research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (5aS,8aR)-3,5a-di­methyl-8-methyl­­idene-2-oxododeca­hydro­oxireno[2′,3′:6,7]naphtho­[1,2-b]furan-6-yl (Z)-2-methyl­but-2-enoate extracted from Ferula persica

crossmark logo

aAzerbaijan Medical University, Bakikhanov st. 23, AZ1022, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, fDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 March 2023; accepted 11 April 2023; online 21 April 2023)

In the title compound, C20H26O5, the two cyclo­hexane rings adopt boat and half-chair conformations. In the crystal, adjacent mol­ecules are connected by inter­molecular C—H⋯O hydrogen bonds, forming a three-dimensional network. According to a Hirshfeld surface study, H⋯H inter­actions are the most significant contributors to the crystal packing (63.0%).

1. Chemical context

Sesquiterpene lactones are a significant group of natural products isolated from the extracts of various parts of medicinal plants. As a medicinal plant, the Ferula genus is rich in coumarins, specifically sesquiterpene coumarins. Ferula species are found in the Mediterranean region, Central Asia, Siberia, China, Afghanistan, Iran, North Africa and the Caucasus (Mir-Babayev & Houghton, 2002[Mir-Babayev, N. F. & Houghton, P. J. (2002). Pharm. Biol. 40, 16-22.]). The members of this genus typically have a heavy fragrance due to the presence of essential oils or oleoresins in their content. This genus is applied for the cure of various organ disorders in folk medicine (Salehi et al., 2019[Salehi, M., Naghavi, M. R. & Bahmankar, M. (2019). Ind. Crops Prod. 139, 111511.]). These herbs have been used for oleo-gum resin, plant extracts, and essential oils. Moreover, the essential oils and extracts of different species of this herb can be used as natural food preservatives due to their anti­oxidant and anti­microbial activity (Daneshniya et al., 2021[Daneshniya, M., Maleki, M. H., Mohammadi, M. A., Ahangarian, K., Kondeskalaei, V. J. & Alavi, H. (2021). SARJNP, 4, 1-23.]).

[Scheme 1]

Herein, in the framework of our ongoing structural studies, we report the crystal structure and Hirshfeld surface analysis of the title compound, (5aS,8aR)-3,5a-dimethyl-8-methylid­ene-2-oxododeca­hydro­oxireno[2′,3′:6,7]naphtho­[1,2-b]furan-6-yl (Z)-2-methyl­but-2-enoate extracted from Ferula persica.

2. Structural commentary

A view of the mol­ecular structure of the title compound is shown in Fig. 1[link]. The cyclo­hexane rings (A: C3A/C4/C5/C5A/C9A/C9B; B: C5A/C6–C9/C9A) adopt boat and half-chair conformations, respectively. The puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of the A and B rings are QT = 0.7259 (19) Å, θ = 83.29 (15)°, φ = 51.45 (15)°, and QT = 0.5337 (18) Å, θ = 52.1 (2)°, φ = 331.7 (3)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of the title compound, adjacent mol­ecules are connected by inter­molecular C—H⋯O hydrogen bonds, forming a three dimensional network (Tables 1[link] and 2[link]). Figs. 2[link], 3[link] and 4[link] show packing views of the title compound down the a, b and c axes, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3A⋯O4i 1.00 2.45 3.353 (2) 149
C8—H8⋯O2ii 1.00 2.50 3.176 (2) 124
C14—H14⋯O10iii 0.95 2.57 3.423 (2) 149
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

H15A⋯H16C 2.39 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
O2⋯H8 2.50 [{1\over 2}] − x, 1 − y, [{1\over 2}] + z
O4⋯H3A 2.45 [{3\over 2}] − x, 1 − y, −[{1\over 2}] + z
H8⋯H10A 2.48 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
H11B⋯H17A 2.40 1 + x, y, z
[Figure 2]
Figure 2
View of the packing of the title compound down the a axis.
[Figure 3]
Figure 3
View of the packing of the title compound down the b axis.
[Figure 4]
Figure 4
View of the packing of the title compound down the c axis.

CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to compute Hirshfeld surfaces of the title mol­ecule. The dnorm mappings for the mol­ecule were performed in the range −0.1633 to +1.3364 a.u. The locations of the C—H⋯O inter­actions are shown by intense red circles on the dnorm surface (Fig. 5[link]a,b).

[Figure 5]
Figure 5
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.1633 to +1.3364 a.u.

Fig. 6[link] shows the full two-dimensional fingerprint plots for the mol­ecule and those delineated into the major contacts. H⋯H inter­actions (Fig. 6[link]b; 63.0% contribution) are the major contributor to the crystal packing with O⋯H/H⋯O (Fig. 6[link]c; 28.3%) and C⋯H/H⋯C (Fig. 6[link]d; 7.5%) inter­actions representing the next highest contributions. The percentage contributions of comparatively weaker inter­actions are O⋯C/C⋯O (0.5%) , O⋯O (0.4%) and C⋯C (0.3%). Relevant short inter­molecular atomic contacts are summarized in Table 2[link].

[Figure 6]
Figure 6
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

Two closely related compounds are 1β-angelo­yloxy-2β,3β-ep­oxy-5βH,7αH-l0α-methyl­eudesma-4(15),11(13)-dien-6,12-olide (I) (Rychlewska et al., 1992[Rychlewska, U., Szczepańska, B. & Serkerov, S. V. (1992). Acta Cryst. C48, 1543-1547.]) and 1β-angelo­yloxy-5βH,6αH,7αH,11αH-10α-methyl­eudesma-2,4(15)-dien-6,12-olide (II) (Rychlewska et al., 1992[Rychlewska, U., Szczepańska, B. & Serkerov, S. V. (1992). Acta Cryst. C48, 1543-1547.]).

The largest difference between the two structures (I and II) lies in the cyclo­hexane B ring, which is of the rigid-chair type in I and of the flexible boat type in II. In both crystal structures, the mol­ecules are held together mostly by van der Waals forces.

5. Synthesis and crystallization

The title compound has previously been isolated from the roots of the Ferula oopoda plant and fully characterized (Serkerov, 1972[Serkerov, S. V. (1972). Chem. Nat. Compd. 8, 181-183.]). The compound used for the current study was isolated from the roots of the Ferula persica herb by a similar method.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms of the –C=CH2 group were located in a difference-Fourier map and refined freely [C17—H17A = 0.94 (2) Å, C17—H17B = 0.97 (2) Å]. All other H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The remaining maximum electron density peak (0.56 e Å−3) is 1.41 Å away from C17 and the minimum density peak (–0.16 e Å−3) is 0.92 Å away from C9.

Table 3
Experimental details

Crystal data
Chemical formula C20H26O5
Mr 346.41
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 7.11296 (5), 15.4597 (10), 16.0358 (10)
V3) 1763.36 (16)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.76
Crystal size (mm) 0.21 × 0.18 × 0.13
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.674, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19755, 3751, 3717
Rint 0.024
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.05
No. of reflections 3751
No. of parameters 238
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.16
Absolute structure Flack x determined using 1576 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al, 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.01 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(5aS,8aR)-3,5a-Dimethyl-8-methylidene-2-oxododecahydrooxireno[2',3':6,7]naphtho[1,2-b]furan-6-yl (Z)-2-methylbut-2-enoate top
Crystal data top
C20H26O5Dx = 1.305 Mg m3
Mr = 346.41Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 16716 reflections
a = 7.11296 (5) Åθ = 3.9–77.3°
b = 15.4597 (10) ŵ = 0.76 mm1
c = 16.0358 (10) ÅT = 100 K
V = 1763.36 (16) Å3Prism, yellow
Z = 40.21 × 0.18 × 0.13 mm
F(000) = 744
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3717 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.024
φ and ω scansθmax = 77.8°, θmin = 4.0°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2022)
h = 98
Tmin = 0.674, Tmax = 1.000k = 1916
19755 measured reflectionsl = 1820
3751 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.4585P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3751 reflectionsΔρmax = 0.56 e Å3
238 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack x determined using 1576 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al, 2013).
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27214 (18)0.55551 (9)0.81184 (8)0.0258 (3)
O20.1708 (2)0.66397 (9)0.89164 (9)0.0325 (3)
O30.62078 (17)0.61814 (8)0.55679 (8)0.0217 (3)
O40.7139 (2)0.60760 (8)0.42338 (8)0.0316 (3)
C20.2969 (3)0.61638 (12)0.87107 (10)0.0257 (4)
C30.4949 (3)0.61151 (12)0.90431 (11)0.0278 (4)
H30.49360.56930.95160.033*
C3A0.6045 (3)0.56914 (11)0.83285 (11)0.0237 (4)
H3A0.70260.53000.85680.028*
C40.6965 (3)0.62980 (11)0.76998 (11)0.0259 (4)
H4A0.78930.66750.79830.031*
H4B0.60030.66700.74340.031*
C50.7941 (3)0.57422 (12)0.70428 (12)0.0270 (4)
H5A0.89940.54290.73110.032*
H5B0.84830.61270.66120.032*
C5A0.6636 (2)0.50725 (11)0.66081 (11)0.0220 (3)
C60.6543 (3)0.52614 (11)0.56680 (11)0.0226 (3)
H60.77980.51240.54200.027*
C70.5062 (3)0.47385 (11)0.52056 (11)0.0234 (4)
H70.54770.44540.46770.028*
C80.3552 (3)0.42987 (11)0.56746 (11)0.0227 (3)
H80.30550.37500.54280.027*
C90.3431 (2)0.43826 (11)0.65931 (11)0.0217 (3)
C9A0.4598 (2)0.51073 (10)0.69607 (10)0.0194 (3)
H9A0.40330.56600.67560.023*
C9B0.4515 (2)0.51404 (11)0.79115 (10)0.0219 (3)
H9B0.45430.45400.81430.026*
O100.31873 (19)0.50878 (8)0.52107 (8)0.0254 (3)
C100.5680 (4)0.69679 (14)0.93885 (14)0.0379 (5)
H10A0.56240.74120.89530.057*
H10B0.69840.68950.95720.057*
H10C0.49020.71460.98630.057*
C110.7473 (3)0.41612 (12)0.67128 (13)0.0295 (4)
H11A0.74500.39990.73030.044*
H11B0.87740.41590.65110.044*
H11C0.67290.37460.63900.044*
C120.6677 (3)0.65206 (11)0.48211 (11)0.0214 (3)
C130.6622 (2)0.74835 (11)0.48349 (10)0.0201 (3)
C140.6640 (2)0.79339 (11)0.41196 (11)0.0215 (3)
H140.66580.85460.41770.026*
C150.6619 (3)0.79287 (11)0.56742 (11)0.0224 (3)
H15A0.54410.78000.59660.034*
H15B0.67320.85550.55940.034*
H15C0.76820.77200.60070.034*
C160.6635 (3)0.75991 (11)0.32443 (11)0.0245 (4)
H16A0.61560.80480.28680.037*
H16B0.58260.70870.32100.037*
H16C0.79180.74430.30810.037*
C170.2362 (3)0.38217 (12)0.70195 (12)0.0251 (4)
H17A0.165 (3)0.3387 (14)0.6752 (13)0.018 (5)*
H17B0.218 (3)0.3870 (14)0.7618 (15)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (6)0.0325 (6)0.0203 (6)0.0019 (5)0.0003 (5)0.0013 (5)
O20.0399 (8)0.0341 (7)0.0234 (6)0.0069 (6)0.0046 (6)0.0021 (5)
O30.0268 (6)0.0167 (5)0.0218 (6)0.0001 (5)0.0052 (5)0.0007 (5)
O40.0485 (8)0.0216 (6)0.0247 (6)0.0013 (6)0.0106 (6)0.0019 (5)
C20.0347 (10)0.0268 (8)0.0156 (7)0.0025 (8)0.0019 (7)0.0039 (6)
C30.0355 (10)0.0264 (9)0.0214 (8)0.0034 (8)0.0035 (8)0.0013 (7)
C3A0.0269 (9)0.0224 (8)0.0219 (8)0.0020 (7)0.0054 (7)0.0025 (7)
C40.0273 (9)0.0230 (8)0.0275 (9)0.0057 (7)0.0051 (7)0.0015 (7)
C50.0221 (8)0.0304 (9)0.0286 (9)0.0043 (7)0.0033 (7)0.0025 (7)
C5A0.0206 (8)0.0205 (8)0.0251 (8)0.0016 (6)0.0003 (7)0.0015 (6)
C60.0248 (8)0.0169 (7)0.0261 (8)0.0022 (6)0.0045 (7)0.0012 (7)
C70.0322 (9)0.0173 (7)0.0209 (8)0.0030 (7)0.0016 (7)0.0002 (6)
C80.0279 (8)0.0170 (7)0.0231 (8)0.0015 (6)0.0018 (7)0.0004 (6)
C90.0216 (8)0.0207 (8)0.0230 (8)0.0005 (7)0.0013 (7)0.0001 (6)
C9A0.0211 (8)0.0184 (7)0.0188 (7)0.0001 (6)0.0010 (6)0.0019 (6)
C9B0.0251 (9)0.0206 (8)0.0199 (8)0.0018 (7)0.0019 (6)0.0027 (6)
O100.0308 (7)0.0197 (6)0.0258 (6)0.0008 (5)0.0053 (5)0.0020 (5)
C100.0463 (12)0.0327 (10)0.0348 (11)0.0077 (9)0.0000 (10)0.0097 (9)
C110.0271 (9)0.0261 (9)0.0355 (10)0.0064 (7)0.0023 (8)0.0062 (8)
C120.0230 (8)0.0204 (8)0.0208 (8)0.0017 (7)0.0022 (7)0.0003 (6)
C130.0183 (7)0.0195 (7)0.0225 (8)0.0017 (6)0.0016 (7)0.0004 (6)
C140.0196 (8)0.0200 (7)0.0248 (8)0.0011 (6)0.0004 (7)0.0002 (6)
C150.0239 (8)0.0203 (7)0.0230 (8)0.0013 (7)0.0010 (7)0.0016 (6)
C160.0261 (9)0.0261 (8)0.0212 (8)0.0014 (7)0.0011 (7)0.0007 (7)
C170.0234 (8)0.0258 (8)0.0262 (9)0.0036 (7)0.0017 (7)0.0006 (7)
Geometric parameters (Å, º) top
O1—C21.349 (2)C8—O101.452 (2)
O1—C9B1.466 (2)C8—C91.481 (2)
O2—C21.206 (2)C8—H81.0000
O3—C121.349 (2)C9—C171.341 (3)
O3—C61.4510 (19)C9—C9A1.514 (2)
O4—C121.211 (2)C9A—C9B1.527 (2)
C2—C31.508 (3)C9A—H9A1.0000
C3—C101.522 (3)C9B—H9B1.0000
C3—C3A1.533 (3)C10—H10A0.9800
C3—H31.0000C10—H10B0.9800
C3A—C41.525 (2)C10—H10C0.9800
C3A—C9B1.535 (2)C11—H11A0.9800
C3A—H3A1.0000C11—H11B0.9800
C4—C51.526 (3)C11—H11C0.9800
C4—H4A0.9900C12—C131.489 (2)
C4—H4B0.9900C13—C141.342 (2)
C5—C5A1.556 (2)C13—C151.512 (2)
C5—H5A0.9900C14—C161.496 (2)
C5—H5B0.9900C14—H140.9500
C5A—C61.537 (2)C15—H15A0.9800
C5A—C111.539 (2)C15—H15B0.9800
C5A—C9A1.557 (2)C15—H15C0.9800
C6—C71.521 (3)C16—H16A0.9800
C6—H61.0000C16—H16B0.9800
C7—O101.439 (2)C16—H16C0.9800
C7—C81.477 (3)C17—H17A0.94 (2)
C7—H71.0000C17—H17B0.97 (2)
C2—O1—C9B110.55 (14)C17—C9—C8118.92 (16)
C12—O3—C6116.01 (13)C17—C9—C9A126.23 (16)
O2—C2—O1121.42 (18)C8—C9—C9A114.83 (15)
O2—C2—C3128.94 (17)C9—C9A—C9B113.11 (14)
O1—C2—C3109.64 (16)C9—C9A—C5A110.09 (14)
C2—C3—C10113.86 (17)C9B—C9A—C5A113.57 (14)
C2—C3—C3A103.43 (14)C9—C9A—H9A106.5
C10—C3—C3A117.94 (17)C9B—C9A—H9A106.5
C2—C3—H3107.0C5A—C9A—H9A106.5
C10—C3—H3107.0O1—C9B—C9A105.92 (13)
C3A—C3—H3107.0O1—C9B—C3A106.01 (13)
C4—C3A—C3116.74 (15)C9A—C9B—C3A115.22 (14)
C4—C3A—C9B110.96 (14)O1—C9B—H9B109.8
C3—C3A—C9B101.65 (15)C9A—C9B—H9B109.8
C4—C3A—H3A109.0C3A—C9B—H9B109.8
C3—C3A—H3A109.0C7—O10—C861.44 (11)
C9B—C3A—H3A109.0C3—C10—H10A109.5
C3A—C4—C5107.78 (15)C3—C10—H10B109.5
C3A—C4—H4A110.2H10A—C10—H10B109.5
C5—C4—H4A110.2C3—C10—H10C109.5
C3A—C4—H4B110.2H10A—C10—H10C109.5
C5—C4—H4B110.2H10B—C10—H10C109.5
H4A—C4—H4B108.5C5A—C11—H11A109.5
C4—C5—C5A114.37 (16)C5A—C11—H11B109.5
C4—C5—H5A108.7H11A—C11—H11B109.5
C5A—C5—H5A108.7C5A—C11—H11C109.5
C4—C5—H5B108.7H11A—C11—H11C109.5
C5A—C5—H5B108.7H11B—C11—H11C109.5
H5A—C5—H5B107.6O4—C12—O3122.45 (16)
C6—C5A—C11107.32 (15)O4—C12—C13125.87 (16)
C6—C5A—C5109.79 (14)O3—C12—C13111.64 (14)
C11—C5A—C5109.24 (15)C14—C13—C12120.38 (15)
C6—C5A—C9A108.03 (14)C14—C13—C15121.65 (15)
C11—C5A—C9A110.64 (14)C12—C13—C15117.93 (15)
C5—C5A—C9A111.71 (14)C13—C14—C16128.49 (15)
O3—C6—C7110.69 (14)C13—C14—H14115.8
O3—C6—C5A107.57 (13)C16—C14—H14115.8
C7—C6—C5A114.02 (14)C13—C15—H15A109.5
O3—C6—H6108.1C13—C15—H15B109.5
C7—C6—H6108.1H15A—C15—H15B109.5
C5A—C6—H6108.1C13—C15—H15C109.5
O10—C7—C859.73 (11)H15A—C15—H15C109.5
O10—C7—C6116.08 (13)H15B—C15—H15C109.5
C8—C7—C6120.00 (15)C14—C16—H16A109.5
O10—C7—H7116.3C14—C16—H16B109.5
C8—C7—H7116.3H16A—C16—H16B109.5
C6—C7—H7116.3C14—C16—H16C109.5
O10—C8—C758.83 (11)H16A—C16—H16C109.5
O10—C8—C9115.17 (14)H16B—C16—H16C109.5
C7—C8—C9120.57 (16)C9—C17—H17A122.2 (13)
O10—C8—H8116.5C9—C17—H17B122.1 (14)
C7—C8—H8116.5H17A—C17—H17B115.5 (19)
C9—C8—H8116.5
C9B—O1—C2—O2172.91 (16)O10—C8—C9—C9A52.2 (2)
C9B—O1—C2—C38.26 (18)C7—C8—C9—C9A15.0 (2)
O2—C2—C3—C1028.0 (3)C17—C9—C9A—C9B1.8 (3)
O1—C2—C3—C10153.32 (16)C8—C9—C9A—C9B176.92 (15)
O2—C2—C3—C3A157.18 (18)C17—C9—C9A—C5A130.09 (19)
O1—C2—C3—C3A24.10 (18)C8—C9—C9A—C5A48.67 (19)
C2—C3—C3A—C492.11 (18)C6—C5A—C9A—C965.44 (17)
C10—C3—C3A—C434.6 (2)C11—C5A—C9A—C951.76 (19)
C2—C3—C3A—C9B28.74 (17)C5—C5A—C9A—C9173.70 (14)
C10—C3—C3A—C9B155.42 (17)C6—C5A—C9A—C9B166.57 (14)
C3—C3A—C4—C5179.07 (15)C11—C5A—C9A—C9B76.22 (19)
C9B—C3A—C4—C563.29 (19)C5—C5A—C9A—C9B45.71 (19)
C3A—C4—C5—C5A55.2 (2)C2—O1—C9B—C9A133.99 (14)
C4—C5—C5A—C6118.63 (17)C2—O1—C9B—C3A11.12 (17)
C4—C5—C5A—C11123.94 (17)C9—C9A—C9B—O178.72 (17)
C4—C5—C5A—C9A1.2 (2)C5A—C9A—C9B—O1154.87 (13)
C12—O3—C6—C775.56 (18)C9—C9A—C9B—C3A164.45 (14)
C12—O3—C6—C5A159.27 (14)C5A—C9A—C9B—C3A38.0 (2)
C11—C5A—C6—O3166.03 (14)C4—C3A—C9B—O199.98 (16)
C5—C5A—C6—O347.40 (18)C3—C3A—C9B—O124.83 (16)
C9A—C5A—C6—O374.64 (17)C4—C3A—C9B—C9A16.8 (2)
C11—C5A—C6—C770.81 (18)C3—C3A—C9B—C9A141.61 (15)
C5—C5A—C6—C7170.56 (14)C6—C7—O10—C8111.03 (17)
C9A—C5A—C6—C748.52 (18)C9—C8—O10—C7111.87 (18)
O3—C6—C7—O1036.6 (2)C6—O3—C12—O48.5 (3)
C5A—C6—C7—O1084.87 (18)C6—O3—C12—C13169.25 (15)
O3—C6—C7—C8105.14 (17)O4—C12—C13—C1416.9 (3)
C5A—C6—C7—C816.3 (2)O3—C12—C13—C14165.42 (16)
C6—C7—C8—O10104.52 (16)O4—C12—C13—C15160.91 (18)
O10—C7—C8—C9102.71 (17)O3—C12—C13—C1516.8 (2)
C6—C7—C8—C91.8 (2)C12—C13—C14—C162.7 (3)
O10—C8—C9—C17128.89 (18)C15—C13—C14—C16179.63 (18)
C7—C8—C9—C17163.85 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3A···O4i1.002.453.353 (2)149
C5—H5B···O30.992.332.752 (2)105
C8—H8···O2ii1.002.503.176 (2)124
C9A—H9A···O31.002.583.010 (2)106
C14—H14···O10iii0.952.573.423 (2)149
C16—H16B···O40.982.452.862 (2)105
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y+3/2, z+1.
Summary of short interatomic contacts (Å) in the title compound top
H15A···H16C2.39-1/2 + x, 3/2 - y, 1 - z
O2···H82.501/2 - x, 1 - y, 1/2 + z
O4···H3A2.453/2 - x, 1 - y, -1/2 + z
H8···H10A2.481 - x, -1/2 + y, 3/2 - z
H11B···H17A2.401 + x, y, z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, EGK and IGM; investigation, ANK, MA and EGK; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and MNK; supervision, ANK and MA.

Funding information

This study was supported by Azerbaijan Medical University, Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaneshniya, M., Maleki, M. H., Mohammadi, M. A., Ahangarian, K., Kondeskalaei, V. J. & Alavi, H. (2021). SARJNP, 4, 1–23.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMir-Babayev, N. F. & Houghton, P. J. (2002). Pharm. Biol. 40, 16–22.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRychlewska, U., Szczepańska, B. & Serkerov, S. V. (1992). Acta Cryst. C48, 1543–1547.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSalehi, M., Naghavi, M. R. & Bahmankar, M. (2019). Ind. Crops Prod. 139, 111511.  CrossRef Google Scholar
First citationSerkerov, S. V. (1972). Chem. Nat. Compd. 8, 181–183.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds