research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal and mol­ecular structure of 4-fluoro-1H-pyrazole at 150 K

crossmark logo

aWestern Michigan University, Department of Chemistry, 1903 W. Michigan Ave., Kalamazoo, MI 49008, USA, and bPurdue University, Department of Chemistry, 101 Wetherill Hall (WTHR), 560 Oval Drive, West Lafayette, IN 47907, USA
*Correspondence e-mail: gellert.mezei@wmich.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 22 March 2023; accepted 3 April 2023; online 6 April 2023)

Only two 4-halo-1H-pyrazole crystal structures are known to date (chloro and bromo, the structure of 4-iodo-1H-pyrazole has not been reported yet). The triclinic structure of 4-fluoro-1H-pyrazole, C3H3FN2 (P[\overline{1}]), reported here is not isomorphous with those of the chloro and bromo analogues (which are isomorphous, ortho­rhom­bic Pnma). To avoid sublimation during the measurement, diffraction data were collected at 150 K. Two crystallographically unique 4-fluoro-1H-pyrazole moieties linked by an N—H⋯N hydrogen bond are found in the asymmetric unit. Unlike the trimeric supra­molecular motifs found in the structures of the chloro and bromo analogues, 4-fluoro-1H-pyrazole forms one-dimensional chains by inter­molecular hydrogen bonding in the crystal.

1. Chemical context

1H-Pyrazole (pzH) is both a hydrogen-bond donor and acceptor mol­ecule, owing to its NH and N centers. Consequently, pyrazole moieties of the parent compound or C-substituted analogues form hydrogen bonds to each other in the corresponding crystal structures, and similarly to imidazole, have higher melting and boiling points than other five-membered cyclic aromatic mol­ecules lacking either the hydrogen-bond acceptor (pyrrole), the hydrogen-bond donor (N-methyl derivatives, furan, isoxazole, oxazole, thio­phene, iso­thia­zole, thia­zole) or both centers (cyclo­penta­diene) (Fig. 1[link]). The proximity of the hydrogen-bond donor and acceptor centers in pz allows for the formation of either discreet hydrogen-bonded motifs, such as dimers, trimers, tetra­mers and hexa­mers, or polymeric catemers depending on the substituents (Bertolasi et al., 1999[Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G. & Fernàndez-Castaño, C. (1999). Acta Cryst. B55, 985-993.]; Foces-Foces et al., 2000[Foces-Foces, C., Alkorta, I. & Elguero, J. (2000). Acta Cryst. B56, 1018-1028.]; Claramunt et al., 2006[Claramunt, R. M., Cornago, P., Torres, V., Pinilla, E., Torres, M. R., Samat, A., Lokshin, V., Valés, M. & Elguero, J. (2006). J. Org. Chem. 71, 6881-6891.]; Alkorta et al., 2006[Alkorta, I., Elguero, J., Foces-Foces, C. & Infantes, L. (2006). ARKIVOC (ii), 15-30.]), whereas imidazole only forms catemers (Cammers & Parkin, 2004[Cammers, A. & Parkin, S. (2004). CrystEngComm, 6, 168-172.]).

[Scheme 1]
[Figure 1]
Figure 1
Comparison of the structures of five-membered aromatic heterocycles and their corresponding melting and boiling points (°C) according to the CRC Handbook of Chemistry and Physics (Rumble, 2022[Rumble, J. R. (2022). Editor. CRC Handbook of Chemistry and Physics, 103rd ed., ch. 3.4.-3.61. Boca Raton: CRC Press.]) or the literature. Those with no melting points reported are liquids at room temperature.

2. Structural commentary

As shown in Fig. 2[link], the asymmetric unit contains two symmetry-independent 4-fluoro-1H-pyrazole moieties (Z′ = 2; P[\overline{1}]) , similarly to 1H-pyrazole (Z′ = 2; P21cn/Pna21; La Cour & Rasmussen, 1973[La Cour, T. & Rasmussen, S. E. (1973). Acta Chem. Scand. 27, 1845-1854.]; Sikora & Katrusiak, 2013[Sikora, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 10661-10668.]) but unlike the chloro and bromo analogues (Z′ = 1.5; Pnma) (Rue & Raptis, 2021[Rue, K. & Raptis, R. G. (2021). Acta Cryst. E77, 955-957.]; Foces-Foces et al., 1999[Foces-Foces, C., Llamas-Saiz, A. L. & Elguero, J. (1999). Z. Kristallogr. 214, 237-241.]). Structures with Z′ >1 result when two or more inter­molecular inter­actions, such as optimal shape packing, optimization of hydrogen bonds and aromatic inter­actions, are in conflict (Steed & Steed, 2015[Steed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895-2933.]). Therefore, the Z′ value larger than 1 observed in these pyrazole structures emphasizes the importance of hydrogen bonding in their solid-state structures.

[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability) of the crystal structure of 4-fluoro-1H-pyrazole, showing the contents of the asymmetric unit.

The two crystallographically independent 4-Fpz moieties, which are identical within experimental error, are planar with deviations from the C3FN2 mean-plane of less than 0.004 and 0.008 Å, respectively. Table 1[link] presents a comparison of bond lengths determined by X-ray diffraction for the parent pzH at 150 K (Sikora & Katrusiak, 2013[Sikora, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 10661-10668.]), 4-FpzH at 150 K, 4-ClpzH at 150 K (Rue & Raptis, 2021[Rue, K. & Raptis, R. G. (2021). Acta Cryst. E77, 955-957.]) and 4-BrpzH at room temperature (Foces-Foces et al., 1999[Foces-Foces, C., Llamas-Saiz, A. L. & Elguero, J. (1999). Z. Kristallogr. 214, 237-241.]). All structures contain two symmetry-independent moieties. In the case of pzH and 4-FpzH, the NH and N centers of the pz rings are distinct, unlike in the case of 4-Cl/BrpzH. Therefore, in the former case two distinct sets of C—N and C—C bond distances are observed. Similarly to pzH, in 4-FpzH the C—N bond adjacent to N is shorter than the one adjacent to NH [by 0.008 (1)/0.010 (1) Å], whereas the C—C bond adjacent to N is longer than the one adjacent to NH [by 0.019 (1)/0.018 (1) Å]. In general, the N—N, C—N and C—C bond distances in 4-RpH are consistent across the R = H, F, Cl and Br series.

Table 1
Comparison of N—N, C—N and C—C bond lengths determined by X-ray diffraction in 4-RpzH (R = H, F, Cl and Br)

Numbers marked with an asterisk indicate average values in the case of pyrazoles with disordered NH/N centers.

  N—N C—N (NH) C—N (N) C—C (NH) C—C (N)
pzHa 1.354 (2) 1.337 (3) 1.330 (3) 1.368 (3) 1.389 (3)
  1.351 (2) 1.344 (3) 1.326 (3) 1.366 (3) 1.389 (3)
4-FpzHb 1.3484 (9) 1.3473 (10) 1.3391 (10) 1.3729 (11) 1.3922 (11)
  1.3513 (10) 1.3476 (10) 1.3375 (10) 1.3742 (10) 1.3924 (10)
4-ClpzHc 1.346 (2) 1.335 (2)* 1.334 (2)* 1.380 (2)* 1.374 (2)*
  1.345 (3) 1.334 (2)* 1.334 (2)* 1.377 (2)* 1.377 (2)*
4-BrpzHd 1.335 (9) 1.327 (10)* 1.331 (10)* 1.391 (11)* 1.338 (10)*
  1.335 (9) 1.343 (10)* 1.343 (10)* 1.371 (9)* 1.371 (9)*
Notes: (a) Sikora & Katrusiak (2013[Sikora, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 10661-10668.]); (b) this work; (c) Rue & Raptis (2021[Rue, K. & Raptis, R. G. (2021). Acta Cryst. E77, 955-957.]); (d) Foces-Foces et al. (1999[Foces-Foces, C., Llamas-Saiz, A. L. & Elguero, J. (1999). Z. Kristallogr. 214, 237-241.]).

3. Supra­molecular features

The pz N—H proton donates an N—H⋯N hydrogen bond to a neighbouring pz unit on one side, while the pz N atom accepts an N—H⋯N hydrogen bond from another pz unit on the opposite side (Table 2[link], Fig. 3[link]). Thus, pz units in the resulting 4-FpzH catemer form dihedral angles of 59.74 (3)° with each other, with centroid–centroid distances of 4.9487 (5) Å. Adjacent catemers inter­act with each other by ππ stacking [distance between pz mean-planes = 3.4911 (8) Å; dihedral angle between pz mean planes = 0°, crystallographically imposed; centroid–centroid distance = 3.7034 (6) Å] and C—H⋯π inter­actions [dihedral angle between pz mean planes = 59.74 (3)°; centroid–centroid distance = 4.3794 (5)/4.4791 (5) Å, H⋯centroid distance = 2.8030 (3)/2.9007 (4) Å], on alternate sides (Fig. 4[link]). As a result, the pz units are arranged in a herringbone pattern within the crystal (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 4-RpzH (R = H, F, Cl and Br)

D—H⋯A D—H H⋯A DA D—H⋯A
pzH        
N1—H1⋯N3 0.860 (2) 2.038 (2) 2.885 (3) 167.73 (10)
N4—H5⋯N2i 0.861 (2) 2.083 (2) 2.881 (3) 153.87 (13)
4-FpzH        
N1_2—H1N_2⋯N2_1 0.878 (14) 2.014 (16) 2.8764 (10) 166.6 (13)
N1_1—H1N_1⋯N2_2ii 0.892 (14) 2.017 (16) 2.9024 (10) 172.4 (15)
4-ClpzH        
N1—H1A⋯N1iii 0.88 2.03 2.885 (3) 165
N2—H2⋯N3iv 0.88 1.99 2.8582 (19) 169
N3—H3A⋯N2iv 0.88 1.99 2.8582 (19) 169
4-BrpzH        
N12—H12⋯N21 1.02 1.87 2.871 (9) 169
N21—H21⋯N12 1.01 1.87 2.871 (9) 171
N22—H22⋯N22v 1.02 1.93 2.922 (9) 164
Symmetry codes: (i) x + [{1\over 2}], −y + [{3\over 2}], z; (ii) x + 1, y, z; (iii) x, −y + [{3\over 2}], z; (iv) −x + 1, −y + 1, −z; (v) x, −y + [{1\over 2}], z.
[Figure 3]
Figure 3
View (along the b axis) of one of the hydrogen-bonded chains in the crystal of 4-fluoro-1H-pyrazole.
[Figure 4]
Figure 4
Packing diagram (along the a axis) of 4-fluoro-1H-pyrazole, showing both ππ and C—H⋯π inter­actions.
[Figure 5]
Figure 5
Packing diagram (along the c axis) of 4-fluoro-1H-pyrazole, showing the herringbone-type packing of the pyrazole moieties.

4. Database survey

Although the parent pyrazole (pzH) also forms a hydrogen-bonded catemer in the crystal packing, its structure is quite different from the one formed by 4-FpzH. As illustrated in Fig. 6[link], pairs of pz units are found in two different geometries in the catemer of pzH: one in which they form dihedral angles of 5.45 (9)° with centroid–centroid distances of 5.1659 (15) Å, and another with dihedral angles of 74.64 (9)° and centroid–centroid distances of 5.0504 (15) Å. In contrast, pz units in 4-Cl/BrpzH form discreet hydrogen-bonded trimers. While the presence/nature of the 4-halo substituent leads to very different outcomes in terms of the overall packing and hydrogen-bonded motifs in 4-RpzH (R = H, F, Cl/Br), it has little effect on the corresponding hydrogen bonding parameters (Table 2[link]). Inter­estingly, the structure of the catemer in 4-FpzH is essentially identical to the one found in the lattice of 4-acetyl-1H-pyrazole (monoclinic P21/n; Frey et al., 2014[Frey, G. D., Schoeller, W. W. & Herdtweck, E. (2014). Z. Naturforsch. B, 69, 839-843.]), with dihedral angles of 57.28 (7)° and centroid–centroid distances of 4.9501 (13) Å between adjacent pz units. The structure of the different catemer of pzH is also found in the crystal lattices of 4-phenyl-1H-pyrazole (ortho­rhom­bic, Pbcn; Reger et al., 2003[Reger, D. L., Gardinier, J. R., Grattan, T. C., Smith, M. R. & Smith, M. D. (2003). New J. Chem. 27, 1670-1677.]) and 4-adamantyl-1H-pyrazole (triclinic, P[\overline{1}]; Cabildo et al., 1994[Cabildo, P., Claramunt, R. M., Forfar, I., Foces-Foces, C., Llamas-Saiz, A. L. & Elguero, J. (1994). Heterocycles 37, 1623-1636.]), despite the large substituents. 4-Methyl-1H-pyrazole (ortho­rhom­bic, Pca21; Goddard et al., 1999[Goddard, R., Claramunt, R. M., Escolástico, C. & Elguero, J. (1999). New J. Chem. 23, 237-240.]) and 4-nitro-1H-pyrazole (triclinic, P[\overline{1}]; Llamas-Saiz et al., 1994[Llamas-Saiz, A. L., Foces-Foces, C., Cano, F. H., Jiménez, P., Laynez, J., Meutermans, W., Elguero, J., Limbach, H.-H. & Aguilar-Parrilla, F. (1994). Acta Cryst. B50, 746-762.]), on the other hand, form trimers, similarly to 4-Cl/BrpzH.

[Figure 6]
Figure 6
Comparison of the hydrogen-bonded motifs (two different views for each) in the crystal packing of 4-RpzH (R = H, F, Cl and Br).

5. Synthesis and crystallization

4-Fluoro-1H-pyrazole was synthesized according to a published procedure, from sodium fluoro­acetate (WARNING: highly toxic!) by reaction with oxalyl chloride and di­methyl­formamide, followed by treatment with base and then hydrazine (England et al., 2010[England, K., Mason, H., Osborne, R. & Roberts, L. (2010). Tetrahedron Lett. 51, 2849-2851.]). Single crystals were obtained from the powder by slow isothermal sublimation inside a sealed vial under ambient conditions.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C—H bond distances were constrained to 0.95 Å and these H atoms were refined as riding. Positions of N-bound H atoms were freely refined. Uiso(H) values were set to 1.2 times Ueq(C/N) for all H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C3H3FN2
Mr 86.07
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 5.6045 (2), 7.4315 (3), 9.5396 (4)
α, β, γ (°) 71.689 (2), 87.731 (2), 84.968 (2)
V3) 375.72 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.45 × 0.43 × 0.38
 
Data collection
Diffractometer Bruker AXS D8 Quest
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.678, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 15049, 2875, 2635
Rint 0.024
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.108, 1.06
No. of reflections 2875
No. of parameters 116
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.26
Computer programs: APEX4 and SAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ShelXle Rev1460 (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: APEX4 v2022.1-1 (Bruker, 2022); cell refinement: SAINT V8.40B (Bruker, 2022); data reduction: SAINT V8.40B (Bruker, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), ShelXle Rev1460 (Hübschle et al., 2011).

4-Fluoro-1H-pyrazole top
Crystal data top
C3H3FN2Z = 4
Mr = 86.07F(000) = 176
Triclinic, P1Dx = 1.522 Mg m3
a = 5.6045 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4315 (3) ÅCell parameters from 9943 reflections
c = 9.5396 (4) Åθ = 2.3–33.1°
α = 71.689 (2)°µ = 0.14 mm1
β = 87.731 (2)°T = 150 K
γ = 84.968 (2)°Block, colourless
V = 375.72 (3) Å30.45 × 0.43 × 0.38 mm
Data collection top
Bruker AXS D8 Quest
diffractometer
2875 independent reflections
Radiation source: fine focus sealed tube X-ray source2635 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.024
Detector resolution: 7.4074 pixels mm-1θmax = 33.2°, θmin = 2.3°
ω and phi scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.678, Tmax = 0.747l = 1414
15049 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.0788P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2875 reflectionsΔρmax = 0.47 e Å3
116 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.040 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1_10.51610 (12)0.62514 (11)0.13759 (7)0.03931 (17)
N1_10.64380 (12)0.73038 (10)0.45438 (7)0.02162 (13)
H1N_10.721 (3)0.7343 (19)0.5331 (15)0.032*
N2_10.42422 (12)0.82300 (10)0.42828 (7)0.02262 (14)
C1_10.71303 (14)0.64372 (11)0.35314 (9)0.02302 (15)
H1_10.8599310.5712090.3490740.028*
C2_10.52537 (14)0.68285 (11)0.25714 (8)0.02251 (15)
C3_10.34891 (13)0.79346 (11)0.30642 (8)0.02192 (15)
H3_10.1986920.8405710.2607760.026*
F1_20.00161 (11)0.77865 (9)1.05091 (6)0.03386 (15)
N1_20.13614 (12)0.82593 (10)0.68400 (7)0.02239 (14)
H1N_20.217 (3)0.845 (2)0.6004 (16)0.034*
N2_20.06438 (12)0.73275 (10)0.69835 (7)0.02286 (14)
C1_20.19488 (14)0.85549 (11)0.81020 (8)0.02229 (15)
H1_20.3287620.9161750.8263840.027*
C2_20.01926 (14)0.77888 (11)0.91040 (8)0.02065 (14)
C3_20.13824 (14)0.70401 (11)0.83817 (8)0.02168 (14)
H3_20.2767180.6421130.8814900.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1_10.0372 (3)0.0597 (4)0.0370 (3)0.0145 (3)0.0046 (2)0.0357 (3)
N1_10.0213 (3)0.0267 (3)0.0166 (3)0.0024 (2)0.0017 (2)0.0061 (2)
N2_10.0220 (3)0.0284 (3)0.0182 (3)0.0005 (2)0.0008 (2)0.0090 (2)
C1_10.0207 (3)0.0237 (3)0.0261 (3)0.0022 (2)0.0014 (2)0.0098 (3)
C2_10.0232 (3)0.0278 (3)0.0213 (3)0.0083 (3)0.0027 (2)0.0131 (3)
C3_10.0197 (3)0.0276 (3)0.0190 (3)0.0036 (2)0.0007 (2)0.0075 (2)
F1_20.0395 (3)0.0492 (3)0.0174 (2)0.0117 (2)0.00202 (19)0.0149 (2)
N1_20.0231 (3)0.0266 (3)0.0183 (3)0.0023 (2)0.0033 (2)0.0085 (2)
N2_20.0236 (3)0.0275 (3)0.0196 (3)0.0021 (2)0.0016 (2)0.0102 (2)
C1_20.0210 (3)0.0261 (3)0.0216 (3)0.0044 (2)0.0006 (2)0.0094 (3)
C2_20.0228 (3)0.0248 (3)0.0156 (3)0.0029 (2)0.0004 (2)0.0078 (2)
C3_20.0208 (3)0.0256 (3)0.0200 (3)0.0044 (2)0.0002 (2)0.0082 (2)
Geometric parameters (Å, º) top
F1_1—C2_11.3428 (8)F1_2—C2_21.3396 (8)
N1_1—C1_11.3473 (10)N1_2—C1_21.3476 (10)
N1_1—N2_11.3484 (9)N1_2—N2_21.3513 (10)
N1_1—H1N_10.892 (14)N1_2—H1N_20.878 (14)
N2_1—C3_11.3391 (10)N2_2—C3_21.3375 (10)
C1_1—C2_11.3729 (11)C1_2—C2_21.3742 (10)
C1_1—H1_10.9500C1_2—H1_20.9500
C2_1—C3_11.3922 (11)C2_2—C3_21.3924 (10)
C3_1—H3_10.9500C3_2—H3_20.9500
C1_1—N1_1—N2_1112.75 (6)C1_2—N1_2—N2_2112.72 (6)
C1_1—N1_1—H1N_1129.5 (9)C1_2—N1_2—H1N_2129.9 (9)
N2_1—N1_1—H1N_1117.7 (9)N2_2—N1_2—H1N_2116.9 (9)
C3_1—N2_1—N1_1105.50 (6)C3_2—N2_2—N1_2105.43 (6)
N1_1—C1_1—C2_1105.09 (7)N1_2—C1_2—C2_2105.10 (7)
N1_1—C1_1—H1_1127.5N1_2—C1_2—H1_2127.5
C2_1—C1_1—H1_1127.5C2_2—C1_2—H1_2127.5
F1_1—C2_1—C1_1125.91 (7)F1_2—C2_2—C1_2126.25 (7)
F1_1—C2_1—C3_1126.73 (7)F1_2—C2_2—C3_2126.46 (7)
C1_1—C2_1—C3_1107.36 (7)C1_2—C2_2—C3_2107.29 (6)
N2_1—C3_1—C2_1109.29 (7)N2_2—C3_2—C2_2109.46 (7)
N2_1—C3_1—H3_1125.4N2_2—C3_2—H3_2125.3
C2_1—C3_1—H3_1125.4C2_2—C3_2—H3_2125.3
C1_1—N1_1—N2_1—C3_10.49 (9)C1_2—N1_2—N2_2—C3_20.85 (9)
N2_1—N1_1—C1_1—C2_10.31 (9)N2_2—N1_2—C1_2—C2_20.88 (9)
N1_1—C1_1—C2_1—F1_1179.71 (7)N1_2—C1_2—C2_2—F1_2178.67 (7)
N1_1—C1_1—C2_1—C3_10.01 (9)N1_2—C1_2—C2_2—C3_20.55 (9)
N1_1—N2_1—C3_1—C2_10.46 (9)N1_2—N2_2—C3_2—C2_20.46 (9)
F1_1—C2_1—C3_1—N2_1179.41 (7)F1_2—C2_2—C3_2—N2_2179.16 (7)
C1_1—C2_1—C3_1—N2_10.29 (9)C1_2—C2_2—C3_2—N2_20.06 (9)
Comparison of N—N, C—N and C—C bond lengths determined by X-ray diffraction in 4-RpzH (R = H, F, Cl and Br) top
Numbers marked with an asterisk indicate average values in the case of pyrazoles with disordered NH/N centers.
N—NC—N (NH)C—N (N)C—C (NH)C—C (N)
pzHa1.354 (2)1.337 (3)1.330 (3)1.368 (3)1.389 (3)
1.351 (2)1.344 (3)1.326 (3)1.366 (3)1.389 (3)
4-FpzHb1.3484 (9)1.3473 (10)1.3391 (10)1.3729 (11)1.3922 (11)
1.3513 (10)1.3476 (10)1.3375 (10)1.3742 (10)1.3924 (10)
4-ClpzHc1.346 (2)1.335 (2)*1.334 (2)*1.380 (2)*1.374 (2)*
1.345 (3)1.334 (2)*1.334 (2)*1.377 (2)*1.377 (2)*
4-BrpzHd1.335 (9)1.327 (10)*1.331 (10)*1.391 (11)*1.338 (10)*
1.335 (9)1.343 (10)*1.343 (10)*1.371 (9)*1.371 (9)*
Notes: (a) Sikora & Katrusiak (2013); (b) this work; (c) Rue & Raptis (2021); (d) Foces-Foces et al. (1999).
Hydrogen-bond geometry (Å , °) for 4-RpzH (R = H, F, Cl and Br) top
D—H···AD—HH···AD···AD–H···A
pzH
N1—H1···N30.860 (2)2.038 (2)2.885 (3)167.73 (10)
N4—H5···N2i0.861 (2)2.083 (2)2.881 (3)153.87 (13)
4-FpzH
N1_2—H1N_2···N2_10.878 (14)2.014 (16)2.8764 (10)166.6 (13)
N1_1—H1N_1···N2_2ii0.892 (14)2.017 (16)2.9024 (10)172.4 (15)
4-ClpzH
N1—H1A···N1iii0.882.032.885 (3)165
N2—H2···N3iv0.881.992.8582 (19)169
N3—H3A···N2iv0.881.992.8582 (19)169
4-BrpzH
N12—H12···N211.021.872.871 (9)169
N21—H21···N121.011.872.871 (9)171
N22—H22···N22v1.021.932.922 (9)164
Symmetry codes: (i) x + 1/2, -y + 3/2, z; (ii) x + 1, y, z; (iii) x, -y + 3/2, z; (iv) -x + 1, -y + 1, -z; (v) x, -y+1/2, z.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1808554 to Western Michigan University for Gellert Mezei; grant No. CHE-1625543 to Purdue University for the single-crystal X-ray diffractometer).

References

First citationAlkorta, I., Elguero, J., Foces-Foces, C. & Infantes, L. (2006). ARKIVOC (ii), 15-30.  Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V., Gilli, G. & Fernàndez-Castaño, C. (1999). Acta Cryst. B55, 985–993.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabildo, P., Claramunt, R. M., Forfar, I., Foces-Foces, C., Llamas-Saiz, A. L. & Elguero, J. (1994). Heterocycles 37, 1623–1636.  CAS Google Scholar
First citationCammers, A. & Parkin, S. (2004). CrystEngComm, 6, 168–172.  Web of Science CrossRef CAS Google Scholar
First citationClaramunt, R. M., Cornago, P., Torres, V., Pinilla, E., Torres, M. R., Samat, A., Lokshin, V., Valés, M. & Elguero, J. (2006). J. Org. Chem. 71, 6881–6891.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEngland, K., Mason, H., Osborne, R. & Roberts, L. (2010). Tetrahedron Lett. 51, 2849–2851.  Web of Science CrossRef CAS Google Scholar
First citationFoces-Foces, C., Alkorta, I. & Elguero, J. (2000). Acta Cryst. B56, 1018–1028.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoces-Foces, C., Llamas-Saiz, A. L. & Elguero, J. (1999). Z. Kristallogr. 214, 237–241.  CAS Google Scholar
First citationFrey, G. D., Schoeller, W. W. & Herdtweck, E. (2014). Z. Naturforsch. B, 69, 839–843.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoddard, R., Claramunt, R. M., Escolástico, C. & Elguero, J. (1999). New J. Chem. 23, 237–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLa Cour, T. & Rasmussen, S. E. (1973). Acta Chem. Scand. 27, 1845–1854.  CSD CrossRef CAS Web of Science Google Scholar
First citationLlamas-Saiz, A. L., Foces-Foces, C., Cano, F. H., Jiménez, P., Laynez, J., Meutermans, W., Elguero, J., Limbach, H.-H. & Aguilar-Parrilla, F. (1994). Acta Cryst. B50, 746–762.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationReger, D. L., Gardinier, J. R., Grattan, T. C., Smith, M. R. & Smith, M. D. (2003). New J. Chem. 27, 1670–1677.  Web of Science CSD CrossRef CAS Google Scholar
First citationRue, K. & Raptis, R. G. (2021). Acta Cryst. E77, 955–957.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationRumble, J. R. (2022). Editor. CRC Handbook of Chemistry and Physics, 103rd ed., ch. 3.4.–3.61. Boca Raton: CRC Press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikora, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 10661–10668.  Web of Science CSD CrossRef CAS Google Scholar
First citationSteed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895–2933.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds