Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Supporting information
CCDC reference: 2253664
https://doi.org/10.1107/S2056989023003079/jy2029sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023003079/jy2029Isup2.hkl
Data collection: CrysAlis PRO 1.171.40.53 (Rigaku OD, 2019); cell
CrysAlis PRO 1.171.40.53 (Rigaku OD, 2019); data reduction: CrysAlis PRO 1.171.40.53 (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).[Cu2(C9H9N4)2(C2H3O2)2(C3H7NO)2] | F(000) = 764 |
Mr = 737.76 | Dx = 1.437 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4445 (5) Å | Cell parameters from 2231 reflections |
b = 8.9404 (4) Å | θ = 2.0–25.3° |
c = 20.2237 (9) Å | µ = 1.30 mm−1 |
β = 93.257 (4)° | T = 293 K |
V = 1704.88 (14) Å3 | Prism, clear dark blue |
Z = 2 | 0.3 × 0.2 × 0.15 mm |
Xcalibur, Eos diffractometer | 3007 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2382 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 25.0°, θmin = 2.0° |
ω scans | h = −11→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | k = −8→10 |
Tmin = 0.876, Tmax = 1.000 | l = −18→24 |
7405 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0304P)2 + 0.6113P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3007 reflections | Δρmax = 0.31 e Å−3 |
212 parameters | Δρmin = −0.27 e Å−3 |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.48907 (4) | 0.60148 (4) | 0.58814 (2) | 0.03442 (13) | |
O1 | 0.4294 (2) | 0.5477 (2) | 0.67766 (10) | 0.0415 (5) | |
O2 | 0.2385 (3) | 0.4889 (3) | 0.61484 (12) | 0.0601 (7) | |
O3 | 0.7170 (2) | 0.6884 (3) | 0.60652 (12) | 0.0528 (6) | |
N1 | 0.5774 (3) | 0.1842 (3) | 0.39823 (12) | 0.0353 (6) | |
N2 | 0.5539 (2) | 0.3380 (3) | 0.50737 (11) | 0.0327 (6) | |
N3 | 0.5690 (2) | 0.4020 (2) | 0.56906 (11) | 0.0327 (6) | |
N4 | 0.6816 (3) | 0.1801 (3) | 0.57376 (12) | 0.0404 (6) | |
N5 | 0.9247 (3) | 0.7291 (3) | 0.55819 (14) | 0.0521 (7) | |
C1 | 0.5741 (3) | 0.1078 (4) | 0.34135 (16) | 0.0457 (8) | |
H1 | 0.537481 | 0.154425 | 0.302982 | 0.055* | |
C2 | 0.6226 (4) | −0.0369 (4) | 0.33712 (17) | 0.0544 (9) | |
H2 | 0.618426 | −0.086813 | 0.296711 | 0.065* | |
C3 | 0.6776 (4) | −0.1069 (4) | 0.39395 (19) | 0.0551 (10) | |
H3 | 0.712383 | −0.204028 | 0.392220 | 0.066* | |
C4 | 0.6800 (3) | −0.0302 (3) | 0.45327 (17) | 0.0461 (8) | |
H4 | 0.715879 | −0.075095 | 0.492185 | 0.055* | |
C5 | 0.6281 (3) | 0.1149 (3) | 0.45383 (15) | 0.0355 (7) | |
C6 | 0.6231 (3) | 0.2074 (3) | 0.51308 (14) | 0.0337 (7) | |
C7 | 0.6464 (3) | 0.3047 (3) | 0.60695 (15) | 0.0376 (7) | |
C8 | 0.6944 (4) | 0.3322 (4) | 0.67766 (16) | 0.0512 (9) | |
H8A | 0.656363 | 0.254626 | 0.705100 | 0.061* | |
H8B | 0.656717 | 0.427334 | 0.691653 | 0.061* | |
C9 | 0.8546 (4) | 0.3344 (5) | 0.6883 (2) | 0.0881 (14) | |
H9A | 0.892006 | 0.418177 | 0.665222 | 0.132* | |
H9B | 0.892983 | 0.243409 | 0.671529 | 0.132* | |
H9C | 0.880205 | 0.342977 | 0.734718 | 0.132* | |
C10 | 0.7957 (3) | 0.6721 (3) | 0.56038 (17) | 0.0453 (8) | |
H10 | 0.761756 | 0.615416 | 0.524331 | 0.054* | |
C11 | 1.0110 (4) | 0.7075 (4) | 0.5014 (2) | 0.0706 (12) | |
H11A | 1.096094 | 0.654624 | 0.515113 | 0.106* | |
H11B | 1.035153 | 0.803030 | 0.483543 | 0.106* | |
H11C | 0.958395 | 0.650492 | 0.468059 | 0.106* | |
C12 | 0.9843 (5) | 0.8163 (6) | 0.6132 (2) | 0.0978 (16) | |
H12A | 0.975052 | 0.920858 | 0.603018 | 0.147* | |
H12B | 1.082830 | 0.791748 | 0.620908 | 0.147* | |
H12C | 0.934694 | 0.794217 | 0.652151 | 0.147* | |
C13 | 0.3033 (4) | 0.4974 (3) | 0.66937 (16) | 0.0407 (8) | |
C14 | 0.2343 (4) | 0.4436 (4) | 0.73102 (18) | 0.0660 (11) | |
H14A | 0.221006 | 0.337203 | 0.728592 | 0.099* | |
H14B | 0.144052 | 0.491720 | 0.733999 | 0.099* | |
H14C | 0.294255 | 0.467671 | 0.769470 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0376 (2) | 0.0393 (2) | 0.0265 (2) | 0.00146 (18) | 0.00264 (15) | 0.00220 (17) |
O1 | 0.0415 (14) | 0.0516 (13) | 0.0316 (12) | −0.0047 (11) | 0.0043 (10) | −0.0001 (10) |
O2 | 0.0539 (16) | 0.0787 (17) | 0.0469 (15) | −0.0069 (13) | −0.0063 (12) | −0.0004 (13) |
O3 | 0.0386 (14) | 0.0636 (15) | 0.0570 (16) | −0.0071 (11) | 0.0085 (12) | −0.0052 (12) |
N1 | 0.0375 (15) | 0.0373 (14) | 0.0314 (15) | −0.0007 (12) | 0.0051 (11) | −0.0003 (12) |
N2 | 0.0348 (15) | 0.0356 (13) | 0.0276 (14) | 0.0014 (11) | 0.0016 (11) | 0.0052 (11) |
N3 | 0.0357 (15) | 0.0376 (13) | 0.0247 (13) | 0.0019 (12) | 0.0009 (11) | 0.0038 (11) |
N4 | 0.0430 (16) | 0.0435 (15) | 0.0345 (15) | 0.0071 (13) | 0.0000 (12) | 0.0061 (13) |
N5 | 0.0349 (17) | 0.0643 (18) | 0.057 (2) | −0.0065 (14) | 0.0026 (14) | 0.0023 (15) |
C1 | 0.051 (2) | 0.049 (2) | 0.0379 (19) | −0.0010 (16) | 0.0040 (16) | −0.0029 (16) |
C2 | 0.071 (3) | 0.048 (2) | 0.045 (2) | −0.0043 (19) | 0.0099 (19) | −0.0101 (18) |
C3 | 0.063 (3) | 0.0392 (18) | 0.064 (3) | 0.0001 (17) | 0.010 (2) | −0.0086 (18) |
C4 | 0.048 (2) | 0.0411 (18) | 0.049 (2) | 0.0041 (16) | 0.0020 (16) | 0.0061 (16) |
C5 | 0.0305 (17) | 0.0371 (17) | 0.0396 (18) | −0.0026 (14) | 0.0069 (13) | 0.0016 (14) |
C6 | 0.0298 (17) | 0.0393 (17) | 0.0322 (17) | 0.0000 (14) | 0.0046 (13) | 0.0061 (14) |
C7 | 0.0348 (18) | 0.0452 (18) | 0.0327 (18) | −0.0012 (15) | 0.0003 (14) | 0.0082 (15) |
C8 | 0.059 (2) | 0.059 (2) | 0.0346 (19) | 0.0106 (18) | −0.0078 (16) | 0.0043 (17) |
C9 | 0.072 (3) | 0.133 (4) | 0.056 (3) | −0.007 (3) | −0.025 (2) | 0.010 (3) |
C10 | 0.037 (2) | 0.0445 (19) | 0.054 (2) | −0.0045 (16) | −0.0035 (16) | 0.0055 (17) |
C11 | 0.050 (2) | 0.088 (3) | 0.076 (3) | −0.006 (2) | 0.016 (2) | 0.006 (2) |
C12 | 0.065 (3) | 0.135 (4) | 0.094 (4) | −0.042 (3) | 0.009 (3) | −0.035 (3) |
C13 | 0.046 (2) | 0.0380 (18) | 0.038 (2) | 0.0015 (16) | 0.0051 (16) | 0.0002 (14) |
C14 | 0.064 (3) | 0.082 (3) | 0.054 (2) | −0.018 (2) | 0.023 (2) | 0.005 (2) |
Cu1—O1 | 1.985 (2) | C3—C4 | 1.381 (4) |
Cu1—O3 | 2.299 (2) | C4—H4 | 0.9300 |
Cu1—N1i | 2.040 (2) | C4—C5 | 1.387 (4) |
Cu1—N2i | 2.025 (2) | C5—C6 | 1.459 (4) |
Cu1—N3 | 1.983 (2) | C7—C8 | 1.496 (4) |
O1—C13 | 1.276 (4) | C8—H8A | 0.9700 |
O2—C13 | 1.233 (4) | C8—H8B | 0.9700 |
O3—C10 | 1.234 (4) | C8—C9 | 1.516 (5) |
N1—C1 | 1.337 (4) | C9—H9A | 0.9600 |
N1—C5 | 1.348 (4) | C9—H9B | 0.9600 |
N2—N3 | 1.373 (3) | C9—H9C | 0.9600 |
N2—C6 | 1.340 (3) | C10—H10 | 0.9300 |
N3—C7 | 1.347 (3) | C11—H11A | 0.9600 |
N4—C6 | 1.339 (3) | C11—H11B | 0.9600 |
N4—C7 | 1.351 (4) | C11—H11C | 0.9600 |
N5—C10 | 1.323 (4) | C12—H12A | 0.9600 |
N5—C11 | 1.459 (4) | C12—H12B | 0.9600 |
N5—C12 | 1.446 (5) | C12—H12C | 0.9600 |
C1—H1 | 0.9300 | C13—C14 | 1.518 (4) |
C1—C2 | 1.377 (4) | C14—H14A | 0.9600 |
C2—H2 | 0.9300 | C14—H14B | 0.9600 |
C2—C3 | 1.384 (5) | C14—H14C | 0.9600 |
C3—H3 | 0.9300 | ||
O1—Cu1—O3 | 104.24 (9) | N4—C6—N2 | 114.3 (3) |
O1—Cu1—N1i | 89.93 (9) | N4—C6—C5 | 128.2 (3) |
O1—Cu1—N2i | 151.98 (9) | N3—C7—N4 | 113.0 (3) |
N1i—Cu1—O3 | 87.31 (9) | N3—C7—C8 | 124.2 (3) |
N2i—Cu1—O3 | 101.48 (9) | N4—C7—C8 | 122.7 (3) |
N2i—Cu1—N1i | 80.29 (10) | C7—C8—H8A | 109.1 |
N3—Cu1—O1 | 95.20 (9) | C7—C8—H8B | 109.1 |
N3—Cu1—O3 | 88.40 (9) | C7—C8—C9 | 112.5 (3) |
N3—Cu1—N1i | 173.99 (10) | H8A—C8—H8B | 107.8 |
N3—Cu1—N2i | 96.46 (9) | C9—C8—H8A | 109.1 |
C13—O1—Cu1 | 106.07 (19) | C9—C8—H8B | 109.1 |
C10—O3—Cu1 | 115.9 (2) | C8—C9—H9A | 109.5 |
C1—N1—Cu1i | 127.1 (2) | C8—C9—H9B | 109.5 |
C1—N1—C5 | 118.2 (3) | C8—C9—H9C | 109.5 |
C5—N1—Cu1i | 114.60 (19) | H9A—C9—H9B | 109.5 |
N3—N2—Cu1i | 139.50 (18) | H9A—C9—H9C | 109.5 |
C6—N2—Cu1i | 112.67 (19) | H9B—C9—H9C | 109.5 |
C6—N2—N3 | 105.1 (2) | O3—C10—N5 | 125.1 (3) |
N2—N3—Cu1 | 122.07 (17) | O3—C10—H10 | 117.4 |
C7—N3—Cu1 | 132.1 (2) | N5—C10—H10 | 117.4 |
C7—N3—N2 | 105.8 (2) | N5—C11—H11A | 109.5 |
C6—N4—C7 | 101.8 (2) | N5—C11—H11B | 109.5 |
C10—N5—C11 | 122.1 (3) | N5—C11—H11C | 109.5 |
C10—N5—C12 | 120.1 (3) | H11A—C11—H11B | 109.5 |
C12—N5—C11 | 117.8 (3) | H11A—C11—H11C | 109.5 |
N1—C1—H1 | 118.6 | H11B—C11—H11C | 109.5 |
N1—C1—C2 | 122.8 (3) | N5—C12—H12A | 109.5 |
C2—C1—H1 | 118.6 | N5—C12—H12B | 109.5 |
C1—C2—H2 | 120.5 | N5—C12—H12C | 109.5 |
C1—C2—C3 | 118.9 (3) | H12A—C12—H12B | 109.5 |
C3—C2—H2 | 120.5 | H12A—C12—H12C | 109.5 |
C2—C3—H3 | 120.5 | H12B—C12—H12C | 109.5 |
C4—C3—C2 | 119.0 (3) | O1—C13—C14 | 116.4 (3) |
C4—C3—H3 | 120.5 | O2—C13—O1 | 123.5 (3) |
C3—C4—H4 | 120.6 | O2—C13—C14 | 120.0 (3) |
C3—C4—C5 | 118.9 (3) | C13—C14—H14A | 109.5 |
C5—C4—H4 | 120.6 | C13—C14—H14B | 109.5 |
N1—C5—C4 | 122.1 (3) | C13—C14—H14C | 109.5 |
N1—C5—C6 | 113.5 (2) | H14A—C14—H14B | 109.5 |
C4—C5—C6 | 124.4 (3) | H14A—C14—H14C | 109.5 |
N2—C6—C5 | 117.5 (3) | H14B—C14—H14C | 109.5 |
Cu1—O1—C13—O2 | −0.5 (4) | N3—C7—C8—C9 | −118.2 (4) |
Cu1—O1—C13—C14 | 178.2 (2) | N4—C7—C8—C9 | 59.2 (4) |
Cu1—O3—C10—N5 | 172.0 (2) | C1—N1—C5—C4 | 1.8 (4) |
Cu1i—N1—C1—C2 | 179.5 (2) | C1—N1—C5—C6 | −178.5 (3) |
Cu1i—N1—C5—C4 | −178.8 (2) | C1—C2—C3—C4 | 1.0 (5) |
Cu1i—N1—C5—C6 | 0.9 (3) | C2—C3—C4—C5 | −0.4 (5) |
Cu1i—N2—N3—Cu1 | 20.3 (4) | C3—C4—C5—N1 | −1.0 (5) |
Cu1i—N2—N3—C7 | −158.4 (2) | C3—C4—C5—C6 | 179.3 (3) |
Cu1i—N2—C6—N4 | 165.50 (19) | C4—C5—C6—N2 | −171.7 (3) |
Cu1i—N2—C6—C5 | −13.5 (3) | C4—C5—C6—N4 | 9.4 (5) |
Cu1—N3—C7—N4 | −179.03 (19) | C5—N1—C1—C2 | −1.2 (5) |
Cu1—N3—C7—C8 | −1.4 (5) | C6—N2—N3—Cu1 | 178.70 (18) |
N1—C1—C2—C3 | −0.2 (5) | C6—N2—N3—C7 | 0.1 (3) |
N1—C5—C6—N2 | 8.5 (4) | C6—N4—C7—N3 | 0.8 (3) |
N1—C5—C6—N4 | −170.3 (3) | C6—N4—C7—C8 | −176.8 (3) |
N2—N3—C7—N4 | −0.6 (3) | C7—N4—C6—N2 | −0.8 (3) |
N2—N3—C7—C8 | 177.1 (3) | C7—N4—C6—C5 | 178.1 (3) |
N3—N2—C6—N4 | 0.5 (3) | C11—N5—C10—O3 | −178.9 (3) |
N3—N2—C6—C5 | −178.5 (2) | C12—N5—C10—O3 | 1.0 (5) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2ii | 0.93 | 2.59 | 3.513 (4) | 170 |
Symmetry code: (ii) −x+1, −y, −z+1. |
Funding information
This work was supported by grants 22BF037–06 obtained from the Ministry of Education and Science of Ukraine.
References
Bartual-Murgui, C., Rubio-Giménez, V., Meneses-Sánchez, M., Valverde-Muñoz, F. J., Tatay, S., Martí-Gastaldo, C., Muñoz, M. C. & Real, J. A. (2020). Appl. Mater. Interfaces, 12, 29461–29472. CAS Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cui, Y., Wu, L., Yue, W., Lian, F. & Qu, J. (2019). J. Mol. Struct. 1191, 145–151. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doroschuk, R. (2016). Acta Cryst. E72, 486–488. CSD CrossRef IUCr Journals Google Scholar
Du, C.-C., Fan, J.-Z., Li, J.-P. & Wang, D. Z. (2017). Chin. J. Inorg. Chem. 33, 1352–1353. Google Scholar
Govor, E. V., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Krautscheid, H. & Domasevitch, K. V. (2010). Z. Anorg. Allg. Chem. 636, 209–217. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Khomenko, D. M., Doroshchuk, R. O., Vashchenko, O. V. & Lampeka, R. D. (2016). Chem. Heterocycl. Compd, 52, 402–408. Web of Science CrossRef CAS Google Scholar
Kucheriv, O. I., Oliynyk, V. V., Zagorodnii, V. V., Launets, V. L. & Gural'skiy, I. A. (2016). Sci. Rep. 6, 1–7. Web of Science CrossRef PubMed Google Scholar
Kuzevanova, I. S., Kucheriv, O. I., Hiiuk, V. M., Naumova, D. D., Shova, S., Shylin, S. I., Kotsyubynsky, V. O., Rotaru, A., Fritsky, I. O. & Gural'skiy, I. A. (2021). Dalton Trans. 50, 9250–9258. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lee, L. C. C., Leung, K. K. & Lo, K. K. (2017). Dalton Trans. 46, 16357–16380. Web of Science CrossRef CAS PubMed Google Scholar
Li, C. H., Li, W., Hu, H. X. & Hu, B. N. (2015). Chin. J. Struct. Chem. 34, 1553–1557. CAS Google Scholar
Li, Ch.-H., Tan, X.-W., Li, W. & Yang, Y.-Q. (2011). Chin. J. Struct. Chem. 30, 289. Google Scholar
Li, W., Zhang, J., Li, C. & Yang, Y. (2010). Z. Kristallogr. 225, 181–182. CAS Google Scholar
Li, Y., Chen, Y., Liu, Y., Jia, L. & Chen, Y. (2018). Transit. Met. Chem. 43, 731–737. Web of Science CSD CrossRef CAS Google Scholar
Lysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S. X. (2016). Inorg. Chem. 55, 239–250. Web of Science CSD CrossRef CAS PubMed Google Scholar
Matthews, C. J., Horton, P. N. & Hursthouse, M. B. (2003). University of Southampton, Report Archive, 986. Google Scholar
Muhammad, N. & Guo, Z. (2014). Curr. Opin. Chem. Biol. 19, 144–153. Web of Science CrossRef CAS PubMed Google Scholar
Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442–23449. Web of Science CSD CrossRef CAS PubMed Google Scholar
Prins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). Inorg. Chem. 24, 4128–4133. CSD CrossRef CAS Web of Science Google Scholar
Rigaku OD (2019). CrysAlia PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Senchyk, G. A., Lysenko, A. B., Boldog, I., Rusanov, E. B., Chernega, A. N., Krautscheid, H. & Domasevitch, K. V. (2012). Dalton Trans. 41, 8675–8689. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973–10984. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.