research communications
N′-(but-2-en-1-ylidene)benzohydrazidato]nickel(II)
of bis[4-(allyloxy)-aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com
In the title complex, [Ni(C14H15N2O2)2], the nickel(II) atom exhibits a square-planar coordination geometry, being coordinated by two negatively charged N,O chelating ligands in a trans configuration, with the metal located on a crystallographic center of symmetry. The X-ray structural characterization showed the complex to be disordered over two orientations with refined occupancies of 0.898 (2) and 0.102 (2). The whole molecule is close to planar, the five- and six-membered rings subtending a dihedral angle of 7.5 (2)°. The crystal packing is supported by C—H⋯π and C—H⋯O interactions that form a di-periodic layered network.
Keywords: crystal structure; nickel complex; allyloxy; benzohydrazide.
CCDC reference: 2232075
1. Chemical context
et al., 2003; Joshi et al., 2008; Terzioglu & Gürsoy, 2003). Hydrazone molecules display a number of features, such as their degree of flexibility, a conjugated π-system and an NH unit that readily participates in hydrogen bonding and may be easily deprotonated. In addition, hydrazone molecules behave as bidentate ligands through their carbonyl oxygen and azomethine nitrogen atoms, and are widely used in coordination chemistry for their ability to form complexes with metal ions in variable oxidation states (Abou-Melha, 2021; Abser et al., 2013; Saygıdeğer Demir et al., 2021; Gond et al., 2022; Velásquez et al., 2020). In this respect, the formation of metal complexes plays an important role in enhancing the biological activity of (Sathyadevi et al., 2012). In addition, providing the molecule with additional donor sites in this type of ligand can modulate the nuclearity of complexes (Vrdoljak et al., 2023). As part of our studies in this area, this paper describes the of a bis[benzohydrazidato]nickel(II) complex.
are a specific class of Schiff-base compounds that are distinguished by the presence of a –CO—NH—N= pharmacophore group, and exhibit a wide range of biological activity (Khan2. Structural commentary
The nickel(II) cation of the title complex, [Ni(C14H15N2O2)2], is located on a crystallographic inversion centre and exhibits a square-planar coordination geometry, with a trans configuration of the N,O-chelating ligands, as imposed by the crystal symmetry. An ellipsoid plot of the complex is shown Fig. 1. The structural characterization revealed that the complex is disordered over two orientations (Fig. 2) with refined occupancies of 0.898 (2) and 0.102 (2). As a result of the low percentage of the second component, the discussion is limited to the species at higher occupancy (Fig. 1). The Ni—O and Ni—N bond lengths are 1.8432 (16) and 1.8596 (18) Å, respectively, and the O1—Ni—N1 chelating angle is 84.13 (7)°. The C2—C3 and C13—C14 bond lengths are 1.319 (4) and 1.258 (5) Å, respectively, which confirm their double bond character (Allen et al., 1987). Intramolecular C4—H4⋯O1 and C11a—H11a⋯O1a interactions (Table 1), where the C⋯O distances are 2.975 (3) and 2.801 (3) Å, respectively, reinforce the crystal structure.
The X-ray et al., 2021; Al Banna et al., 2022; Krishnamoorthy et al., 2012), allows for electron delocalization throughout the molecule.
revealed that non-hydrogen atoms of the ligand are nearly coplanar; the maximum deviations being 0.308 (3) and 0.313 (5) Å for the allyl carbon atoms C13 and C14, respectively, on either side of the molecular mean plane. The five- and six-membered rings form a dihedral angle of 7.5 (2)°. This conformation, which is rather common for this type of molecule (Al-Qadsy3. Supramolecular features
Despite the presence of phenyl rings in the ligands, there is no evidence of π–π stacking. The crystal packing is, however, supported by unconventional hydrogen bonds of type C—H⋯O, e.g. C8—H8⋯O2(−x + 1, −y + 1, −z + 1) that connect complexes to form ribbons in the [111] direction (Fig. 3, Table 1). In addition, C—H⋯π interactions are realized by centrosymmetrically related complexes (H⋯phenyl centroid distance = 2.88 Å, Table 1) and give rise to a polymeric chain in the crystallographic [011] direction (Fig. 4). These interactions form a di-periodic architecture, as depicted in Fig. 5.
4. Synthesis and crystallization
To a solution of 4-(allyloxy)benzohydrazide (0.514 g, 2.6 mmol in 20 mL of ethanol), crotonaldehyde (0.187 g, 2.6 mmol) was added and the mixture was refluxed for an hour. Then a solution of nickel(II) acetate tetrahydrate (0.335 g, 1.3 mmol in 10 mL of ethanol) was added and refluxing was continued for an additional two hours. The resulting orange precipitate was filtered off and washed with hot ethanol. The product was recrystallized from a mixture of chloroform and toluene (1:1, v/v), and orange crystals, suitable for X-ray diffraction, were formed. Yield: 0.44 g, 60%, melting point: 511–513 K.
FT–IR (KBr), (cm−1): 1636 for ν(C=N—N=C) moiety. Absence of ν(N—H) and ν(C=O) bands. 1H NMR (CDCl3, 400 MHz), δ: 7.85 (d, 2×2H, J = 8.8 Hz, C-2, 6), 6.85 (d, 2×2H, J = 9.2 Hz, C-3, 5), 6.92 (d, 2×1H, J = 10 Hz, –CH=N,) , 6.41 (m, 2×1H, –CH=CH—CH3), 4.56 (dt, 2×1H, J = 5.2 Hz, =CH—CH3), 1.99 (dd, 2×3H, J = 6.8 Hz, 2.8 Hz, –CH3), 4.56 (d, 2×2H, J = 6.8 Hz, –OCH2), 5.42 (dq, 2×Ha, J = 17.2 Hz, 3.2 Hz, =CH2), 5.30 (dq, 2×Hb, J = 10.8 Hz, 3.2 Hz, =CH2) , 6.05 (m, 2×Hc, –CH=CH2). HRMS (FAB) calculated for C28H30N4O4Ni, [M + H]+: 545.1692, found: 545.1693.
5. Refinement
Crystal data, data collection and structure . The structure is disordered, having a second component with a low occupancy of about 10%. The whole component at lower occupancy was refined with DELU and RIGU restraints, with bond lengths restrained to those at higher occupancy by use of the instruction SAME (Sheldrick, 2015b). The hydrogen atoms were included at idealized positions, using a riding model with fixed isotropic displacement parameters [C—H = 0.95–0.99 Å; Uiso(H) = 1.2 or 1.5 Ueq(C)].
details are summarized in Table 2
|
Supporting information
CCDC reference: 2232075
https://doi.org/10.1107/S2056989023002918/pk2680sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023002918/pk2680Isup2.hkl
Cell
RAPID-AUTO (Rigaku, 2018); data reduction: RAPID-AUTO (Rigaku, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).[Ni(C14H15N2O2)2] | Z = 1 |
Mr = 545.27 | F(000) = 286 |
Triclinic, P1 | Dx = 1.316 Mg m−3 |
a = 8.0978 (8) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 9.2021 (9) Å | Cell parameters from 8347 reflections |
c = 9.3316 (10) Å | θ = 2.0–27.4° |
α = 84.027 (6)° | µ = 0.74 mm−1 |
β = 88.091 (6)° | T = 173 K |
γ = 84.170 (6)° | Prism, colorless |
V = 687.83 (12) Å3 | 0.29 × 0.19 × 0.11 mm |
Rigaku R-AXIS RAPID diffractometer | 2678 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −10→10 |
Tmin = 0.739, Tmax = 0.988 | k = −11→10 |
6566 measured reflections | l = −12→12 |
3120 independent reflections |
Refinement on F2 | 196 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0653P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3120 reflections | Δρmax = 0.64 e Å−3 |
333 parameters | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.000000 | 0.000000 | 0.000000 | 0.05459 (14) | |
O1 | 0.0243 (2) | 0.07363 (16) | 0.17356 (18) | 0.0578 (4) | 0.898 (2) |
O2 | 0.2723 (5) | 0.4718 (5) | 0.6267 (4) | 0.0674 (10) | 0.898 (2) |
N1 | 0.2013 (2) | 0.07530 (17) | −0.04863 (19) | 0.0579 (4) | 0.898 (2) |
N2 | 0.2596 (2) | 0.15342 (17) | 0.05752 (18) | 0.0576 (4) | 0.898 (2) |
C1 | 0.6805 (6) | 0.1843 (6) | −0.3689 (5) | 0.0823 (13) | 0.898 (2) |
H1A | 0.716800 | 0.236081 | −0.290787 | 0.123* | 0.898 (2) |
H1B | 0.663757 | 0.253188 | −0.455829 | 0.123* | 0.898 (2) |
H1C | 0.765440 | 0.104813 | −0.388854 | 0.123* | 0.898 (2) |
C2 | 0.5204 (4) | 0.1213 (3) | −0.3251 (3) | 0.0697 (7) | 0.898 (2) |
H2 | 0.469034 | 0.073371 | −0.394546 | 0.084* | 0.898 (2) |
C3 | 0.4453 (3) | 0.1270 (2) | −0.1979 (2) | 0.0630 (5) | 0.898 (2) |
H3 | 0.496134 | 0.171140 | −0.125341 | 0.076* | 0.898 (2) |
C4 | 0.2889 (4) | 0.0685 (4) | −0.1661 (4) | 0.0568 (9) | 0.898 (2) |
H4 | 0.245553 | 0.019621 | −0.239171 | 0.068* | 0.898 (2) |
C5 | 0.1563 (3) | 0.1451 (2) | 0.1675 (2) | 0.0552 (5) | 0.898 (2) |
C6 | 0.1878 (3) | 0.2237 (2) | 0.2942 (2) | 0.0541 (5) | 0.898 (2) |
C7 | 0.3212 (3) | 0.3097 (2) | 0.2903 (2) | 0.0596 (5) | 0.898 (2) |
H7 | 0.395956 | 0.312765 | 0.209668 | 0.072* | 0.898 (2) |
C8 | 0.3441 (4) | 0.3901 (3) | 0.4036 (3) | 0.0620 (6) | 0.898 (2) |
H8 | 0.434157 | 0.449102 | 0.399809 | 0.074* | 0.898 (2) |
C9 | 0.2377 (6) | 0.3857 (6) | 0.5226 (4) | 0.0582 (9) | 0.898 (2) |
C10 | 0.1064 (4) | 0.2975 (3) | 0.5305 (3) | 0.0568 (6) | 0.898 (2) |
H10 | 0.034480 | 0.291804 | 0.613008 | 0.068* | 0.898 (2) |
C11 | 0.0832 (3) | 0.2176 (2) | 0.4142 (3) | 0.0570 (6) | 0.898 (2) |
H11 | −0.006304 | 0.158031 | 0.417885 | 0.068* | 0.898 (2) |
C12 | 0.1649 (5) | 0.4721 (5) | 0.7530 (4) | 0.0683 (10) | 0.898 (2) |
H12A | 0.175044 | 0.374580 | 0.809471 | 0.082* | 0.898 (2) |
H12B | 0.047605 | 0.497658 | 0.725636 | 0.082* | 0.898 (2) |
C13 | 0.2227 (4) | 0.5876 (3) | 0.8394 (3) | 0.0822 (7) | 0.898 (2) |
H13 | 0.250302 | 0.677449 | 0.789198 | 0.099* | 0.898 (2) |
C14 | 0.2360 (9) | 0.5703 (6) | 0.9742 (5) | 0.159 (3) | 0.898 (2) |
H14A | 0.209241 | 0.481443 | 1.026860 | 0.190* | 0.898 (2) |
H14B | 0.272886 | 0.646034 | 1.023245 | 0.190* | 0.898 (2) |
O1' | 0.1078 (17) | 0.0981 (16) | 0.1178 (14) | 0.061 (3) | 0.102 (2) |
O2' | 0.262 (3) | 0.459 (4) | 0.634 (3) | 0.052 (6) | 0.102 (2) |
N1' | −0.1507 (14) | −0.0071 (12) | 0.1524 (15) | 0.054 (3) | 0.102 (2) |
N2' | −0.1064 (15) | 0.0573 (14) | 0.2739 (15) | 0.055 (3) | 0.102 (2) |
C1' | −0.664 (4) | −0.157 (3) | 0.394 (3) | 0.055 (5) | 0.102 (2) |
H1'1 | −0.755231 | −0.211867 | 0.369214 | 0.082* | 0.102 (2) |
H1'2 | −0.605399 | −0.210640 | 0.476523 | 0.082* | 0.102 (2) |
H1'3 | −0.708624 | −0.059756 | 0.418061 | 0.082* | 0.102 (2) |
C2' | −0.545 (2) | −0.142 (3) | 0.267 (3) | 0.066 (5) | 0.102 (2) |
H2' | −0.564913 | −0.182154 | 0.179826 | 0.079* | 0.102 (2) |
C3' | −0.4083 (19) | −0.0693 (19) | 0.278 (2) | 0.064 (4) | 0.102 (2) |
H3' | −0.380715 | −0.041637 | 0.368440 | 0.077* | 0.102 (2) |
C4' | −0.305 (2) | −0.034 (3) | 0.152 (3) | 0.048 (5) | 0.102 (2) |
H4' | −0.355132 | −0.029991 | 0.061133 | 0.057* | 0.102 (2) |
C5' | 0.0340 (17) | 0.1135 (17) | 0.2405 (17) | 0.054 (3) | 0.102 (2) |
C6' | 0.115 (3) | 0.199 (2) | 0.345 (2) | 0.057 (5) | 0.102 (2) |
C7' | 0.248 (2) | 0.2777 (18) | 0.3065 (17) | 0.045 (3) | 0.102 (2) |
H7' | 0.303354 | 0.273720 | 0.215557 | 0.054* | 0.102 (2) |
C8' | 0.295 (3) | 0.363 (3) | 0.408 (2) | 0.057 (5) | 0.102 (2) |
H8' | 0.390159 | 0.415000 | 0.389954 | 0.069* | 0.102 (2) |
C9' | 0.205 (5) | 0.374 (5) | 0.538 (3) | 0.047 (5) | 0.102 (2) |
C10' | 0.067 (3) | 0.299 (3) | 0.578 (3) | 0.058 (6) | 0.102 (2) |
H10' | 0.005157 | 0.306756 | 0.665513 | 0.070* | 0.102 (2) |
C11' | 0.031 (2) | 0.211 (2) | 0.475 (2) | 0.057 (5) | 0.102 (2) |
H11' | −0.059768 | 0.152927 | 0.495134 | 0.069* | 0.102 (2) |
C12' | 0.181 (3) | 0.489 (3) | 0.766 (2) | 0.043 (4) | 0.102 (2) |
H12C | 0.123609 | 0.403449 | 0.807081 | 0.052* | 0.102 (2) |
H12D | 0.096411 | 0.574476 | 0.749571 | 0.052* | 0.102 (2) |
C13' | 0.310 (3) | 0.522 (2) | 0.872 (2) | 0.067 (5) | 0.102 (2) |
H13' | 0.419193 | 0.474347 | 0.874300 | 0.080* | 0.102 (2) |
C14' | 0.260 (4) | 0.618 (4) | 0.956 (4) | 0.090 (11) | 0.102 (2) |
H14C | 0.149387 | 0.663448 | 0.950229 | 0.108* | 0.102 (2) |
H14D | 0.333053 | 0.643923 | 1.024081 | 0.108* | 0.102 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0642 (2) | 0.04564 (18) | 0.0584 (2) | −0.01815 (13) | −0.01564 (14) | −0.00945 (13) |
O1 | 0.0649 (9) | 0.0544 (8) | 0.0601 (9) | −0.0232 (7) | −0.0120 (8) | −0.0138 (7) |
O2 | 0.082 (2) | 0.0662 (17) | 0.0625 (12) | −0.0312 (13) | −0.0128 (11) | −0.0200 (11) |
N1 | 0.0698 (10) | 0.0464 (8) | 0.0617 (10) | −0.0166 (7) | −0.0183 (8) | −0.0099 (7) |
N2 | 0.0645 (9) | 0.0519 (8) | 0.0613 (10) | −0.0190 (7) | −0.0158 (8) | −0.0114 (7) |
C1 | 0.078 (2) | 0.075 (3) | 0.095 (3) | −0.0150 (15) | 0.004 (2) | −0.0096 (17) |
C2 | 0.0775 (16) | 0.0562 (13) | 0.0769 (17) | −0.0096 (11) | −0.0073 (14) | −0.0095 (12) |
C3 | 0.0672 (13) | 0.0575 (11) | 0.0676 (14) | −0.0134 (10) | −0.0136 (11) | −0.0111 (10) |
C4 | 0.0702 (15) | 0.041 (2) | 0.0612 (15) | −0.0112 (14) | −0.0175 (12) | −0.0067 (13) |
C5 | 0.0619 (11) | 0.0455 (9) | 0.0613 (12) | −0.0135 (8) | −0.0175 (10) | −0.0067 (8) |
C6 | 0.0590 (13) | 0.0477 (11) | 0.0592 (12) | −0.0166 (10) | −0.0154 (9) | −0.0073 (9) |
C7 | 0.0623 (13) | 0.0613 (12) | 0.0605 (12) | −0.0236 (10) | −0.0126 (10) | −0.0106 (9) |
C8 | 0.0648 (16) | 0.0640 (15) | 0.0636 (13) | −0.0295 (11) | −0.0125 (11) | −0.0111 (10) |
C9 | 0.065 (3) | 0.0514 (15) | 0.0631 (17) | −0.0172 (17) | −0.0226 (13) | −0.0110 (14) |
C10 | 0.0567 (15) | 0.0579 (12) | 0.0596 (15) | −0.0159 (11) | −0.0068 (11) | −0.0125 (12) |
C11 | 0.0588 (15) | 0.0527 (11) | 0.0640 (17) | −0.0199 (11) | −0.0138 (13) | −0.0089 (13) |
C12 | 0.084 (2) | 0.061 (2) | 0.0657 (17) | −0.0187 (15) | −0.0127 (14) | −0.0189 (14) |
C13 | 0.109 (2) | 0.0719 (15) | 0.0724 (16) | −0.0207 (15) | −0.0135 (14) | −0.0226 (13) |
C14 | 0.294 (7) | 0.114 (4) | 0.083 (2) | −0.071 (4) | −0.069 (3) | −0.011 (2) |
O1' | 0.053 (6) | 0.068 (8) | 0.066 (6) | −0.017 (6) | −0.012 (5) | −0.012 (5) |
O2' | 0.033 (8) | 0.057 (11) | 0.070 (8) | −0.009 (7) | −0.009 (6) | −0.013 (7) |
N1' | 0.045 (5) | 0.034 (5) | 0.084 (7) | 0.002 (4) | −0.020 (5) | −0.014 (5) |
N2' | 0.054 (5) | 0.044 (6) | 0.070 (7) | −0.012 (5) | −0.010 (4) | −0.010 (5) |
C1' | 0.053 (8) | 0.030 (9) | 0.083 (11) | −0.007 (7) | −0.029 (7) | −0.006 (8) |
C2' | 0.062 (8) | 0.055 (10) | 0.084 (12) | −0.010 (7) | −0.020 (8) | −0.010 (9) |
C3' | 0.055 (6) | 0.051 (8) | 0.089 (9) | −0.009 (6) | −0.022 (6) | −0.003 (7) |
C4' | 0.046 (6) | 0.017 (10) | 0.077 (9) | 0.005 (5) | −0.034 (5) | 0.007 (6) |
C5' | 0.054 (6) | 0.042 (7) | 0.068 (7) | −0.014 (5) | −0.016 (5) | −0.007 (5) |
C6' | 0.055 (8) | 0.056 (9) | 0.064 (8) | −0.028 (7) | 0.000 (6) | −0.011 (7) |
C7' | 0.037 (7) | 0.038 (7) | 0.062 (7) | −0.018 (6) | −0.001 (5) | −0.006 (6) |
C8' | 0.050 (9) | 0.056 (10) | 0.070 (8) | −0.029 (7) | 0.005 (6) | −0.011 (7) |
C9' | 0.034 (8) | 0.048 (11) | 0.060 (8) | −0.007 (7) | −0.005 (5) | −0.006 (7) |
C10' | 0.044 (9) | 0.070 (11) | 0.069 (9) | −0.033 (8) | 0.007 (7) | −0.024 (8) |
C11' | 0.052 (9) | 0.059 (9) | 0.067 (8) | −0.022 (7) | 0.000 (6) | −0.013 (7) |
C12' | 0.047 (8) | 0.022 (8) | 0.058 (8) | −0.001 (6) | −0.009 (6) | 0.007 (6) |
C13' | 0.071 (10) | 0.053 (9) | 0.077 (9) | 0.003 (7) | −0.027 (8) | −0.014 (8) |
C14' | 0.071 (12) | 0.084 (19) | 0.12 (2) | 0.011 (13) | −0.038 (12) | −0.051 (18) |
Ni1—O1'i | 1.793 (13) | C13—C14 | 1.258 (5) |
Ni1—O1' | 1.793 (13) | C13—H13 | 0.9500 |
Ni1—O1 | 1.8432 (16) | C14—H14A | 0.9500 |
Ni1—O1i | 1.8432 (16) | C14—H14B | 0.9500 |
Ni1—N1'i | 1.843 (14) | O1'—C5' | 1.287 (15) |
Ni1—N1' | 1.843 (14) | O2'—C9' | 1.363 (16) |
Ni1—N1 | 1.8596 (18) | O2'—C12' | 1.423 (17) |
Ni1—N1i | 1.8596 (18) | N1'—C4' | 1.301 (17) |
O1—C5 | 1.308 (2) | N1'—N2' | 1.406 (14) |
O2—C9 | 1.369 (3) | N2'—C5' | 1.311 (14) |
O2—C12 | 1.442 (4) | C1'—C2' | 1.509 (18) |
N1—C4 | 1.289 (4) | C1'—H1'1 | 0.9800 |
N1—N2 | 1.4034 (19) | C1'—H1'2 | 0.9800 |
N2—C5 | 1.304 (3) | C1'—H1'3 | 0.9800 |
C1—C2 | 1.501 (4) | C2'—C3' | 1.360 (16) |
C1—H1A | 0.9800 | C2'—H2' | 0.9500 |
C1—H1B | 0.9800 | C3'—C4' | 1.441 (19) |
C1—H1C | 0.9800 | C3'—H3' | 0.9500 |
C2—C3 | 1.319 (4) | C4'—H4' | 0.9500 |
C2—H2 | 0.9500 | C5'—C6' | 1.519 (15) |
C3—C4 | 1.436 (4) | C6'—C7' | 1.368 (16) |
C3—H3 | 0.9500 | C6'—C11' | 1.386 (17) |
C4—H4 | 0.9500 | C7'—C8' | 1.381 (16) |
C5—C6 | 1.490 (3) | C7'—H7' | 0.9500 |
C6—C11 | 1.381 (4) | C8'—C9' | 1.401 (17) |
C6—C7 | 1.400 (3) | C8'—H8' | 0.9500 |
C7—C8 | 1.379 (3) | C9'—C10' | 1.397 (17) |
C7—H7 | 0.9500 | C10'—C11' | 1.374 (16) |
C8—C9 | 1.383 (4) | C10'—H10' | 0.9500 |
C8—H8 | 0.9500 | C11'—H11' | 0.9500 |
C9—C10 | 1.397 (3) | C12'—C13' | 1.534 (18) |
C10—C11 | 1.401 (3) | C12'—H12C | 0.9900 |
C10—H10 | 0.9500 | C12'—H12D | 0.9900 |
C11—H11 | 0.9500 | C13'—C14' | 1.263 (18) |
C12—C13 | 1.518 (3) | C13'—H13' | 0.9500 |
C12—H12A | 0.9900 | C14'—H14C | 0.9500 |
C12—H12B | 0.9900 | C14'—H14D | 0.9500 |
O1'i—Ni1—O1' | 180.0 | H12A—C12—H12B | 108.8 |
O1—Ni1—O1i | 180.00 (4) | C14—C13—C12 | 123.3 (4) |
O1'i—Ni1—N1'i | 82.3 (5) | C14—C13—H13 | 118.4 |
O1'—Ni1—N1'i | 97.7 (5) | C12—C13—H13 | 118.4 |
O1—Ni1—N1'i | 125.4 (3) | C13—C14—H14A | 120.0 |
O1i—Ni1—N1'i | 54.6 (3) | C13—C14—H14B | 120.0 |
O1'i—Ni1—N1' | 97.7 (5) | H14A—C14—H14B | 120.0 |
O1'—Ni1—N1' | 82.3 (5) | C5'—O1'—Ni1 | 114.5 (12) |
N1'i—Ni1—N1' | 180.0 | C9'—O2'—C12' | 125 (2) |
O1—Ni1—N1 | 84.13 (7) | C4'—N1'—N2' | 114.5 (17) |
O1i—Ni1—N1 | 95.87 (7) | C4'—N1'—Ni1 | 128.3 (15) |
O1—Ni1—N1i | 95.87 (7) | N2'—N1'—Ni1 | 115.4 (8) |
O1i—Ni1—N1i | 84.13 (7) | C5'—N2'—N1' | 106.7 (12) |
N1—Ni1—N1i | 180.0 | C2'—C1'—H1'1 | 109.5 |
C5—O1—Ni1 | 109.78 (15) | C2'—C1'—H1'2 | 109.5 |
C9—O2—C12 | 117.6 (3) | H1'1—C1'—H1'2 | 109.5 |
C4—N1—N2 | 117.3 (2) | C2'—C1'—H1'3 | 109.5 |
C4—N1—Ni1 | 128.85 (17) | H1'1—C1'—H1'3 | 109.5 |
N2—N1—Ni1 | 113.84 (14) | H1'2—C1'—H1'3 | 109.5 |
C5—N2—N1 | 107.80 (16) | C3'—C2'—C1' | 119 (2) |
C2—C1—H1A | 109.5 | C3'—C2'—H2' | 120.4 |
C2—C1—H1B | 109.5 | C1'—C2'—H2' | 120.4 |
H1A—C1—H1B | 109.5 | C2'—C3'—C4' | 120.4 (18) |
C2—C1—H1C | 109.5 | C2'—C3'—H3' | 119.8 |
H1A—C1—H1C | 109.5 | C4'—C3'—H3' | 119.8 |
H1B—C1—H1C | 109.5 | N1'—C4'—C3' | 126 (2) |
C3—C2—C1 | 125.3 (3) | N1'—C4'—H4' | 116.9 |
C3—C2—H2 | 117.4 | C3'—C4'—H4' | 116.9 |
C1—C2—H2 | 117.4 | O1'—C5'—N2' | 121.1 (14) |
C2—C3—C4 | 121.9 (2) | O1'—C5'—C6' | 117.6 (13) |
C2—C3—H3 | 119.1 | N2'—C5'—C6' | 121.3 (13) |
C4—C3—H3 | 119.1 | C7'—C6'—C11' | 121.5 (13) |
N1—C4—C3 | 126.8 (3) | C7'—C6'—C5' | 123.1 (15) |
N1—C4—H4 | 116.6 | C11'—C6'—C5' | 114.7 (15) |
C3—C4—H4 | 116.6 | C6'—C7'—C8' | 115.9 (13) |
N2—C5—O1 | 124.2 (2) | C6'—C7'—H7' | 122.1 |
N2—C5—C6 | 118.43 (19) | C8'—C7'—H7' | 122.1 |
O1—C5—C6 | 117.4 (2) | C7'—C8'—C9' | 121.2 (15) |
C11—C6—C7 | 119.07 (18) | C7'—C8'—H8' | 119.4 |
C11—C6—C5 | 120.9 (2) | C9'—C8'—H8' | 119.4 |
C7—C6—C5 | 120.0 (2) | O2'—C9'—C10' | 118.7 (18) |
C8—C7—C6 | 120.0 (2) | O2'—C9'—C8' | 117.2 (18) |
C8—C7—H7 | 120.0 | C10'—C9'—C8' | 124.0 (16) |
C6—C7—H7 | 120.0 | C11'—C10'—C9' | 112.0 (16) |
C7—C8—C9 | 120.8 (2) | C11'—C10'—H10' | 124.0 |
C7—C8—H8 | 119.6 | C9'—C10'—H10' | 124.0 |
C9—C8—H8 | 119.6 | C10'—C11'—C6' | 125.4 (15) |
O2—C9—C8 | 115.2 (3) | C10'—C11'—H11' | 117.3 |
O2—C9—C10 | 124.7 (3) | C6'—C11'—H11' | 117.3 |
C8—C9—C10 | 120.2 (2) | O2'—C12'—C13' | 109.1 (19) |
C9—C10—C11 | 118.5 (2) | O2'—C12'—H12C | 109.9 |
C9—C10—H10 | 120.7 | C13'—C12'—H12C | 109.9 |
C11—C10—H10 | 120.7 | O2'—C12'—H12D | 109.9 |
C6—C11—C10 | 121.4 (2) | C13'—C12'—H12D | 109.9 |
C6—C11—H11 | 119.3 | H12C—C12'—H12D | 108.3 |
C10—C11—H11 | 119.3 | C14'—C13'—C12' | 115.3 (19) |
O2—C12—C13 | 105.3 (3) | C14'—C13'—H13' | 122.3 |
O2—C12—H12A | 110.7 | C12'—C13'—H13' | 122.3 |
C13—C12—H12A | 110.7 | C13'—C14'—H14C | 120.0 |
O2—C12—H12B | 110.7 | C13'—C14'—H14D | 120.0 |
C13—C12—H12B | 110.7 | H14C—C14'—H14D | 120.0 |
N1—Ni1—O1—C5 | 4.34 (13) | N1'i—Ni1—O1'—C5' | −179.7 (12) |
N1i—Ni1—O1—C5 | −175.66 (13) | N1'—Ni1—O1'—C5' | 0.3 (12) |
O1—Ni1—N1—C4 | 177.9 (3) | O1'i—Ni1—N1'—C4' | −18 (2) |
O1i—Ni1—N1—C4 | −2.1 (3) | O1'—Ni1—N1'—C4' | 162 (2) |
O1—Ni1—N1—N2 | −4.24 (12) | O1'i—Ni1—N1'—N2' | 178.1 (9) |
O1i—Ni1—N1—N2 | 175.76 (12) | O1'—Ni1—N1'—N2' | −1.9 (9) |
C4—N1—N2—C5 | −178.9 (2) | C4'—N1'—N2'—C5' | −163.0 (18) |
Ni1—N1—N2—C5 | 3.05 (18) | Ni1—N1'—N2'—C5' | 3.0 (14) |
C1—C2—C3—C4 | 177.7 (4) | C1'—C2'—C3'—C4' | −171 (2) |
N2—N1—C4—C3 | 3.1 (5) | N2'—N1'—C4'—C3' | −30 (4) |
Ni1—N1—C4—C3 | −179.1 (2) | Ni1—N1'—C4'—C3' | 165.8 (19) |
C2—C3—C4—N1 | −176.1 (3) | C2'—C3'—C4'—N1' | −158 (3) |
N1—N2—C5—O1 | 0.8 (3) | Ni1—O1'—C5'—N2' | 2 (2) |
N1—N2—C5—C6 | −178.15 (15) | Ni1—O1'—C5'—C6' | −178.4 (14) |
Ni1—O1—C5—N2 | −4.2 (2) | N1'—N2'—C5'—O1' | −3 (2) |
Ni1—O1—C5—C6 | 174.79 (13) | N1'—N2'—C5'—C6' | 177.0 (16) |
N2—C5—C6—C11 | −179.42 (19) | O1'—C5'—C6'—C7' | 10 (3) |
O1—C5—C6—C11 | 1.6 (3) | N2'—C5'—C6'—C7' | −169.9 (19) |
N2—C5—C6—C7 | 3.0 (3) | O1'—C5'—C6'—C11' | −179 (2) |
O1—C5—C6—C7 | −175.96 (18) | N2'—C5'—C6'—C11' | 1 (3) |
C11—C6—C7—C8 | −1.8 (3) | C11'—C6'—C7'—C8' | 3 (4) |
C5—C6—C7—C8 | 175.8 (2) | C5'—C6'—C7'—C8' | 173 (2) |
C6—C7—C8—C9 | 0.7 (5) | C6'—C7'—C8'—C9' | −4 (4) |
C12—O2—C9—C8 | 179.7 (5) | C12'—O2'—C9'—C10' | −8 (7) |
C12—O2—C9—C10 | −0.5 (9) | C12'—O2'—C9'—C8' | 176 (4) |
C7—C8—C9—O2 | −179.1 (4) | C7'—C8'—C9'—O2' | 179 (4) |
C7—C8—C9—C10 | 1.0 (7) | C7'—C8'—C9'—C10' | 2 (7) |
O2—C9—C10—C11 | 178.5 (5) | O2'—C9'—C10'—C11' | −176 (4) |
C8—C9—C10—C11 | −1.7 (7) | C8'—C9'—C10'—C11' | 0 (6) |
C7—C6—C11—C10 | 1.1 (3) | C9'—C10'—C11'—C6' | −2 (5) |
C5—C6—C11—C10 | −176.5 (2) | C7'—C6'—C11'—C10' | 0 (5) |
C9—C10—C11—C6 | 0.6 (5) | C5'—C6'—C11'—C10' | −171 (2) |
C9—O2—C12—C13 | −174.3 (5) | C9'—O2'—C12'—C13' | 154 (4) |
O2—C12—C13—C14 | −138.1 (6) | O2'—C12'—C13'—C14' | 145 (3) |
Symmetry code: (i) −x, −y, −z. |
Cg1 is the centroid of the C6–C11 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.95 | 2.46 | 2.975 (3) | 114 |
C8—H8···O2ii | 0.95 | 2.55 | 3.466 (5) | 161 |
C11a—H11a···O1a | 0.95 | 2.48 | 2.801 (3) | 100 |
C12—H12b···Cg1iii | 0.95 | 2.88 | 3.781 (4) | 152 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1. |
Acknowledgements
MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University for the provision of laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.
References
Abou-Melha, K. (2021). J. Mol. Struct. 1223, 128949. Google Scholar
Abser, M. N., Karim, M. M., Kauser, A., Parvin, R., Molla, M. E., Yeasmin, Z., Zoghaib, W. M., Al-Rawahi, Z., Carboni, C. & Al-Saidi, G. (2013). Mol. Cryst. Liq. Cryst. 571, 9–18. Web of Science CrossRef CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Al-Qadsy, I., Al-Odayni, A.-B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). Crystals, 11, 110. Google Scholar
Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081–1083. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gond, M. K., Pandey, S. K., Chaudhari, U. K., Sonker, P. K., Bharty, M. K., Ganesan, V., Prashanth, B. & Singh, S. (2022). J. Mol. Struct. 1270, 133886. CSD CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Joshi, S. D., Vagdevi, H. M., Vaidya, V. P. & Gadaginamath, G. S. (2008). Eur. J. Med. Chem. 43, 1989–1996. Web of Science CrossRef PubMed CAS Google Scholar
Khan, K. M., Rasheed, M., Zia-Ullah, Hayat, S., Kaukab, F., Choudhary, M. I., Atta-ur-Rahman & Perveen, S. (2003). Bioorg. Med. Chem. 11, 1381–1387. Google Scholar
Krishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423–4436. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku (2018). RAPID AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sathyadevi, P., Krishnamoorthy, P., Alagesan, M., Thanigaimani, K., Thomas Muthiah, P. & Dharmaraj, N. (2012). Polyhedron, 31, 294–306. Web of Science CSD CrossRef CAS Google Scholar
Saygıdeğer Demir, B., Mahmoudi, G., Sezan, A., Derinöz, E., Nas, E., Saygideger, Y., Zubkov, F. I., Zangrando, E. & Safin, D. A. (2021). J. Inorg. Biochem. 223, 111525. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786. Web of Science CrossRef PubMed CAS Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Miroslaw, B., Safin, D. A. & Echeverría, J. (2020). Inorg. Chim. Acta, 509, 119700. Google Scholar
Vrdoljak, V., Hrenar, T., Rubčić, M., Pavlović, G., Friganović, T. & Cindrić, M. (2023). Int. J. Mol. Sci. 24, 1909. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.