research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N-[2-(5-methyl­furan-2-yl)phen­yl]-3-nitro-N-[(3-nitro­phen­yl)sulfon­yl]benzene­sulfonamide

crossmark logo

aExcellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, cZelinsky Institute of Organic Chemistry of RAS, 4, 7 Leninsky Prospect, 119991 Moscow, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus, 26470 Eskisehir, Türkiye, and fDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 13 April 2023; accepted 18 April 2023; online 25 April 2023)

In the title compound, C23H17N3O9S2, C—H⋯O hydrogen bonds link adjacent mol­ecules in a three-dimensional network, while ππ stacking inter­actions, with centroid–centroid distances of 3.8745 (9) Å, between the furan and an arene ring of one of the two (3-nitro­phen­yl)sulfonyl groups, result in chains parallel to the a axis. The Hirshfeld surface analysis indicates that O⋯H/H⋯O (40.1%), H⋯H (27.5%) and C⋯H/H⋯C (12.4%) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

The synthesis of sulfonamides has been given considerable attention in the literature. A large number of reports are based on various chemical and physical properties, methods of synthesis and application of sulfonamides (Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]). The electronic and structural properties of the sulfon­amide moiety make it a bioisostere of such compounds as urea, thio­urea, carbamates and sulfamides (Reitz et al., 2009[Reitz, A. B., Smith, G. R. & Parker, M. H. (2009). Expert Opin. Ther. Pat. 19, 1449-1453.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]). Linear and cyclic compounds containing sulfonamide fragments have a wide range of biological activity – they possess anti­bacterial properties (Yun et al., 2012[Yun, M. K., Wu, Y., Li, Z., Zhao, Y., Waddell, M. B., Ferreira, A. M., Lee, R. E., Bashford, D. & White, S. W. (2012). Science, 335, 1110-1114.]; Nadirova et al., 2021[Nadirova, M. A., Khanova, A. V., Zubkov, F. I., Mertsalov, D. F., Kolesnik, I. A., Petkevich, S. K., Potkin, V. I., Shetnev, A. A., Presnukhina, S. I., Sinelshchikova, A. A., Grigoriev, M. S. & Zaytsev, V. P. (2021). Tetrahedron, 85, 132032-132049.]), show diuretic activity (Logemann et al., 1959[Logemann, W., Giraldi, P. N. & Parenti, M. A. (1959). Nature, 184, 1711.]; DeStevens et al., 1959[DeStevens, G., Halamandaris, A., Ricca, S. Jr & Werner, L. H. (1959). J. Med. Chem. 1, 565-576.]), are active against seizures (Thiry et al., 2008[Thiry, A., Dogné, J.-M., Supuran, C. T. & Masereel, B. (2008). Curr. Pharm. Des. 14, 661-671.]) and inhibit various enzymes like human leukocyte elastase and cathepsin G, a HIV-1 protease (Supuran et al., 2003[Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558.]). Sulfonamides are also used as fungicidal (Chohan et al., 2006[Chohan, Z. H., Shaikh, U., Rauf, A. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 741-748.], 2010[Chohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). Eur. J. Med. Chem. 45, 1189-1199.]) and insecticidal mixtures. The most widely used furan-substituted sul­fonyl­amide is Furosemide, a loop diuretic medication used to treat fluid build-up due to heart failure, kidney disease or liver scarring. Typically, furan-substituted monosulfamides are obtained by treatment of the amines with the corresponding sulfonyl chlorides (Pilipenko et al., 2012[Pilipenko, A. S., Mel'chin, V. V., Trushkov, I. V., Cheshkov, D. A. & Butin, A. V. (2012). Tetrahedron, 68, 619-627.]; Butin et al., 2006[Butin, A. V. (2006). Tetrahedron Lett. 47, 4113-4116.]; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.]). It turned out unexpectedly that the inter­action of 2-(α-fur­yl)aniline with sulfochloride containing the electron-withdrawing 3-nitro­phenyl group under the same conditions gives a double sulfaryl­ation product (Fig. 1[link]), which is possible only with the use of strong bases (Bartsch et al., 1977[Bartsch, R. A., Allaway, J. R., Yandell, R. B., Lee, J. G. & McCann, D. W. (1977). J. Chem. Eng. Data, 22, 453.]; Li et al., 2022[Li, D., Bao, X., Pang, J., Hu, X., Wang, L., Wang, J., Yang, Z., Xu, L., Wang, S., Weng, Q., Cui, S. & Hou, T. (2022). J. Med. Chem. 65, 15710-15724.]). The obtained product can serve as a compound for studying furan fragment-opening (Pilipenko et al., 2012[Pilipenko, A. S., Mel'chin, V. V., Trushkov, I. V., Cheshkov, D. A. & Butin, A. V. (2012). Tetrahedron, 68, 619-627.]; Butin et al., 2006[Butin, A. V. (2006). Tetrahedron Lett. 47, 4113-4116.]) or the Diels–Alder reactions of furans (Borisova et al., 2018a[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840-4850.],b[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850-2853.]; Krishna et al., 2022[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797-863.]; Zubkov et al., 2007[Zubkov, F. I., Zaitsev, V. P., Orlova, A. A., Peregudov, A. S., Mikhailova, N. M. & Varlamov, A. V. (2007). Russ. J. Org. Chem. 43, 1202-1208.]) and for studying biological activity. On the other hand, inter­molecular noncovalent inter­actions organize the mol­ecular aggregates, catalytic inter­mediates, etc., which play a critical role in the functional properties of heterocyclic com­pounds (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.], 2022[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019-1031.]; Ma et al., 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmoudi, et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763-4772.]; Mahmudov et al., 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.], 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]).

[Scheme 1]
[Figure 1]
Figure 1
One-pot synthesis of N-[2-(5-methyl­furan-2-yl)phen­yl]-3-nitro-N-[(3-nitro­phen­yl)sulfon­yl]benzene­sulfonamide.

2. Structural commentary

In the title compound (Fig. 2[link]), the angle between the planes of the arene rings (C12–C17 and C18–C23) of the (3-nitro­phen­yl)sulfonyl groups are 40.87 (7)°. The furan ring (O1/C7–C10) is inclined at angles of 51.04 (8) and 12.78 (8)° with respect to the arene rings (C12–C17 and C18–C23) of the (3-nitro­phen­yl)sulfonyl groups, while it makes a dihedral angle of 20.77 (8)° with the plane of the arene ring (C1–C6) attached to the furan ring. The arene ring attached to the furan ring makes dihedral angles of 33.19 (7) and 17.84 (7)°, res­pectively, with the arene rings of the 3-nitro­phen­yl)sulfonyl groups. The geometric properties of the title compound are normal and consistent with those of related compounds listed in the Database survey (Section 4[link]).

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labelling and with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of the title compound, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds forming the three-dimensional network (Tables 1[link] and 2[link]), while ππ stacking inter­actions {Cg1⋯Cg4iv = 3.8745 (9) Å [symmetry code: (iv) x + 1, y, z], where Cg1 and Cg4 are the centroids of the furan ring (atoms O1/C7–C10) and the arene ring (atoms C18–C23) of one of the two (3-nitro­phen­yl)sulfonyl groups; slippage = 1.389 Å} form chains along the a axis (Figs. 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.95 2.31 3.226 (2) 161
C16—H16⋯O2ii 0.95 2.53 3.0874 (18) 118
C19—H19⋯O4iii 0.95 2.58 2.981 (2) 106
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Summary of short inter­atomic contacts (Å).

Contact Distance Symmetry operation
N2⋯O3 3.03 x + 2, −y + 1, −z + 1
H19⋯H15 2.58 x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]
H16⋯O2 2.53 x + 1, −y + 1, −z + 1
O5⋯H17 2.62 x + 1, y, z
O4⋯H3 2.31 x + [{5\over 2}], y − [{1\over 2}], −z + [{3\over 2}]
H4⋯H8 2.46 x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]
H9⋯O8 2.67 x + 1, −y + 2, −z + 1
[Figure 3]
Figure 3
The crystal packing along the a axis, showing the C—H⋯O hydrogen-bond network and the ππ stacking inter­actions.
[Figure 4]
Figure 4
The crystal packing diagram along the b axis, showing the inter­molecular C—H⋯O hydrogen bonds.

Hirshfeld surfaces were generated for the title mol­ecule using CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The dnorm mappings was performed in the range from −0.3170 to +1.1777 a.u. The C—H⋯O inter­actions are indicated by red areas on the Hirshfeld surfaces [Figs. 5[link](a) and 5(b)]. Fingerprint plots (Fig. 6[link]) reveal that, while O⋯H/H⋯O inter­actions (40.1%) make the largest contributions to the surface contacts (Tables 1[link] and 2[link]), H⋯H (27.5%) and C⋯H/H⋯C (12.4%) contacts are also important. Other less notable linkages are O⋯C/C⋯O (6.0%), O⋯O (5.7%), C⋯C (4.9%), O⋯N/N⋯O (2.0%), N⋯H/H⋯N (1.2%), S⋯C/C⋯S (0.1%) and S⋯O/O⋯S (0.1%).

[Figure 5]
Figure 5
(a) Front and (b) back views of the three-dimensional Hirshfeld surface, with some inter­molecular C—H⋯O inter­actions shown.
[Figure 6]
Figure 6
The 2D fingerprint plots for the title mol­ecule, showing (a) all inter­actions, and delineated into (b) O⋯H/H⋯O, (c) H⋯H and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

The nine related compounds found as a result of the search for `N-(methane­sulfon­yl)-N-methyl methane­sulfonamide' in the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) are for N-(2-formyl­phen­yl)-4-methyl-N-[(4-methyl­phen­yl)sulfon­yl]benzene­sul­fon­amide, i.e. CSD refcodes JOBTIF (Kim, 2014[Kim, S.-G. (2014). Acta Cryst. E70, o660.]), CEGMIM (Mughal et al., 2012a[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012a). Acta Cryst. E68, o2973.]), YAXKAL (Taher & Smith, 2012a[Taher, A. & Smith, V. J. (2012a). Acta Cryst. E68, o1136.]), OCABUR (Abbassi et al., 2011[Abbassi, N., Rakib, E. M., Hannioui, A. & Zouihri, H. (2011). Acta Cryst. E67, o3304.]), CEGSUE (Mughal et al., 2012b[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012b). Acta Cryst. E68, o3013.]), EFASUB (Taher & Smith, 2012b[Taher, A. & Smith, V. J. (2012b). Acta Cryst. E68, o3362.]), PONZIC (Rizzoli et al., 2009[Rizzoli, C., Vicini, P. & Incerti, M. (2009). Acta Cryst. E65, o416-o417.]), AYUPUG (Arshad et al., 2011[Arshad, M. N., Khan, I. U., Holman, K. T., Asiri, A. M. & Rafique, H. M. (2011). Acta Cryst. E67, o2356.]) and ROGJON (Li & Song, 2008[Li, X.-Y. & Song, Z.-W. (2008). Acta Cryst. E64, o1906.]).

In JOBTIF (space group P21/n), mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. In CEGMIM (space group Pbca), mol­ecules are connected by C—H⋯O inter­actions into sheets in the ab plane. In YAXKAL (space group P[\overline{1}]), mol­ecules associate via pairs of N—H⋯N hydrogen bonds, forming a centrosymmetric eight-membered {⋯HNCN}2 synthon. The crystal structure of OCABUR (space group P21/c) is stabilized by inter­molecular C—H⋯O hydrogen bonds. In the crystal of CEGSUE (space group P[\overline{1}]), the only possible directional inter­actions are very weak C—H⋯π inter­actions and very weak ππ stacking between parallel methyl­phenyl rings. In EFASUB (space group C2/c), mol­ecules associate via N—H⋯N and N—H⋯O hydrogen bonds, forming extended hydrogen-bonded sheets that lie parallel to the bc plane. The N—H⋯N hydrogen bonds propagate along the b-axis direction, while the N— H⋯O hydrogen bonds propagate along the c-axis direction. In the crystal packing of PONZIC (space group P[\overline{1}]), mol­ecules are linked into chains parallel to the a axis by inter­molecular C—H⋯O hydrogen bonds and ππ stacking inter­actions. In the crystal structure of AYUPUG (space group P21/c), weak C—H⋯O inter­actions connect the mol­ecules in a zigzag manner along the a axis. In ROGJON (space group Pbca), the crystal sructure exhibits weak inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and ππ inter­actions.

5. Synthesis and crystallization

To a solution of 2-(5-methyl­furan-2-yl)aniline (1.09 g, 0.0058 mol) in 7 ml of pyridine under stirring and cooling in an ice-water bath, m-nitro­benzene­sulfonyl chloride (2.59 g, 0.0117 mol) was added gradually. The mixture was stirred for 7 h and after completion of the reaction [thin-layer chromatography (TLC) monitoring], the mixture was poured into 90 ml of 6 M hydro­chloric acid. The oil which separated was washed with water until it crystallized. The crystals were filtered off, dried and crystallized from an ethanol/di­methyl­formamide (DMF) mixture to give the target disulfonamide as a yellow solid. A single crystal of N-[2-(5-methyl­furan-2-yl)phen­yl]-3-nitro-N-[(3-nitro­phen­yl)sulfon­yl]benzene­sulfonamide was obtained by slow crystallization from an ethanol/DMF mixture (yield 62%, 1.94 g; m.p. 467–469 K). IR (KBr), ν (cm−1): 1176 (νs SO2), 1352 (br, νas SO2, νs NO2), 1530 (νas NO2). 1H NMR (600.2 MHz, DMSO-d6) (J, Hz): δ 8.60 (dd, J = 8.1, 1.5 Hz, 2H), 8.36 (t, J = 1.5 Hz, 2H), 8.25 (d, J = 8.1 Hz, 2H), 7.94 (t, J = 8.1 Hz, 2H), 7.75 (dd, J = 8.1, 1.5 Hz, 1H), 7.59 (dt, J = 8.1, 1.0 Hz, 1H), 7.38 (dt, J = 8.1, 1.0 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 6.60 (d, J = 3.5 Hz, 1H), 5.81 (d, J = 3.5 Hz, 1H), 1.86 (s, 3H). 13C{1H} NMR (150.9 MHz, DMSO-d6): δ 153.2 (2C), 148.2, 147.9, 140.4, 134.9, 133.8, 132.2, 132.1, 132.0, 129.7, 129.0, 128.8, 123.4, 112.0, 108.5, 13.3; MS (ESI) m/z: [M + H]+ 544.37. Analysis calculated (%) for C23H17N3O9S2: C 50.82, H 3.15, N 7.73, S 11.80; found: C 51.07, H 3.17, N 7.56, S 12.03.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and included as riding contributions with isotropic displacement parameters fixed at 1.2Ueq(C) (1.5 for the methyl groups).

Table 3
Experimental details

Crystal data
Chemical formula C23H17N3O9S2
Mr 543.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.10683 (6), 19.20010 (15), 14.49754 (10)
β (°) 90.8104 (7)
V3) 2256.35 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.71
Crystal size (mm) 0.33 × 0.12 × 0.11
 
Data collection
Diffractometer Rigaku XtaLAB Synergy Dualflex HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.411, 0.725
No. of measured, independent and observed [I > 2σ(I)] reflections 30531, 4812, 4547
Rint 0.055
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.07
No. of reflections 4812
No. of parameters 335
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.50
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXL2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXL2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

N-[2-(5-Methylfuran-2-yl)phenyl]-3-nitro-N-[(3-nitrophenyl)sulfonyl]benzenesulfonamide top
Crystal data top
C23H17N3O9S2F(000) = 1120
Mr = 543.52Dx = 1.600 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.10683 (6) ÅCell parameters from 20996 reflections
b = 19.20010 (15) Åθ = 3.8–77.7°
c = 14.49754 (10) ŵ = 2.71 mm1
β = 90.8104 (7)°T = 100 K
V = 2256.35 (3) Å3Prismatic needle, yellow
Z = 40.33 × 0.12 × 0.11 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex HyPix
diffractometer
4547 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.055
φ and ω scansθmax = 77.8°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
h = 810
Tmin = 0.411, Tmax = 0.725k = 2424
30531 measured reflectionsl = 1818
4812 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.9267P]
where P = (Fo2 + 2Fc2)/3
4812 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74119 (4)0.62643 (2)0.56167 (2)0.01729 (11)
S20.51739 (4)0.68042 (2)0.70267 (2)0.01806 (11)
O10.97431 (14)0.86445 (5)0.68665 (7)0.0223 (2)
O20.59124 (13)0.63170 (6)0.50939 (7)0.0225 (2)
O30.89353 (13)0.65098 (5)0.52573 (7)0.0220 (2)
O41.14629 (16)0.36623 (7)0.68499 (9)0.0341 (3)
O51.23988 (15)0.46683 (7)0.64260 (9)0.0340 (3)
O60.43825 (13)0.61417 (6)0.70008 (8)0.0241 (2)
O70.54611 (13)0.71571 (6)0.78814 (7)0.0239 (2)
O80.32788 (17)0.96375 (7)0.51794 (10)0.0377 (3)
O90.47463 (18)0.94819 (6)0.64251 (9)0.0357 (3)
N10.71051 (15)0.67238 (6)0.65814 (8)0.0179 (2)
N21.12743 (17)0.42581 (7)0.65689 (9)0.0247 (3)
N30.38951 (18)0.92648 (7)0.57790 (10)0.0278 (3)
C10.85072 (17)0.68131 (7)0.72031 (10)0.0175 (3)
C20.94303 (17)0.74318 (7)0.71871 (10)0.0186 (3)
C31.07789 (18)0.74767 (8)0.78022 (10)0.0220 (3)
H31.14150.78920.78210.026*
C41.12052 (19)0.69311 (9)0.83828 (11)0.0239 (3)
H41.21420.69720.87800.029*
C51.02746 (19)0.63238 (8)0.83891 (10)0.0224 (3)
H51.05690.59490.87870.027*
C60.89046 (18)0.62723 (7)0.78039 (10)0.0200 (3)
H60.82380.58660.78150.024*
C70.90565 (18)0.80227 (8)0.65835 (10)0.0199 (3)
C80.82198 (19)0.81274 (8)0.57740 (11)0.0224 (3)
H80.76380.77860.54240.027*
C90.8383 (2)0.88476 (8)0.55513 (11)0.0242 (3)
H90.79290.90770.50250.029*
C100.9303 (2)0.91413 (8)0.62300 (11)0.0238 (3)
C110.9849 (2)0.98641 (8)0.64350 (12)0.0303 (4)
H11A0.92451.00430.69660.045*
H11B0.96281.01610.58970.045*
H11C1.10340.98660.65770.045*
C120.77285 (17)0.53925 (7)0.59476 (10)0.0183 (3)
C130.93448 (18)0.51767 (8)0.61163 (10)0.0193 (3)
H131.02500.54870.60530.023*
C140.95731 (18)0.44913 (8)0.63798 (10)0.0201 (3)
C150.8286 (2)0.40242 (8)0.64729 (10)0.0227 (3)
H150.84910.35570.66580.027*
C160.66862 (19)0.42513 (8)0.62896 (10)0.0228 (3)
H160.57880.39370.63420.027*
C170.63988 (18)0.49387 (8)0.60302 (10)0.0203 (3)
H170.53060.50970.59110.024*
C180.41201 (17)0.73702 (7)0.62594 (10)0.0190 (3)
C190.44463 (18)0.80786 (8)0.63208 (10)0.0203 (3)
H190.52250.82580.67550.024*
C200.35845 (18)0.85112 (8)0.57207 (11)0.0219 (3)
C210.24370 (19)0.82640 (9)0.50838 (11)0.0248 (3)
H210.18870.85750.46720.030*
C220.21043 (19)0.75567 (9)0.50568 (11)0.0254 (3)
H220.12980.73810.46350.030*
C230.29462 (18)0.71020 (8)0.56445 (11)0.0221 (3)
H230.27240.66160.56270.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01830 (18)0.01684 (18)0.01676 (18)0.00090 (11)0.00114 (13)0.00100 (11)
S20.01788 (18)0.01795 (18)0.01841 (18)0.00142 (12)0.00264 (12)0.00124 (12)
O10.0280 (5)0.0168 (5)0.0222 (5)0.0019 (4)0.0030 (4)0.0000 (4)
O20.0224 (5)0.0235 (5)0.0213 (5)0.0036 (4)0.0038 (4)0.0022 (4)
O30.0243 (5)0.0196 (5)0.0222 (5)0.0006 (4)0.0055 (4)0.0000 (4)
O40.0361 (7)0.0335 (6)0.0329 (6)0.0170 (5)0.0079 (5)0.0117 (5)
O50.0209 (6)0.0362 (7)0.0449 (7)0.0040 (5)0.0013 (5)0.0015 (5)
O60.0231 (5)0.0197 (5)0.0296 (6)0.0012 (4)0.0038 (4)0.0043 (4)
O70.0242 (5)0.0280 (6)0.0195 (5)0.0049 (4)0.0022 (4)0.0011 (4)
O80.0431 (7)0.0264 (6)0.0436 (7)0.0081 (5)0.0027 (6)0.0128 (5)
O90.0519 (8)0.0216 (6)0.0337 (7)0.0010 (5)0.0018 (6)0.0020 (5)
N10.0170 (6)0.0182 (6)0.0184 (6)0.0010 (4)0.0010 (4)0.0020 (4)
N20.0251 (7)0.0284 (7)0.0207 (6)0.0082 (5)0.0039 (5)0.0002 (5)
N30.0324 (7)0.0216 (7)0.0297 (7)0.0050 (5)0.0085 (6)0.0032 (5)
C10.0161 (6)0.0195 (7)0.0169 (6)0.0005 (5)0.0016 (5)0.0019 (5)
C20.0188 (6)0.0190 (7)0.0181 (6)0.0002 (5)0.0042 (5)0.0008 (5)
C30.0206 (7)0.0234 (7)0.0220 (7)0.0033 (6)0.0016 (5)0.0023 (6)
C40.0205 (7)0.0304 (8)0.0207 (7)0.0003 (6)0.0009 (5)0.0005 (6)
C50.0243 (7)0.0245 (7)0.0184 (7)0.0035 (6)0.0002 (6)0.0022 (5)
C60.0217 (7)0.0189 (7)0.0194 (7)0.0006 (5)0.0036 (5)0.0003 (5)
C70.0205 (7)0.0172 (6)0.0221 (7)0.0010 (5)0.0049 (5)0.0022 (5)
C80.0243 (7)0.0195 (7)0.0235 (7)0.0012 (5)0.0011 (6)0.0016 (5)
C90.0265 (7)0.0206 (7)0.0257 (8)0.0007 (6)0.0033 (6)0.0041 (6)
C100.0276 (7)0.0185 (7)0.0257 (7)0.0014 (6)0.0083 (6)0.0022 (6)
C110.0398 (9)0.0199 (7)0.0315 (8)0.0020 (6)0.0061 (7)0.0004 (6)
C120.0197 (7)0.0173 (6)0.0179 (6)0.0013 (5)0.0017 (5)0.0019 (5)
C130.0186 (7)0.0210 (7)0.0182 (6)0.0007 (5)0.0023 (5)0.0019 (5)
C140.0209 (7)0.0221 (7)0.0172 (6)0.0044 (5)0.0014 (5)0.0021 (5)
C150.0312 (8)0.0187 (7)0.0181 (7)0.0004 (6)0.0009 (6)0.0011 (5)
C160.0266 (7)0.0218 (7)0.0199 (7)0.0060 (6)0.0001 (6)0.0011 (5)
C170.0193 (7)0.0225 (7)0.0190 (7)0.0018 (5)0.0001 (5)0.0020 (5)
C180.0167 (6)0.0197 (7)0.0207 (7)0.0030 (5)0.0040 (5)0.0005 (5)
C190.0205 (7)0.0202 (7)0.0202 (7)0.0021 (5)0.0042 (5)0.0009 (5)
C200.0229 (7)0.0187 (7)0.0243 (7)0.0039 (5)0.0072 (6)0.0019 (6)
C210.0217 (7)0.0293 (8)0.0235 (7)0.0071 (6)0.0040 (6)0.0048 (6)
C220.0199 (7)0.0312 (8)0.0250 (7)0.0024 (6)0.0006 (6)0.0011 (6)
C230.0182 (7)0.0237 (7)0.0245 (7)0.0005 (5)0.0021 (5)0.0014 (6)
Geometric parameters (Å, º) top
S1—O21.4269 (11)C8—C91.427 (2)
S1—O31.4274 (11)C8—H80.9500
S1—N11.6752 (12)C9—C101.350 (2)
S1—C121.7591 (15)C9—H90.9500
S2—O61.4249 (11)C10—C111.485 (2)
S2—O71.4283 (11)C11—H11A0.9800
S2—N11.7089 (12)C11—H11B0.9800
S2—C181.7667 (15)C11—H11C0.9800
O1—C101.3709 (19)C12—C171.393 (2)
O1—C71.3773 (18)C12—C131.393 (2)
O4—N21.2231 (18)C13—C141.382 (2)
O5—N21.2247 (19)C13—H130.9500
O8—N31.227 (2)C14—C151.384 (2)
O9—N31.228 (2)C15—C161.390 (2)
N1—C11.4507 (18)C15—H150.9500
N2—C141.4720 (19)C16—C171.391 (2)
N3—C201.471 (2)C16—H160.9500
C1—C61.390 (2)C17—H170.9500
C1—C21.404 (2)C18—C191.388 (2)
C2—C31.404 (2)C18—C231.393 (2)
C2—C71.462 (2)C19—C201.385 (2)
C3—C41.385 (2)C19—H190.9500
C3—H30.9500C20—C211.385 (2)
C4—C51.389 (2)C21—C221.385 (2)
C4—H40.9500C21—H210.9500
C5—C61.392 (2)C22—C231.392 (2)
C5—H50.9500C22—H220.9500
C6—H60.9500C23—H230.9500
C7—C81.362 (2)
O2—S1—O3121.18 (7)C10—C9—H9126.5
O2—S1—N1105.71 (6)C8—C9—H9126.5
O3—S1—N1105.68 (6)C9—C10—O1109.63 (13)
O2—S1—C12109.40 (7)C9—C10—C11134.12 (15)
O3—S1—C12106.87 (6)O1—C10—C11116.20 (14)
N1—S1—C12107.24 (6)C10—C11—H11A109.5
O6—S2—O7120.94 (7)C10—C11—H11B109.5
O6—S2—N1108.91 (6)H11A—C11—H11B109.5
O7—S2—N1103.39 (6)C10—C11—H11C109.5
O6—S2—C18108.60 (7)H11A—C11—H11C109.5
O7—S2—C18109.02 (7)H11B—C11—H11C109.5
N1—S2—C18104.78 (6)C17—C12—C13121.75 (13)
C10—O1—C7107.60 (12)C17—C12—S1120.58 (11)
C1—N1—S1117.17 (9)C13—C12—S1117.67 (11)
C1—N1—S2117.94 (9)C14—C13—C12116.99 (13)
S1—N1—S2120.70 (7)C14—C13—H13121.5
O4—N2—O5124.61 (14)C12—C13—H13121.5
O4—N2—C14117.32 (13)C13—C14—C15123.07 (14)
O5—N2—C14118.07 (13)C13—C14—N2117.55 (13)
O8—N3—O9124.14 (15)C15—C14—N2119.37 (13)
O8—N3—C20117.73 (15)C14—C15—C16118.73 (14)
O9—N3—C20118.13 (13)C14—C15—H15120.6
C6—C1—C2121.55 (13)C16—C15—H15120.6
C6—C1—N1118.27 (12)C15—C16—C17120.10 (14)
C2—C1—N1120.18 (12)C15—C16—H16119.9
C3—C2—C1116.87 (13)C17—C16—H16119.9
C3—C2—C7119.05 (13)C16—C17—C12119.34 (14)
C1—C2—C7124.08 (13)C16—C17—H17120.3
C4—C3—C2121.68 (14)C12—C17—H17120.3
C4—C3—H3119.2C19—C18—C23122.06 (14)
C2—C3—H3119.2C19—C18—S2118.18 (12)
C3—C4—C5120.55 (14)C23—C18—S2119.69 (11)
C3—C4—H4119.7C20—C19—C18116.97 (14)
C5—C4—H4119.7C20—C19—H19121.5
C4—C5—C6118.98 (14)C18—C19—H19121.5
C4—C5—H5120.5C19—C20—C21122.77 (14)
C6—C5—H5120.5C19—C20—N3118.00 (14)
C1—C6—C5120.32 (13)C21—C20—N3119.22 (14)
C1—C6—H6119.8C20—C21—C22118.91 (15)
C5—C6—H6119.8C20—C21—H21120.5
C8—C7—O1108.84 (13)C22—C21—H21120.5
C8—C7—C2136.62 (14)C21—C22—C23120.27 (15)
O1—C7—C2114.51 (13)C21—C22—H22119.9
C7—C8—C9106.95 (14)C23—C22—H22119.9
C7—C8—H8126.5C22—C23—C18118.97 (14)
C9—C8—H8126.5C22—C23—H23120.5
C10—C9—C8106.96 (14)C18—C23—H23120.5
O2—S1—N1—C1174.19 (10)O2—S1—C12—C1725.39 (14)
O3—S1—N1—C144.58 (11)O3—S1—C12—C17158.26 (11)
C12—S1—N1—C169.16 (11)N1—S1—C12—C1788.80 (13)
O2—S1—N1—S229.26 (10)O2—S1—C12—C13154.26 (11)
O3—S1—N1—S2158.87 (8)O3—S1—C12—C1321.39 (13)
C12—S1—N1—S287.39 (9)N1—S1—C12—C1391.55 (12)
O6—S2—N1—C1112.41 (11)C17—C12—C13—C140.6 (2)
O7—S2—N1—C117.40 (12)S1—C12—C13—C14179.70 (10)
C18—S2—N1—C1131.55 (11)C12—C13—C14—C150.4 (2)
O6—S2—N1—S143.96 (10)C12—C13—C14—N2179.44 (12)
O7—S2—N1—S1173.77 (8)O4—N2—C14—C13176.14 (13)
C18—S2—N1—S172.08 (9)O5—N2—C14—C134.6 (2)
S1—N1—C1—C681.02 (15)O4—N2—C14—C153.7 (2)
S2—N1—C1—C676.19 (15)O5—N2—C14—C15175.51 (14)
S1—N1—C1—C298.73 (14)C13—C14—C15—C160.3 (2)
S2—N1—C1—C2104.06 (13)N2—C14—C15—C16179.83 (13)
C6—C1—C2—C30.4 (2)C14—C15—C16—C170.9 (2)
N1—C1—C2—C3179.36 (12)C15—C16—C17—C120.7 (2)
C6—C1—C2—C7178.88 (13)C13—C12—C17—C160.1 (2)
N1—C1—C2—C71.4 (2)S1—C12—C17—C16179.75 (11)
C1—C2—C3—C41.5 (2)O6—S2—C18—C19166.10 (11)
C7—C2—C3—C4179.21 (14)O7—S2—C18—C1932.49 (13)
C2—C3—C4—C51.6 (2)N1—S2—C18—C1977.64 (12)
C3—C4—C5—C60.1 (2)O6—S2—C18—C2311.09 (14)
C2—C1—C6—C52.1 (2)O7—S2—C18—C23144.70 (12)
N1—C1—C6—C5177.64 (13)N1—S2—C18—C23105.16 (12)
C4—C5—C6—C11.9 (2)C23—C18—C19—C201.9 (2)
C10—O1—C7—C80.89 (16)S2—C18—C19—C20179.03 (10)
C10—O1—C7—C2179.24 (12)C18—C19—C20—C210.3 (2)
C3—C2—C7—C8158.66 (17)C18—C19—C20—N3179.36 (12)
C1—C2—C7—C822.1 (3)O8—N3—C20—C19171.70 (14)
C3—C2—C7—O119.06 (19)O9—N3—C20—C198.6 (2)
C1—C2—C7—O1160.19 (13)O8—N3—C20—C219.2 (2)
O1—C7—C8—C90.59 (17)O9—N3—C20—C21170.48 (14)
C2—C7—C8—C9178.40 (16)C19—C20—C21—C221.5 (2)
C7—C8—C9—C100.06 (18)N3—C20—C21—C22177.54 (13)
C8—C9—C10—O10.49 (17)C20—C21—C22—C231.8 (2)
C8—C9—C10—C11176.60 (17)C21—C22—C23—C180.2 (2)
C7—O1—C10—C90.86 (16)C19—C18—C23—C221.7 (2)
C7—O1—C10—C11176.82 (13)S2—C18—C23—C22178.77 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.412.7460 (18)101
C3—H3···O4i0.952.313.226 (2)161
C13—H13···O30.952.512.8637 (18)102
C16—H16···O2ii0.952.533.0874 (18)118
C19—H19···O4iii0.952.582.981 (2)106
C23—H23···O60.952.562.9252 (19)103
Symmetry codes: (i) x+5/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+3/2.
Summary of short interatomic contacts (Å). top
ContactDistanceSymmetry operation
N2···O33.03-x+2, -y+1, -z+1
H19···H152.58-x+3/2, y+1/2, -z+3/2
H16···O22.53-x+1, -y+1, -z+1
O5···H172.62x+1, y, z
O4···H32.31-x+5/2, y-1/2, -z+3/2
H4···H82.46x+1/2, -y+3/2, z+1/2
H9···O82.67-x+1, -y+2, -z+1
 

Acknowledgements

GMZ thanks to Baku State University for financial support. The contributions of the authors are as follows: conceptualization, MA and AB; synthesis, SA and GMB; X-ray analysis, GZM, VNK, MA and SÖY; writing (review and editing of the manuscript), MA and AB; funding acquisition, GZM; supervision, MA and AB.

References

First citationAbbassi, N., Rakib, E. M., Hannioui, A. & Zouihri, H. (2011). Acta Cryst. E67, o3304.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Khan, I. U., Holman, K. T., Asiri, A. M. & Rafique, H. M. (2011). Acta Cryst. E67, o2356.  CSD CrossRef IUCr Journals Google Scholar
First citationBartsch, R. A., Allaway, J. R., Yandell, R. B., Lee, J. G. & McCann, D. W. (1977). J. Chem. Eng. Data, 22, 453.  CrossRef Google Scholar
First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853.  Web of Science CSD CrossRef CAS Google Scholar
First citationButin, A. V. (2006). Tetrahedron Lett. 47, 4113–4116.  CrossRef CAS Google Scholar
First citationChohan, Z. H., Shaikh, U., Rauf, A. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 741–748.  CrossRef PubMed CAS Google Scholar
First citationChohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). Eur. J. Med. Chem. 45, 1189–1199.  CrossRef CAS PubMed Google Scholar
First citationDeStevens, G., Halamandaris, A., Ricca, S. Jr & Werner, L. H. (1959). J. Med. Chem. 1, 565–576.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031.  CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKim, S.-G. (2014). Acta Cryst. E70, o660.  CSD CrossRef IUCr Journals Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.  CAS Google Scholar
First citationLi, D., Bao, X., Pang, J., Hu, X., Wang, L., Wang, J., Yang, Z., Xu, L., Wang, S., Weng, Q., Cui, S. & Hou, T. (2022). J. Med. Chem. 65, 15710–15724.  CrossRef CAS PubMed Google Scholar
First citationLi, X.-Y. & Song, Z.-W. (2008). Acta Cryst. E64, o1906.  CSD CrossRef IUCr Journals Google Scholar
First citationLogemann, W., Giraldi, P. N. & Parenti, M. A. (1959). Nature, 184, 1711.  CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.  CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012a). Acta Cryst. E68, o2973.  CSD CrossRef IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012b). Acta Cryst. E68, o3013.  CSD CrossRef IUCr Journals Google Scholar
First citationNadirova, M. A., Khanova, A. V., Zubkov, F. I., Mertsalov, D. F., Kolesnik, I. A., Petkevich, S. K., Potkin, V. I., Shetnev, A. A., Presnukhina, S. I., Sinelshchikova, A. A., Grigoriev, M. S. & Zaytsev, V. P. (2021). Tetrahedron, 85, 132032–132049.  CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPilipenko, A. S., Mel'chin, V. V., Trushkov, I. V., Cheshkov, D. A. & Butin, A. V. (2012). Tetrahedron, 68, 619–627.  CSD CrossRef CAS Google Scholar
First citationReitz, A. B., Smith, G. R. & Parker, M. H. (2009). Expert Opin. Ther. Pat. 19, 1449–1453.  CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRizzoli, C., Vicini, P. & Incerti, M. (2009). Acta Cryst. E65, o416–o417.  CSD CrossRef IUCr Journals Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSupuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535–558.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTaher, A. & Smith, V. J. (2012b). Acta Cryst. E68, o3362.  CSD CrossRef IUCr Journals Google Scholar
First citationTaher, A. & Smith, V. J. (2012a). Acta Cryst. E68, o1136.  CSD CrossRef IUCr Journals Google Scholar
First citationThiry, A., Dogné, J.-M., Supuran, C. T. & Masereel, B. (2008). Curr. Pharm. Des. 14, 661–671.  PubMed CAS Google Scholar
First citationYun, M. K., Wu, Y., Li, Z., Zhao, Y., Waddell, M. B., Ferreira, A. M., Lee, R. E., Bashford, D. & White, S. W. (2012). Science, 335, 1110–1114.  CrossRef CAS PubMed Google Scholar
First citationZubkov, F. I., Zaitsev, V. P., Orlova, A. A., Peregudov, A. S., Mikhailova, N. M. & Varlamov, A. V. (2007). Russ. J. Org. Chem. 43, 1202–1208.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds