research communications
trans-diiodidobis[(methylsulfanyl)benzene-κS]platinum(II)
and Hirshfeld analysis ofaTU Dortmund University, Institute for Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and bInstitut UTINAM CNRS UMR 6213, Equipe "Matériaux et Surfaces Fonctionnels", Université de Franche-Comté, Faculté des Sciences et des Techniques La Bouloie - 16 Route de Gray, 25030 BESANÇON CEDEX, France
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
The title complex, [PtI2(C7H8I2)2], represents a further example of a square-planar PtII–dithioether complex. It crystallizes in the monoclinic P21/c. Additional Hirshfeld analyses indicate a C—H⋯π interaction along the [010] axis to be the most important packing factor.
Keywords: crystal structure; Hirshfeld surface analysis; dithioether.
CCDC reference: 2258409
1. Chemical context
Dithioethers are a quite useful class of ligands for various transition-metal complexes and their coordination chemistry is well documented (Murray & Hartley, 1981). As a result of the soft character of the sulfur center, they preferably bond to soft transition metals like the coinage metals (Cu, Ag, Au), mercury(II), or catalytically active noble metals such as rhodium(I), iridium(I), palladium(II) or platinum(II). Apart from structural aspects (Marangoni et al., 1995) and the investigation of inversion dynamics occurring at the coordinated sulfur atoms (Abel et al., 1984), these complexes have been reported to have several applications in (Masdeu-Bulto et al., 2003; Arrayás & Carretero, 2011). They can form interesting luminescent cluster-like structures (Knorr et al., 2014; Peindy et al., 2007) and even coordination polymers by coordination to CuI and AgI (Raghuvanshi et al., 2017; Awaleh et al., 2006). Depending on the metal coordination sphere and the remaining ligands, the preparation of dithioether complexes may yield different isomers. In particular, the of chalcogenoether complexes with palladium and platinum has been intensively investigated (Vigo et al., 2006) and the presence of both trans- and cis-isomers in solution and the solid state were proven. The clarification of the trans–cis is therefore of importance.
In the past, our groups have investigated the coordination of chelating dithioethers such as the vinylic ferrocenyl-dithioether Z-[(ArS)(H)C=C(SAr)-Fc] or the silylated compounds (PhSCH2)2SiPh2 and PhSCH2Si(Me)-Si(Me)CH2SPh2 yielding [Fc-{C(S-p-tolyl)=C(S-p-tolyl)(H)}PtCl2], cis-[PtCl2{(PhSCH2)2Si2Me4}] and cis-[PtCl2{(PhSCH2)2SiPh2}] and converted them via metathesis in the presence of NaI to their corresponding diiodo derivatives (Clement et al., 2007; Knorr et al., 2004; Peindy et al., 2006). We have also shown that the tetrakis(thioether) (PhSCH2)4Si can be ligated on HgBr2 in a chelating manner (Peindy et al., 2005). In a similar manner, we also prepared, as shown in Fig. 1, the complex cis-[PtI2{(PhSCH2)2Si(CH2SPh}2]. When attempting to recrystallize this poorly soluble compound from hot toluene, partial cleavage of the Si—CH2Ph bond occurred, yielding trans-[PtI2(SMePh)2] 1, albeit in a quite low yield of 10%. Alternatively, this air-stable complex could be prepared in a much improved yield of 80% by reaction of bis(benzonitrile)diiodoplatinum with 2 equivalents of methyl phenyl sulfide (thioanisol) MeSPh using dichloromethane as solvent. This compound was characterized by NMR spectroscopy in solution and exhibits a singlet resonance for the two magnetically equivalent methyl groups at δ 3.01 ppm, flanked by 195Pt satellites due to a 3JPtH coupling of 48 Hz. Furthermore, we report herein on the solid-state structure and structural analysis of trans-diiodidobis[(methylsulfanyl)benzene-κS]platinum(II) (1). In addition, the results of a Hirshfeld analysis of the intermolecular interactions are presented.
2. Structural commentary
trans-Diiodidobis[(methylsulfanyl)benzene-κS]platinum(II) (1) crystallizes from dichloromethane in the monoclinic P21/c. The molecular structure of 1 is presented in Figs. 2 and 3 and selected bond lengths and bond angles are given in Table 1. The contains half a molecule of 1, which shows C2h symmetry. The distance from the coordinating iodine center I1 to Pt1 is 2.61205 (15) Å, showing a slight elongation with respect to its educt structure trans-[PtI2(NCPh)2] (2) (2.6052 (8) Å; Viola et al., 2018). The distance from the coordinating sulfur atom S1 to Pt1 is 2.3183 (5) Å. The S1—Pt1 bond is 0.015 Å longer than in the analogous chlorine compound trans-[PtCl2(SMePh)2] (3) reported by Ahlgrén (CSD LEQSUW; Vigo et al., 2006). This elongation may be explained by the thermodynamic trans-effect of the opposite halide ligand. Therefore, similar compounds with iodido ligands such as trans-[PtI2(SMe2)2] (4) (CSD RAYNOU; Lövqvist et al., 1996) and trans-[PtI2(tetrahydrothiophene)2] (5) (CSD SIRPAK; Oskarsson et al., 1990) show S—Pt bond lengths in the same range at 2.310 (2) and 2.310 (1) Å, respectively. Both complexes also have similar bond lengths for the Pt—I bond [2.6039 (8) Å in 4 and 2.606 (1) Å in 5]. The chelate complexes cis-diiodo-[1,2-bis(phenylsulfanyl)ethane]platinum(II) (CSD ZAJWUC; Marangoni et al., 1995) and cis-(1,4-dithiane-S,S′)diiodoplatinum(II) (CSD HUFQAA; Johansson & Engelbrecht, 2001) are reported to display Pt—I bond lengths of 2.606 (1) and 2.6035 (5) Å, respectively, and somewhat shorter mean Pt—S bond lengths of 2.265 (2) and 2.2751 (16) Å, respectively.
|
All further bonds have characteristic dimensions (Allen et al., 1987). The coordination sphere around the platinum center is square-planar. The angles I1—Pt1—I1 and S1—Pt1—S1 are 180°. However, the angle I1—Pt1—S1 of 85.641 (14)° is somewhat more acute. This slight deviation from the ideal angle of 90° is also reported for the chlorido derivative 3 and the dimethyl sulfide analog 4, as well as in the tetrahydrothiophene analog 5. The sulfur center shows a distorted tetrahedral environment with angles C1—S1—Pt1 = 111.00 (8)°, C2—S1—Pt1 = 104.52 (7)° and C2—S1—C1 = 103.46 (11)°.
3. Supramolecular features
While a repetition of the molecular structure of 1 can be seen along the [100] axis and the [001] axis, as shown in Fig. 4, the crystal packing along the [010] axis is defined by C—H⋯π interactions of the C2–C7 phenyl ring and H1Bi [symmetry code: (i) x, − y, − + z] with a distance between the phenyl ring and H1Bi of 2.5377 (10) Å (Fig. 5). This interaction can also be visualized by a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) generated by CrystalExplorer21 (Spackman et al., 2021). The Hirshfeld surface mapped over dnorm in the range from −0.0074 to 1.1829 a.u. is shown in Fig. 6, with the close contact between H1Bi and the C2–C7 plane indicated by the red spot. The contributions of the different types of intermolecular interactions for 1 are shown in the two-dimensional fingerprint plots (McKinnon et al., 2007) in Fig. 7. The contribution of the H⋯H interactions, with a value of 39.8%, has the largest share of the crystal packing of 1. The remaining hydrogen–heteronuclear interactions have a smaller share with a 15.7% contribution for I⋯H, a 14.4% contribution for C⋯H and a 3.6% contribution for S⋯H. The heteronuclear I⋯H and C⋯H interactions appear as spikes.
4. Database survey
By a search in the Cambridge Crystallographic Database (WebCSD, November 2022; Groom et al., 2016), various structures of dihalide transition-metal complexes with the same ligand motif as 1 were found. To compare the most similar structures, only dihalide transition metal complexes with the bis[(methylsulfanyl)benzene] ligand and its oxidized derivative are focused on now. The already compared structure trans-dichloro-bis[methyl(phenyl)sulfanyl]platinum (LEQSUW; Vigo et al., 2006) has been published, as well as its palladium derivative with (SARWEP; Oilunkaniemi et al., 2006) and without (LEQSOQ; Vigo et al., 2006) inserted benzene. In addition, cis-dichlorobis(methylphenylsulfoxide)palladium has been published independently by two different research groups [JISWUD (Antolini et al., 1991) and JISWUD01 (Gama de Almeida et al., 1992)]. Further examples of PtI2 thioether complexes are cis-diiodo-(1,4,7-trithiacyclononane-S,S′)platinum(II) (ACUXAX; Grant et al., 2001), diiodo-(2,9-dimethyl-1,10-phenanthroline)(dimethylsulfide)platinum(II) (BERTIC; Fanizzi et al., 2004), and diiodo-(5-phenyl-1-thia-5-phosphacyclo-octane-P,S)platinum(II) (KEJHEM; Toto et al., 1990).
Similar complexes were also structurally characterized by our research groups and include cis-[PtBr2{(PhSCH2)2SiPh2}] (ECOHAG; Knorr et al., 2004) and cis-[PtI2{(PhSCH2)2SiPh2}]·DCM (ECOHIO, Knorr et al., 2004), which were determined in order to investigate the trans-influence of different halide ligands on the Pt—S bond. Further examples of dithioether complexes stemming from our laboratories are cis-[PtCl2{(PhSCH2)2Si2Me4}] (MEDYOK; Peindy et al., 2006) and cis-[PtI2{(PhSCH2)2Si2Me4}]·DCM (MEDZIF; Peindy et al., 2006).
5. Synthesis and crystallization
trans-Diiodobis[(methylsulfanyl)benzene]platinum (1) was synthesized by adding methylphenyl sulfide (37 mg, 0.30 mmol, 1.50 eq.) dissolved in 0.5 mL of dichloromethane via a microsyringe to a solution of bis(benzonitrile)diiodoplatinum (65 mg, 0.10 mmol, 1.00 eq.) in dichloromethane (3 mL) and stirring overnight at room temperature. trans-Diiodobis[(methylsulfanyl)benzene]platinum (1, 557 mg, 0.80 mmol, 80%) was isolated as red crystals after layering with heptane.
Calculated for C14H16I2PtS2 (697.30 g mol−1): C, 24.11; H, 2.32; S, 9.20. Found: C, 23.92; H, 2.21; S, 9.05%.
1H NMR (400MHz, CDCl3): δ = 3.01 (s, 3JPtH = 48 Hz, 6H; CH3), 7.05–7.73 (m, 10H; phenyl) ppm.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso (H) = 1.5Ueq(C) for CH3 hydrogen atoms.
details are summarized in Table 2Supporting information
CCDC reference: 2258409
https://doi.org/10.1107/S2056989023003717/jy2030sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023003717/jy2030Isup2.hkl
Data collection: APEX2 (Bruker, 2018); cell
SAINT V8.38A (Bruker, 2018); data reduction: SAINT V8.38A (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[PtI2(C7H8I)2] | F(000) = 632 |
Mr = 697.28 | Dx = 2.723 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.5796 (3) Å | Cell parameters from 9775 reflections |
b = 9.5104 (3) Å | θ = 3.1–36.3° |
c = 9.7960 (3) Å | µ = 12.11 mm−1 |
β = 107.645 (1)° | T = 100 K |
V = 850.48 (5) Å3 | Prism, red |
Z = 2 | 0.31 × 0.25 × 0.20 mm |
Bruker APEXII CCD diffractometer | 4125 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 4033 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.038 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 36.3°, θmin = 2.2° |
ω and φ scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −15→15 |
Tmin = 0.263, Tmax = 0.498 | l = −16→16 |
27554 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.053 | w = 1/[σ2(Fo2) + (0.0193P)2 + 1.6484P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.002 |
4125 reflections | Δρmax = 2.26 e Å−3 |
89 parameters | Δρmin = −1.79 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.500000 | 0.500000 | 0.500000 | 0.01069 (3) | |
I1 | 0.67448 (2) | 0.70668 (2) | 0.48539 (2) | 0.01650 (4) | |
S1 | 0.66656 (6) | 0.45396 (6) | 0.72234 (6) | 0.01359 (8) | |
C3 | 0.7382 (3) | 0.1669 (2) | 0.7476 (2) | 0.0159 (3) | |
H3 | 0.668801 | 0.154647 | 0.798352 | 0.019* | |
C7 | 0.8623 (2) | 0.3176 (2) | 0.6213 (3) | 0.0168 (4) | |
H7 | 0.876638 | 0.407868 | 0.586351 | 0.020* | |
C2 | 0.7595 (2) | 0.2989 (2) | 0.6957 (2) | 0.0134 (3) | |
C1 | 0.5743 (3) | 0.3994 (3) | 0.8486 (2) | 0.0188 (4) | |
H1A | 0.518020 | 0.478370 | 0.868893 | 0.028* | |
H1B | 0.646855 | 0.368646 | 0.937513 | 0.028* | |
H1C | 0.507882 | 0.321330 | 0.807968 | 0.028* | |
C4 | 0.8199 (3) | 0.0527 (3) | 0.7244 (3) | 0.0200 (4) | |
H4 | 0.806058 | −0.037609 | 0.759612 | 0.024* | |
C5 | 0.9216 (3) | 0.0705 (3) | 0.6501 (3) | 0.0216 (4) | |
H5 | 0.976478 | −0.007512 | 0.633993 | 0.026* | |
C6 | 0.9426 (3) | 0.2037 (3) | 0.5991 (3) | 0.0209 (4) | |
H6 | 1.012472 | 0.216130 | 0.549005 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01172 (5) | 0.00914 (5) | 0.01237 (5) | 0.00010 (3) | 0.00539 (3) | 0.00002 (3) |
I1 | 0.01712 (6) | 0.01357 (6) | 0.02033 (7) | −0.00397 (4) | 0.00794 (5) | 0.00006 (4) |
S1 | 0.0149 (2) | 0.0124 (2) | 0.01360 (19) | −0.00016 (15) | 0.00455 (16) | −0.00055 (15) |
C3 | 0.0176 (8) | 0.0150 (8) | 0.0162 (8) | 0.0008 (7) | 0.0067 (7) | 0.0012 (7) |
C7 | 0.0142 (8) | 0.0170 (9) | 0.0205 (9) | −0.0018 (7) | 0.0073 (7) | −0.0004 (7) |
C2 | 0.0135 (8) | 0.0132 (8) | 0.0134 (8) | −0.0002 (6) | 0.0039 (6) | −0.0010 (6) |
C1 | 0.0226 (10) | 0.0214 (10) | 0.0147 (8) | 0.0047 (8) | 0.0092 (7) | 0.0018 (7) |
C4 | 0.0229 (10) | 0.0164 (9) | 0.0206 (10) | 0.0038 (7) | 0.0063 (8) | 0.0029 (7) |
C5 | 0.0194 (10) | 0.0210 (10) | 0.0244 (11) | 0.0073 (8) | 0.0065 (8) | −0.0001 (8) |
C6 | 0.0149 (9) | 0.0243 (11) | 0.0257 (11) | 0.0010 (8) | 0.0094 (8) | −0.0012 (8) |
Pt1—I1 | 2.6121 (1) | C7—C2 | 1.403 (3) |
Pt1—I1i | 2.6120 (1) | C7—C6 | 1.383 (3) |
Pt1—S1i | 2.3183 (5) | C1—H1A | 0.9800 |
Pt1—S1 | 2.3183 (5) | C1—H1B | 0.9800 |
S1—C2 | 1.782 (2) | C1—H1C | 0.9800 |
S1—C1 | 1.800 (2) | C4—H4 | 0.9500 |
C3—H3 | 0.9500 | C4—C5 | 1.392 (4) |
C3—C2 | 1.393 (3) | C5—H5 | 0.9500 |
C3—C4 | 1.397 (3) | C5—C6 | 1.398 (4) |
C7—H7 | 0.9500 | C6—H6 | 0.9500 |
I1i—Pt1—I1 | 180.0 | C7—C2—S1 | 115.60 (17) |
S1i—Pt1—I1 | 94.358 (14) | S1—C1—H1A | 109.5 |
S1—Pt1—I1i | 94.359 (14) | S1—C1—H1B | 109.5 |
S1—Pt1—I1 | 85.641 (14) | S1—C1—H1C | 109.5 |
S1i—Pt1—I1i | 85.643 (14) | H1A—C1—H1B | 109.5 |
S1—Pt1—S1i | 180.0 | H1A—C1—H1C | 109.5 |
C2—S1—Pt1 | 104.52 (7) | H1B—C1—H1C | 109.5 |
C2—S1—C1 | 103.46 (11) | C3—C4—H4 | 119.8 |
C1—S1—Pt1 | 111.00 (8) | C5—C4—C3 | 120.4 (2) |
C2—C3—H3 | 120.3 | C5—C4—H4 | 119.8 |
C2—C3—C4 | 119.3 (2) | C4—C5—H5 | 120.1 |
C4—C3—H3 | 120.3 | C4—C5—C6 | 119.7 (2) |
C2—C7—H7 | 120.2 | C6—C5—H5 | 120.1 |
C6—C7—H7 | 120.2 | C7—C6—C5 | 120.4 (2) |
C6—C7—C2 | 119.6 (2) | C7—C6—H6 | 119.8 |
C3—C2—S1 | 123.88 (17) | C5—C6—H6 | 119.8 |
C3—C2—C7 | 120.5 (2) | ||
Pt1—S1—C2—C3 | −107.26 (19) | C1—S1—C2—C7 | −168.90 (18) |
Pt1—S1—C2—C7 | 74.82 (17) | C4—C3—C2—S1 | −178.09 (18) |
C3—C4—C5—C6 | 0.4 (4) | C4—C3—C2—C7 | −0.3 (3) |
C2—C3—C4—C5 | 0.0 (4) | C4—C5—C6—C7 | −0.5 (4) |
C2—C7—C6—C5 | 0.2 (4) | C6—C7—C2—S1 | 178.21 (19) |
C1—S1—C2—C3 | 9.0 (2) | C6—C7—C2—C3 | 0.2 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Pt1–I1 | 2.61205 (15) | I1–Pt1–I1i | 180.0 |
Pt1–S1 | 2.3183 (5) | S1–Pt1–I1 | 85.641 (14) |
S1–C2 | 1.782 (2) | S1–Pt1–I1i | 94.359 (14) |
S1–C1 | 1.800 (2) | C2–S1–C1 | 103.46 (11) |
References
Abel, E. W., Bhargava, S. K. & Orrell, K. G. (1984). Progr. Inorg. Chem, 32, 1–118. CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Almeida, S. G. de, Hubbard, J. L. & Farrell, N. (1992). Inorg. Chim. Acta, 193, 149–157. CSD CrossRef Web of Science Google Scholar
Antolini, L., Folli, U., Iarossi, D., Schenetti, L. & Taddei, F. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 955–961. CrossRef Google Scholar
Arrayás, R. G. & Carretero, J. C. (2011). Chem. Commun. 47, 2207–2211. Google Scholar
Awaleh, M. O., Badia, A., Brisse, F. & Bu, X.-H. (2006). Inorg. Chem. 45, 1560–1574. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clement, S., Guyard, L., Knorr, M., Villafane, F., Strohmann, C. & Kubicki, M. M. (2007). Eur. J. Inorg. Chem. pp. 5052–5061. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fanizzi, F. P., Margiotta, N., Lanfranchi, M., Tiripicchio, A., Pacchioni, G. & Natile, G. (2004). Eur. J. Inorg. Chem. pp. 1705–1713. CrossRef Google Scholar
Grant, G. J., Brandow, C. G., Galas, D. F., Davis, J. P., Pennington, W. T., Valente, E. J. & Zubkowski, J. D. (2001). Polyhedron, 20, 3333–3342. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Johansson, M. H. & Engelbrecht, H. P. (2001). Acta Cryst. E57, m114–m116. CrossRef IUCr Journals Google Scholar
Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387. Web of Science CSD CrossRef CAS Google Scholar
Knorr, M., Peindy, H. M., Guyon, F., Sachdev, H. & Strohmann, C. (2004). Z. Anorg. Allg. Chem. 630, 1955–1961. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lövqvist, K. C., Wendt, O. F. & Leipoldt, J. G. (1996). Acta Chem. Scand. 50, 1069–1073. Google Scholar
Marangoni, G., Pitteri, B., Bertolasi, V. & Gilli, P. (1995). Inorg. Chim. Acta, 234, 173–179. CSD CrossRef CAS Web of Science Google Scholar
Masdeu-Bultó, A. M., Diéguez, M., Martin, E. & Gómez, M. (2003). Coord. Chem. Rev. 242, 159–201. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Murray, S. G. & Hartley, F. R. (1981). Chem. Rev. 81, 365–414. CrossRef CAS Web of Science Google Scholar
Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2006). Main Group Chem. 5, 125–136. CrossRef CAS Google Scholar
Oskarsson, Å., Norén, B., Svensson, C. & Elding, L. I. (1990). Acta Cryst. B46, 748–752. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Peindy, H. M., Guyon, F., Jourdain, I., Knorr, M., Schildbach, D. & Strohmann, C. (2006). Organometallics, 25, 1472–1479. CrossRef CAS Google Scholar
Peindy, H. M., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823–1828. CrossRef Google Scholar
Peindy, H. N., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A. A., Islas, S. A., Rabinovich, D., Golen, J. A. & Strohmann, C. (2005). Inorg. Chem. Commun. 8, 479–482. CrossRef CAS Google Scholar
Raghuvanshi, A., Strohmann, C., Tissot, J.-B., Clément, S., Mehdi, A., Richeter, S., Viau, L. & Knorr, M. (2017). Chem. Eur. J. 23, 16479–16483. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toto, S. D., Olmstead, M. M., Arbuckle, B. W., Bharadwaj, P. K. & Musker, K. W. (1990). Inorg. Chem. 29, 691–699. CrossRef CAS Google Scholar
Vigo, L., Risto, M., Jahr, E. M., Bajorek, T., Oilunkaniemi, R., Laitinen, R. S., Lahtinen, M. & Ahlgrén, M. (2006). Cryst. Growth Des. 6, 2376–2383. CrossRef CAS Google Scholar
Viola, E., Donzello, M. P., Ercolani, C., Rizzoli, C. & Lever, A. B. P. (2018). Inorg. Chim. Acta, 480, 101–107. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.