research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[4-(all­yl­oxy)-N′-(but-2-en-1-yl­­idene)benzohydrazidato]nickel(II)

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com

Edited by S. Parkin, University of Kentucky, USA (Received 24 February 2023; accepted 27 March 2023; online 14 April 2023)

In the title complex, [Ni(C14H15N2O2)2], the nickel(II) atom exhibits a square-planar coordination geometry, being coordinated by two negatively charged N,O chelating ligands in a trans configuration, with the metal located on a crystallographic center of symmetry. The X-ray structural characterization showed the complex to be disordered over two orientations with refined occupancies of 0.898 (2) and 0.102 (2). The whole mol­ecule is close to planar, the five- and six-membered rings subtending a dihedral angle of 7.5 (2)°. The crystal packing is supported by C—H⋯π and C—H⋯O inter­actions that form a di-periodic layered network.

1. Chemical context

Hydrazones are a specific class of Schiff-base compounds that are distinguished by the presence of a –CO—NH—N= pharmacophore group, and exhibit a wide range of biological activity (Khan et al., 2003[Khan, K. M., Rasheed, M., Zia-Ullah, Hayat, S., Kaukab, F., Choudhary, M. I., Atta-ur-Rahman & Perveen, S. (2003). Bioorg. Med. Chem. 11, 1381-1387.]; Joshi et al., 2008[Joshi, S. D., Vagdevi, H. M., Vaidya, V. P. & Gadaginamath, G. S. (2008). Eur. J. Med. Chem. 43, 1989-1996.]; Terzioglu & Gürsoy, 2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]). Hydrazone mol­ecules display a number of features, such as their degree of flexibility, a conjugated π-system and an NH unit that readily participates in hydrogen bonding and may be easily deprotonated. In addition, hydrazone mol­ecules behave as bidentate ligands through their carbonyl oxygen and azomethine nitro­gen atoms, and are widely used in coordination chemistry for their ability to form complexes with metal ions in variable oxidation states (Abou-Melha, 2021[Abou-Melha, K. (2021). J. Mol. Struct. 1223, 128949.]; Abser et al., 2013[Abser, M. N., Karim, M. M., Kauser, A., Parvin, R., Molla, M. E., Yeasmin, Z., Zoghaib, W. M., Al-Rawahi, Z., Carboni, C. & Al-Saidi, G. (2013). Mol. Cryst. Liq. Cryst. 571, 9-18.]; Saygıdeğer Demir et al., 2021[Saygıdeğer Demir, B., Mahmoudi, G., Sezan, A., Derinöz, E., Nas, E., Saygideger, Y., Zubkov, F. I., Zangrando, E. & Safin, D. A. (2021). J. Inorg. Biochem. 223, 111525.]; Gond et al., 2022[Gond, M. K., Pandey, S. K., Chaudhari, U. K., Sonker, P. K., Bharty, M. K., Ganesan, V., Prashanth, B. & Singh, S. (2022). J. Mol. Struct. 1270, 133886.]; Velásquez et al., 2020[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Miroslaw, B., Safin, D. A. & Echeverría, J. (2020). Inorg. Chim. Acta, 509, 119700.]). In this respect, the formation of metal complexes plays an important role in enhancing the biological activity of hydrazones (Sathyadevi et al., 2012[Sathyadevi, P., Krishnamoorthy, P., Alagesan, M., Thanigaimani, K., Thomas Muthiah, P. & Dharmaraj, N. (2012). Polyhedron, 31, 294-306.]). In addition, providing the mol­ecule with additional donor sites in this type of ligand can modulate the nuclearity of complexes (Vrdoljak et al., 2023[Vrdoljak, V., Hrenar, T., Rubčić, M., Pavlović, G., Friganović, T. & Cindrić, M. (2023). Int. J. Mol. Sci. 24, 1909.]). As part of our studies in this area, this paper describes the crystal structure of a bis[benzo­hydrazidato]nickel(II) complex.

[Scheme 1]

2. Structural commentary

The nickel(II) cation of the title complex, [Ni(C14H15N2O2)2], is located on a crystallographic inversion centre and exhibits a square-planar coordination geometry, with a trans configuration of the N,O-chelating ligands, as imposed by the crystal symmetry. An ellipsoid plot of the complex is shown Fig. 1[link]. The structural characterization revealed that the complex is disordered over two orientations (Fig. 2[link]) with refined occupancies of 0.898 (2) and 0.102 (2). As a result of the low percentage of the second component, the discussion is limited to the species at higher occupancy (Fig. 1[link]). The Ni—O and Ni—N bond lengths are 1.8432 (16) and 1.8596 (18) Å, respectively, and the O1—Ni—N1 chelating angle is 84.13 (7)°. The C2—C3 and C13—C14 bond lengths are 1.319 (4) and 1.258 (5) Å, respectively, which confirm their double bond character (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). Intra­molecular C4—H4⋯O1 and C11a—H11a⋯O1a inter­actions (Table 1[link]), where the C⋯O distances are 2.975 (3) and 2.801 (3) Å, respectively, reinforce the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.46 2.975 (3) 114
C8—H8⋯O2ii 0.95 2.55 3.466 (5) 161
C11a—H11a⋯O1a 0.95 2.48 2.801 (3) 100
C12—H12b⋯Cg1iii 0.95 2.88 3.781 (4) 152
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
An ellipsoid plot (probability at 50%) of the NiII complex with atom labels for the crystallographically independent part.
[Figure 2]
Figure 2
The two disordered species in the crystal with occupancies of ca 0.90/0.10.

The X-ray diffraction analysis revealed that non-hydrogen atoms of the ligand are nearly coplanar; the maximum deviations being 0.308 (3) and 0.313 (5) Å for the allyl carbon atoms C13 and C14, respectively, on either side of the mol­ecular mean plane. The five- and six-membered rings form a dihedral angle of 7.5 (2)°. This conformation, which is rather common for this type of mol­ecule (Al-Qadsy et al., 2021[Al-Qadsy, I., Al-Odayni, A.-B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). Crystals, 11, 110.]; Al Banna et al., 2022[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081-1083.]; Krishnamoorthy et al., 2012[Krishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423-4436.]), allows for electron delocalization throughout the mol­ecule.

3. Supra­molecular features

Despite the presence of phenyl rings in the ligands, there is no evidence of ππ stacking. The crystal packing is, however, supported by unconventional hydrogen bonds of type C—H⋯O, e.g. C8—H8⋯O2(−x + 1, −y + 1, −z + 1) that connect complexes to form ribbons in the [111] direction (Fig. 3[link], Table 1[link]). In addition, C—H⋯π inter­actions are realized by centrosymmetrically related complexes (H⋯phenyl centroid distance = 2.88 Å, Table 1[link]) and give rise to a polymeric chain in the crystallographic [011] direction (Fig. 4[link]). These inter­actions form a di-periodic architecture, as depicted in Fig. 5[link].

[Figure 3]
Figure 3
Mono-periodic chain formed by unconventional C—H⋯O hydrogen bonds (dotted lines) parallel to the [111] direction.
[Figure 4]
Figure 4
Detail of the crystal packing showing C—H⋯π inter­actions, forming a mono-periodic chain in the [011] direction.
[Figure 5]
Figure 5
The di-periodic network built by C—H⋯O (blue dotted lines) and C—H⋯π (orange dotted lines) inter­actions. Only H atoms involved in the inter­actions are shown.

4. Synthesis and crystallization

To a solution of 4-(all­yloxy)benzohydrazide (0.514 g, 2.6 mmol in 20 mL of ethanol), crotonaldehyde (0.187 g, 2.6 mmol) was added and the mixture was refluxed for an hour. Then a solution of nickel(II) acetate tetra­hydrate (0.335 g, 1.3 mmol in 10 mL of ethanol) was added and refluxing was continued for an additional two hours. The resulting orange precipitate was filtered off and washed with hot ethanol. The product was recrystallized from a mixture of chloro­form and toluene (1:1, v/v), and orange crystals, suitable for X-ray diffraction, were formed. Yield: 0.44 g, 60%, melting point: 511–513 K.

FT–IR (KBr), (cm−1): 1636 for ν(C=N—N=C) moiety. Absence of ν(N—H) and ν(C=O) bands. 1H NMR (CDCl3, 400 MHz), δ: 7.85 (d, 2×2H, J = 8.8 Hz, C-2, 6), 6.85 (d, 2×2H, J = 9.2 Hz, C-3, 5), 6.92 (d, 2×1H, J = 10 Hz, –CH=N,) , 6.41 (m, 2×1H, –CH=CH—CH3), 4.56 (dt, 2×1H, J = 5.2 Hz, =CH—CH3), 1.99 (dd, 2×3H, J = 6.8 Hz, 2.8 Hz, –CH3), 4.56 (d, 2×2H, J = 6.8 Hz, –OCH2), 5.42 (dq, 2×Ha, J = 17.2 Hz, 3.2 Hz, =CH2), 5.30 (dq, 2×Hb, J = 10.8 Hz, 3.2 Hz, =CH2) , 6.05 (m, 2×Hc, –CH=CH2). HRMS (FAB) calculated for C28H30N4O4Ni, [M + H]+: 545.1692, found: 545.1693.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure is disordered, having a second component with a low occupancy of about 10%. The whole component at lower occupancy was refined with DELU and RIGU restraints, with bond lengths restrained to those at higher occupancy by use of the instruction SAME (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The hydrogen atoms were included at idealized positions, using a riding model with fixed isotropic displacement parameters [C—H = 0.95–0.99 Å; Uiso(H) = 1.2 or 1.5 Ueq(C)].

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C14H15N2O2)2]
Mr 545.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.0978 (8), 9.2021 (9), 9.3316 (10)
α, β, γ (°) 84.027 (6), 88.091 (6), 84.170 (6)
V3) 687.83 (12)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.74
Crystal size (mm) 0.29 × 0.19 × 0.11
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.739, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 6566, 3120, 2678
Rint 0.027
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.03
No. of reflections 3120
No. of parameters 333
No. of restraints 196
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.20
Computer programs: RAPID-AUTO (Rigaku, 2018[Rigaku (2018). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Cell refinement: RAPID-AUTO (Rigaku, 2018); data reduction: RAPID-AUTO (Rigaku, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Bis[4-(allyloxy)-N'-(but-2-en-1-ylidene)benzohydrazidato]nickel(II) top
Crystal data top
[Ni(C14H15N2O2)2]Z = 1
Mr = 545.27F(000) = 286
Triclinic, P1Dx = 1.316 Mg m3
a = 8.0978 (8) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.2021 (9) ÅCell parameters from 8347 reflections
c = 9.3316 (10) Åθ = 2.0–27.4°
α = 84.027 (6)°µ = 0.74 mm1
β = 88.091 (6)°T = 173 K
γ = 84.170 (6)°Prism, colorless
V = 687.83 (12) Å30.29 × 0.19 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2678 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.027
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.739, Tmax = 0.988k = 1110
6566 measured reflectionsl = 1212
3120 independent reflections
Refinement top
Refinement on F2196 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0653P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3120 reflectionsΔρmax = 0.64 e Å3
333 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.0000000.0000000.0000000.05459 (14)
O10.0243 (2)0.07363 (16)0.17356 (18)0.0578 (4)0.898 (2)
O20.2723 (5)0.4718 (5)0.6267 (4)0.0674 (10)0.898 (2)
N10.2013 (2)0.07530 (17)0.04863 (19)0.0579 (4)0.898 (2)
N20.2596 (2)0.15342 (17)0.05752 (18)0.0576 (4)0.898 (2)
C10.6805 (6)0.1843 (6)0.3689 (5)0.0823 (13)0.898 (2)
H1A0.7168000.2360810.2907870.123*0.898 (2)
H1B0.6637570.2531880.4558290.123*0.898 (2)
H1C0.7654400.1048130.3888540.123*0.898 (2)
C20.5204 (4)0.1213 (3)0.3251 (3)0.0697 (7)0.898 (2)
H20.4690340.0733710.3945460.084*0.898 (2)
C30.4453 (3)0.1270 (2)0.1979 (2)0.0630 (5)0.898 (2)
H30.4961340.1711400.1253410.076*0.898 (2)
C40.2889 (4)0.0685 (4)0.1661 (4)0.0568 (9)0.898 (2)
H40.2455530.0196210.2391710.068*0.898 (2)
C50.1563 (3)0.1451 (2)0.1675 (2)0.0552 (5)0.898 (2)
C60.1878 (3)0.2237 (2)0.2942 (2)0.0541 (5)0.898 (2)
C70.3212 (3)0.3097 (2)0.2903 (2)0.0596 (5)0.898 (2)
H70.3959560.3127650.2096680.072*0.898 (2)
C80.3441 (4)0.3901 (3)0.4036 (3)0.0620 (6)0.898 (2)
H80.4341570.4491020.3998090.074*0.898 (2)
C90.2377 (6)0.3857 (6)0.5226 (4)0.0582 (9)0.898 (2)
C100.1064 (4)0.2975 (3)0.5305 (3)0.0568 (6)0.898 (2)
H100.0344800.2918040.6130080.068*0.898 (2)
C110.0832 (3)0.2176 (2)0.4142 (3)0.0570 (6)0.898 (2)
H110.0063040.1580310.4178850.068*0.898 (2)
C120.1649 (5)0.4721 (5)0.7530 (4)0.0683 (10)0.898 (2)
H12A0.1750440.3745800.8094710.082*0.898 (2)
H12B0.0476050.4976580.7256360.082*0.898 (2)
C130.2227 (4)0.5876 (3)0.8394 (3)0.0822 (7)0.898 (2)
H130.2503020.6774490.7891980.099*0.898 (2)
C140.2360 (9)0.5703 (6)0.9742 (5)0.159 (3)0.898 (2)
H14A0.2092410.4814431.0268600.190*0.898 (2)
H14B0.2728860.6460341.0232450.190*0.898 (2)
O1'0.1078 (17)0.0981 (16)0.1178 (14)0.061 (3)0.102 (2)
O2'0.262 (3)0.459 (4)0.634 (3)0.052 (6)0.102 (2)
N1'0.1507 (14)0.0071 (12)0.1524 (15)0.054 (3)0.102 (2)
N2'0.1064 (15)0.0573 (14)0.2739 (15)0.055 (3)0.102 (2)
C1'0.664 (4)0.157 (3)0.394 (3)0.055 (5)0.102 (2)
H1'10.7552310.2118670.3692140.082*0.102 (2)
H1'20.6053990.2106400.4765230.082*0.102 (2)
H1'30.7086240.0597560.4180610.082*0.102 (2)
C2'0.545 (2)0.142 (3)0.267 (3)0.066 (5)0.102 (2)
H2'0.5649130.1821540.1798260.079*0.102 (2)
C3'0.4083 (19)0.0693 (19)0.278 (2)0.064 (4)0.102 (2)
H3'0.3807150.0416370.3684400.077*0.102 (2)
C4'0.305 (2)0.034 (3)0.152 (3)0.048 (5)0.102 (2)
H4'0.3551320.0299910.0611330.057*0.102 (2)
C5'0.0340 (17)0.1135 (17)0.2405 (17)0.054 (3)0.102 (2)
C6'0.115 (3)0.199 (2)0.345 (2)0.057 (5)0.102 (2)
C7'0.248 (2)0.2777 (18)0.3065 (17)0.045 (3)0.102 (2)
H7'0.3033540.2737200.2155570.054*0.102 (2)
C8'0.295 (3)0.363 (3)0.408 (2)0.057 (5)0.102 (2)
H8'0.3901590.4150000.3899540.069*0.102 (2)
C9'0.205 (5)0.374 (5)0.538 (3)0.047 (5)0.102 (2)
C10'0.067 (3)0.299 (3)0.578 (3)0.058 (6)0.102 (2)
H10'0.0051570.3067560.6655130.070*0.102 (2)
C11'0.031 (2)0.211 (2)0.475 (2)0.057 (5)0.102 (2)
H11'0.0597680.1529270.4951340.069*0.102 (2)
C12'0.181 (3)0.489 (3)0.766 (2)0.043 (4)0.102 (2)
H12C0.1236090.4034490.8070810.052*0.102 (2)
H12D0.0964110.5744760.7495710.052*0.102 (2)
C13'0.310 (3)0.522 (2)0.872 (2)0.067 (5)0.102 (2)
H13'0.4191930.4743470.8743000.080*0.102 (2)
C14'0.260 (4)0.618 (4)0.956 (4)0.090 (11)0.102 (2)
H14C0.1493870.6634480.9502290.108*0.102 (2)
H14D0.3330530.6439231.0240810.108*0.102 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0642 (2)0.04564 (18)0.0584 (2)0.01815 (13)0.01564 (14)0.00945 (13)
O10.0649 (9)0.0544 (8)0.0601 (9)0.0232 (7)0.0120 (8)0.0138 (7)
O20.082 (2)0.0662 (17)0.0625 (12)0.0312 (13)0.0128 (11)0.0200 (11)
N10.0698 (10)0.0464 (8)0.0617 (10)0.0166 (7)0.0183 (8)0.0099 (7)
N20.0645 (9)0.0519 (8)0.0613 (10)0.0190 (7)0.0158 (8)0.0114 (7)
C10.078 (2)0.075 (3)0.095 (3)0.0150 (15)0.004 (2)0.0096 (17)
C20.0775 (16)0.0562 (13)0.0769 (17)0.0096 (11)0.0073 (14)0.0095 (12)
C30.0672 (13)0.0575 (11)0.0676 (14)0.0134 (10)0.0136 (11)0.0111 (10)
C40.0702 (15)0.041 (2)0.0612 (15)0.0112 (14)0.0175 (12)0.0067 (13)
C50.0619 (11)0.0455 (9)0.0613 (12)0.0135 (8)0.0175 (10)0.0067 (8)
C60.0590 (13)0.0477 (11)0.0592 (12)0.0166 (10)0.0154 (9)0.0073 (9)
C70.0623 (13)0.0613 (12)0.0605 (12)0.0236 (10)0.0126 (10)0.0106 (9)
C80.0648 (16)0.0640 (15)0.0636 (13)0.0295 (11)0.0125 (11)0.0111 (10)
C90.065 (3)0.0514 (15)0.0631 (17)0.0172 (17)0.0226 (13)0.0110 (14)
C100.0567 (15)0.0579 (12)0.0596 (15)0.0159 (11)0.0068 (11)0.0125 (12)
C110.0588 (15)0.0527 (11)0.0640 (17)0.0199 (11)0.0138 (13)0.0089 (13)
C120.084 (2)0.061 (2)0.0657 (17)0.0187 (15)0.0127 (14)0.0189 (14)
C130.109 (2)0.0719 (15)0.0724 (16)0.0207 (15)0.0135 (14)0.0226 (13)
C140.294 (7)0.114 (4)0.083 (2)0.071 (4)0.069 (3)0.011 (2)
O1'0.053 (6)0.068 (8)0.066 (6)0.017 (6)0.012 (5)0.012 (5)
O2'0.033 (8)0.057 (11)0.070 (8)0.009 (7)0.009 (6)0.013 (7)
N1'0.045 (5)0.034 (5)0.084 (7)0.002 (4)0.020 (5)0.014 (5)
N2'0.054 (5)0.044 (6)0.070 (7)0.012 (5)0.010 (4)0.010 (5)
C1'0.053 (8)0.030 (9)0.083 (11)0.007 (7)0.029 (7)0.006 (8)
C2'0.062 (8)0.055 (10)0.084 (12)0.010 (7)0.020 (8)0.010 (9)
C3'0.055 (6)0.051 (8)0.089 (9)0.009 (6)0.022 (6)0.003 (7)
C4'0.046 (6)0.017 (10)0.077 (9)0.005 (5)0.034 (5)0.007 (6)
C5'0.054 (6)0.042 (7)0.068 (7)0.014 (5)0.016 (5)0.007 (5)
C6'0.055 (8)0.056 (9)0.064 (8)0.028 (7)0.000 (6)0.011 (7)
C7'0.037 (7)0.038 (7)0.062 (7)0.018 (6)0.001 (5)0.006 (6)
C8'0.050 (9)0.056 (10)0.070 (8)0.029 (7)0.005 (6)0.011 (7)
C9'0.034 (8)0.048 (11)0.060 (8)0.007 (7)0.005 (5)0.006 (7)
C10'0.044 (9)0.070 (11)0.069 (9)0.033 (8)0.007 (7)0.024 (8)
C11'0.052 (9)0.059 (9)0.067 (8)0.022 (7)0.000 (6)0.013 (7)
C12'0.047 (8)0.022 (8)0.058 (8)0.001 (6)0.009 (6)0.007 (6)
C13'0.071 (10)0.053 (9)0.077 (9)0.003 (7)0.027 (8)0.014 (8)
C14'0.071 (12)0.084 (19)0.12 (2)0.011 (13)0.038 (12)0.051 (18)
Geometric parameters (Å, º) top
Ni1—O1'i1.793 (13)C13—C141.258 (5)
Ni1—O1'1.793 (13)C13—H130.9500
Ni1—O11.8432 (16)C14—H14A0.9500
Ni1—O1i1.8432 (16)C14—H14B0.9500
Ni1—N1'i1.843 (14)O1'—C5'1.287 (15)
Ni1—N1'1.843 (14)O2'—C9'1.363 (16)
Ni1—N11.8596 (18)O2'—C12'1.423 (17)
Ni1—N1i1.8596 (18)N1'—C4'1.301 (17)
O1—C51.308 (2)N1'—N2'1.406 (14)
O2—C91.369 (3)N2'—C5'1.311 (14)
O2—C121.442 (4)C1'—C2'1.509 (18)
N1—C41.289 (4)C1'—H1'10.9800
N1—N21.4034 (19)C1'—H1'20.9800
N2—C51.304 (3)C1'—H1'30.9800
C1—C21.501 (4)C2'—C3'1.360 (16)
C1—H1A0.9800C2'—H2'0.9500
C1—H1B0.9800C3'—C4'1.441 (19)
C1—H1C0.9800C3'—H3'0.9500
C2—C31.319 (4)C4'—H4'0.9500
C2—H20.9500C5'—C6'1.519 (15)
C3—C41.436 (4)C6'—C7'1.368 (16)
C3—H30.9500C6'—C11'1.386 (17)
C4—H40.9500C7'—C8'1.381 (16)
C5—C61.490 (3)C7'—H7'0.9500
C6—C111.381 (4)C8'—C9'1.401 (17)
C6—C71.400 (3)C8'—H8'0.9500
C7—C81.379 (3)C9'—C10'1.397 (17)
C7—H70.9500C10'—C11'1.374 (16)
C8—C91.383 (4)C10'—H10'0.9500
C8—H80.9500C11'—H11'0.9500
C9—C101.397 (3)C12'—C13'1.534 (18)
C10—C111.401 (3)C12'—H12C0.9900
C10—H100.9500C12'—H12D0.9900
C11—H110.9500C13'—C14'1.263 (18)
C12—C131.518 (3)C13'—H13'0.9500
C12—H12A0.9900C14'—H14C0.9500
C12—H12B0.9900C14'—H14D0.9500
O1'i—Ni1—O1'180.0H12A—C12—H12B108.8
O1—Ni1—O1i180.00 (4)C14—C13—C12123.3 (4)
O1'i—Ni1—N1'i82.3 (5)C14—C13—H13118.4
O1'—Ni1—N1'i97.7 (5)C12—C13—H13118.4
O1—Ni1—N1'i125.4 (3)C13—C14—H14A120.0
O1i—Ni1—N1'i54.6 (3)C13—C14—H14B120.0
O1'i—Ni1—N1'97.7 (5)H14A—C14—H14B120.0
O1'—Ni1—N1'82.3 (5)C5'—O1'—Ni1114.5 (12)
N1'i—Ni1—N1'180.0C9'—O2'—C12'125 (2)
O1—Ni1—N184.13 (7)C4'—N1'—N2'114.5 (17)
O1i—Ni1—N195.87 (7)C4'—N1'—Ni1128.3 (15)
O1—Ni1—N1i95.87 (7)N2'—N1'—Ni1115.4 (8)
O1i—Ni1—N1i84.13 (7)C5'—N2'—N1'106.7 (12)
N1—Ni1—N1i180.0C2'—C1'—H1'1109.5
C5—O1—Ni1109.78 (15)C2'—C1'—H1'2109.5
C9—O2—C12117.6 (3)H1'1—C1'—H1'2109.5
C4—N1—N2117.3 (2)C2'—C1'—H1'3109.5
C4—N1—Ni1128.85 (17)H1'1—C1'—H1'3109.5
N2—N1—Ni1113.84 (14)H1'2—C1'—H1'3109.5
C5—N2—N1107.80 (16)C3'—C2'—C1'119 (2)
C2—C1—H1A109.5C3'—C2'—H2'120.4
C2—C1—H1B109.5C1'—C2'—H2'120.4
H1A—C1—H1B109.5C2'—C3'—C4'120.4 (18)
C2—C1—H1C109.5C2'—C3'—H3'119.8
H1A—C1—H1C109.5C4'—C3'—H3'119.8
H1B—C1—H1C109.5N1'—C4'—C3'126 (2)
C3—C2—C1125.3 (3)N1'—C4'—H4'116.9
C3—C2—H2117.4C3'—C4'—H4'116.9
C1—C2—H2117.4O1'—C5'—N2'121.1 (14)
C2—C3—C4121.9 (2)O1'—C5'—C6'117.6 (13)
C2—C3—H3119.1N2'—C5'—C6'121.3 (13)
C4—C3—H3119.1C7'—C6'—C11'121.5 (13)
N1—C4—C3126.8 (3)C7'—C6'—C5'123.1 (15)
N1—C4—H4116.6C11'—C6'—C5'114.7 (15)
C3—C4—H4116.6C6'—C7'—C8'115.9 (13)
N2—C5—O1124.2 (2)C6'—C7'—H7'122.1
N2—C5—C6118.43 (19)C8'—C7'—H7'122.1
O1—C5—C6117.4 (2)C7'—C8'—C9'121.2 (15)
C11—C6—C7119.07 (18)C7'—C8'—H8'119.4
C11—C6—C5120.9 (2)C9'—C8'—H8'119.4
C7—C6—C5120.0 (2)O2'—C9'—C10'118.7 (18)
C8—C7—C6120.0 (2)O2'—C9'—C8'117.2 (18)
C8—C7—H7120.0C10'—C9'—C8'124.0 (16)
C6—C7—H7120.0C11'—C10'—C9'112.0 (16)
C7—C8—C9120.8 (2)C11'—C10'—H10'124.0
C7—C8—H8119.6C9'—C10'—H10'124.0
C9—C8—H8119.6C10'—C11'—C6'125.4 (15)
O2—C9—C8115.2 (3)C10'—C11'—H11'117.3
O2—C9—C10124.7 (3)C6'—C11'—H11'117.3
C8—C9—C10120.2 (2)O2'—C12'—C13'109.1 (19)
C9—C10—C11118.5 (2)O2'—C12'—H12C109.9
C9—C10—H10120.7C13'—C12'—H12C109.9
C11—C10—H10120.7O2'—C12'—H12D109.9
C6—C11—C10121.4 (2)C13'—C12'—H12D109.9
C6—C11—H11119.3H12C—C12'—H12D108.3
C10—C11—H11119.3C14'—C13'—C12'115.3 (19)
O2—C12—C13105.3 (3)C14'—C13'—H13'122.3
O2—C12—H12A110.7C12'—C13'—H13'122.3
C13—C12—H12A110.7C13'—C14'—H14C120.0
O2—C12—H12B110.7C13'—C14'—H14D120.0
C13—C12—H12B110.7H14C—C14'—H14D120.0
N1—Ni1—O1—C54.34 (13)N1'i—Ni1—O1'—C5'179.7 (12)
N1i—Ni1—O1—C5175.66 (13)N1'—Ni1—O1'—C5'0.3 (12)
O1—Ni1—N1—C4177.9 (3)O1'i—Ni1—N1'—C4'18 (2)
O1i—Ni1—N1—C42.1 (3)O1'—Ni1—N1'—C4'162 (2)
O1—Ni1—N1—N24.24 (12)O1'i—Ni1—N1'—N2'178.1 (9)
O1i—Ni1—N1—N2175.76 (12)O1'—Ni1—N1'—N2'1.9 (9)
C4—N1—N2—C5178.9 (2)C4'—N1'—N2'—C5'163.0 (18)
Ni1—N1—N2—C53.05 (18)Ni1—N1'—N2'—C5'3.0 (14)
C1—C2—C3—C4177.7 (4)C1'—C2'—C3'—C4'171 (2)
N2—N1—C4—C33.1 (5)N2'—N1'—C4'—C3'30 (4)
Ni1—N1—C4—C3179.1 (2)Ni1—N1'—C4'—C3'165.8 (19)
C2—C3—C4—N1176.1 (3)C2'—C3'—C4'—N1'158 (3)
N1—N2—C5—O10.8 (3)Ni1—O1'—C5'—N2'2 (2)
N1—N2—C5—C6178.15 (15)Ni1—O1'—C5'—C6'178.4 (14)
Ni1—O1—C5—N24.2 (2)N1'—N2'—C5'—O1'3 (2)
Ni1—O1—C5—C6174.79 (13)N1'—N2'—C5'—C6'177.0 (16)
N2—C5—C6—C11179.42 (19)O1'—C5'—C6'—C7'10 (3)
O1—C5—C6—C111.6 (3)N2'—C5'—C6'—C7'169.9 (19)
N2—C5—C6—C73.0 (3)O1'—C5'—C6'—C11'179 (2)
O1—C5—C6—C7175.96 (18)N2'—C5'—C6'—C11'1 (3)
C11—C6—C7—C81.8 (3)C11'—C6'—C7'—C8'3 (4)
C5—C6—C7—C8175.8 (2)C5'—C6'—C7'—C8'173 (2)
C6—C7—C8—C90.7 (5)C6'—C7'—C8'—C9'4 (4)
C12—O2—C9—C8179.7 (5)C12'—O2'—C9'—C10'8 (7)
C12—O2—C9—C100.5 (9)C12'—O2'—C9'—C8'176 (4)
C7—C8—C9—O2179.1 (4)C7'—C8'—C9'—O2'179 (4)
C7—C8—C9—C101.0 (7)C7'—C8'—C9'—C10'2 (7)
O2—C9—C10—C11178.5 (5)O2'—C9'—C10'—C11'176 (4)
C8—C9—C10—C111.7 (7)C8'—C9'—C10'—C11'0 (6)
C7—C6—C11—C101.1 (3)C9'—C10'—C11'—C6'2 (5)
C5—C6—C11—C10176.5 (2)C7'—C6'—C11'—C10'0 (5)
C9—C10—C11—C60.6 (5)C5'—C6'—C11'—C10'171 (2)
C9—O2—C12—C13174.3 (5)C9'—O2'—C12'—C13'154 (4)
O2—C12—C13—C14138.1 (6)O2'—C12'—C13'—C14'145 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.462.975 (3)114
C8—H8···O2ii0.952.553.466 (5)161
C11a—H11a···O1a0.952.482.801 (3)100
C12—H12b···Cg1iii0.952.883.781 (4)152
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University for the provision of laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, for providing facilities for single-crystal X-ray analyses.

References

First citationAbou-Melha, K. (2021). J. Mol. Struct. 1223, 128949.  Google Scholar
First citationAbser, M. N., Karim, M. M., Kauser, A., Parvin, R., Molla, M. E., Yeasmin, Z., Zoghaib, W. M., Al-Rawahi, Z., Carboni, C. & Al-Saidi, G. (2013). Mol. Cryst. Liq. Cryst. 571, 9–18.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAl-Qadsy, I., Al-Odayni, A.-B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). Crystals, 11, 110.  Google Scholar
First citationBanna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081–1083.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGond, M. K., Pandey, S. K., Chaudhari, U. K., Sonker, P. K., Bharty, M. K., Ganesan, V., Prashanth, B. & Singh, S. (2022). J. Mol. Struct. 1270, 133886.  CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJoshi, S. D., Vagdevi, H. M., Vaidya, V. P. & Gadaginamath, G. S. (2008). Eur. J. Med. Chem. 43, 1989–1996.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Rasheed, M., Zia-Ullah, Hayat, S., Kaukab, F., Choudhary, M. I., Atta-ur-Rahman & Perveen, S. (2003). Bioorg. Med. Chem. 11, 1381–1387.  Google Scholar
First citationKrishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). Dalton Trans. 41, 4423–4436.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2018). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSathyadevi, P., Krishnamoorthy, P., Alagesan, M., Thanigaimani, K., Thomas Muthiah, P. & Dharmaraj, N. (2012). Polyhedron, 31, 294–306.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaygıdeğer Demir, B., Mahmoudi, G., Sezan, A., Derinöz, E., Nas, E., Saygideger, Y., Zubkov, F. I., Zangrando, E. & Safin, D. A. (2021). J. Inorg. Biochem. 223, 111525.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Miroslaw, B., Safin, D. A. & Echeverría, J. (2020). Inorg. Chim. Acta, 509, 119700.  Google Scholar
First citationVrdoljak, V., Hrenar, T., Rubčić, M., Pavlović, G., Friganović, T. & Cindrić, M. (2023). Int. J. Mol. Sci. 24, 1909.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds