research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of catena-poly[[[aqua­{2-[(E)-(1-cyano-2-imino-2-meth­­oxy­ethyl­­idene)hydrazin­yl]benzene­sulfonato}­sodium]-di-μ-aqua] dihydrate]

crossmark logo

aCentro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, bExcellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus, 26470 Eskisehir, Türkiye, and eDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 April 2023; accepted 20 April 2023; online 28 April 2023)

In the polymeric title compound, {[Na(C10H9N4O4S)(H2O)3]·2H2O}n, sixfold coordinated Na+ cations are linked into a chain parallel to [010] by sharing common water mol­ecules. Next to the four bridging water mol­ecules, each Na+ cation of the chain is bonded to the O atom of a terminal water mol­ecule and an O atom of the SO3 group of the sulfonate anion. Classical O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds and additional ππ inter­actions connect these chains into a three-dimensional network.

1. Chemical context

Hydrazones are inter­esting compounds in the fields of coordination chemistry, crystal engineering, catalysis, mol­ecular recoginition and synthetic organic chemistry (Ma et al., 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763-4772.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]). Depending on the attached functional groups of the hydrazone ligands, the solubility and catalytic activities of their corresponding metal complexes can be improved (Gurbanov et al., 2022[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019-1031.]). Hydrazones have been applied as analytical reagents (Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.]), as well as building blocks in the construction of supra­molecular networks, owing to their capabilities as donor and acceptor groups in hydrogen bonding (Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmudov et al., 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.], 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.]). Both resonance-assisted hydrogen or chalcogen bonds also play a crucial role in the synthesis and structural chemistry of hydrazone ligands (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Mahmudov et al., 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). Similar to other classes of N-containing ligands, hydrazones also participate in various types of inter­molecular inter­actions (Polyanskii et al., 2019[Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769-779.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]).

[Scheme 1]

Herein, we report the structural features of the hydrazone derivative poly[[di-μ-aqua-{2-[(E)-(1-cyano-2-imino-2-meth­oxy­ethyl­idene)hydrazin­yl]benzene­sulfonato}­sodium] dihydrate].

2. Structural commentary

The Na+ cation exhibits a six-coordination by O atoms in the form of a distorted octa­hedron. Four water mol­ecules (O7, O9 and their symmetry-related counterparts) bridge adjacent cations into a chain extending parallel to [010] (Fig. 1[link]). The coordination sphere is completed by the O atoms of another water mol­ecule (O8), now bonded terminally, and an O atom from the SO3 group (O2). The sulfonate anion shows no atypical features.

[Figure 1]
Figure 1
The coordination environment of the Na+ cations in the title compound, leading to the formation of a chain extending parallel to [010]. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) −x, −y, −z + 1; (b) −x, −y + 1, −z + 1.]

3. Supra­molecular features

Classical O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds of medium strength (Table 1[link]) form a three-dimensional network (Figs. 2[link] and 3[link]). Furthermore, the mol­ecules are linked by ππ stacking inter­actions between the benzene rings [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.7588 (8) Å and slippage = 1.684 Å, where Cg1 is the centroid of the C1–C6 ring] parallel to [010] (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.85 1.98 2.8243 (13) 173
O5—H5B⋯O6ii 0.85 1.92 2.7660 (13) 176
O6—H6A⋯O5 0.85 1.88 2.7295 (15) 174
O6—H6B⋯O3 0.85 1.98 2.8169 (13) 168
O7—H7A⋯O5iii 0.85 2.06 2.8978 (13) 171
O7—H7B⋯N4iv 0.85 1.98 2.8141 (14) 167
O8—H8A⋯O3v 0.85 2.05 2.8874 (14) 168
O8—H8B⋯O2vi 0.85 2.18 2.9689 (15) 153
O9—H9A⋯O6 0.85 1.97 2.8241 (14) 178
N4—H4N⋯O8vii 0.93 2.38 3.0905 (16) 133
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, y-1, z]; (iv) [x-1, y, z]; (v) [-x, -y+1, -z+1]; (vi) [-x, -y, -z+1]; (vii) x+1, y, z.
[Figure 2]
Figure 2
View of the crystal structure along [010], with O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
View of the crystal structure along [001]; the hydrogen bonds are as in Fig. 2[link].
[Figure 4]
Figure 4
The ππ stacking inter­actions in the title compound shown with dashed lines.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related benzene­sulfonates with a monovalent cation gave two matches. In catena-[bis­(μ4-3-carb­oxy-4-hy­droxy­benzene­sul­fon­ato)­tri­aqua­disilver(I) monohydrate] (CSD refcode FETHES; Gao et al., 2005[Gao, S., Zhu, Z.-B., Huo, L.-H. & Ng, S. W. (2005). Acta Cryst. E61, m279-m281.]), both substituted benzene­sulfonate anions use two of their sulfonyl O atoms to link to three Ag+ cations and their carbonyl O atom to another Ag+ cation in a μ4-binding mode. The two symmetry-independent Ag+ cations are additionally coordinated by water mol­ecules, one by one water mol­ecule and the other by two water mol­ecules, so that one Ag+ cation is five- and the other six-coordinate. In catena-[μ5-(3-carb­oxy-4-hy­droxy­benzene­sulfonate)(μ2-aqua)­ru­bidium] (FAXGAN; Hu et al., 2005[Hu, M., Du, Y., Li, S., Jiang, Y., Liu, Z. & Geng, C. (2005). Acta Cryst. E61, m15-m17.]), the 3-carb­oxy-4-hy­droxy­ben­zene­sulfonate anion retains the usual inter­molecular hydrogen bond between the phenol and carboxyl O atoms. The Rb+ cation is surrounded by eight O atoms, and the crystal packing is stabilized by inter­molecular O—H⋯O hydrogen bonds.

5. Synthesis and crystallization

344 mg (1 mmol) of sodium 2-[2-(di­cyano­methyl­ene)hy­dra­zin­yl]benzene­sulfonate tetra­hydrate (Kopylovich et al., 2013[Kopylovich, M. N., Mizar, A., Guedes da Silva, M. F. C., Mac Leod, T. C. O., Mahmudov, K. T. & Pombeiro, A. J. L. (2013). Chem. Eur. J. 19, 588-600.]) were dissolved in 60 ml of methanol and refluxed for 6 h. The reaction mixture was kept in air at room temperature for slow evaporation. After ca 2–3 d, yellow crystals of the title compound, suitable for X-ray analysis, had formed (yield 84%). The crystals were soluble in DMSO, ethanol and di­methyl­formamide and insoluble in nonpolar solvents. Elemental analysis (%) for C10H19N4NaO9S: C 30.41 (calc. 30.46), H 4.83 (4.86), N 14.16 (14.21); IR (KBr): 3390 ν(OH), 2995 and 2867 ν(NH), 1653 ν(C=N) cm−1. 1H NMR in DMSO, inter­nal TMS: δ (ppm) 3.44 (3H, OCH3), 7.16–8.11 (4H, Ar—H), 10.19 (1H, NH), 14.11 (s, 1H, N—H). 13C NMR in DMSO, inter­nal TMS: δ (ppm) 58.2 (OCH3), 111.5 (C=N), 112.3 (C≡N), 123.6 (ArC—H), 121.7 (ArC—SO3Na), 122.2 (ArC—H), 126.8 (ArC—H), 129.1 (ArC—H), 142.5 (ArC—NH) and 160.0 (C=NH).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). O- and N-bound H atoms were located from difference Fourier maps and refined with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O), with their positions fixed at distances of N—H = 0.93 Å and O—H = 0.85 Å.

Table 2
Experimental details

Crystal data
Chemical formula [Na(C10H9N4O4S)(H2O)3]·2H2O
Mr 394.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 13.3305 (5), 6.8212 (3), 20.9547 (8)
β (°) 106.681 (1)
V3) 1825.23 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.27 × 0.21 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.926, 0.967
No. of measured, independent and observed [I > 2σ(I)] reflections 27710, 3748, 3389
Rint 0.021
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.07
No. of reflections 3748
No. of parameters 227
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

catena-Poly[[[aqua{2-[(E)-(1-cyano-2-imino-2-methoxyethylidene)hydrazinyl]benzenesulfonato}sodium]-di-µ-aqua] dihydrate] top
Crystal data top
[Na(C10H9N4O4S)(H2O)3]·2H2OF(000) = 824
Mr = 394.34Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.3305 (5) ÅCell parameters from 9914 reflections
b = 6.8212 (3) Åθ = 3.2–26.5°
c = 20.9547 (8) ŵ = 0.25 mm1
β = 106.681 (1)°T = 150 K
V = 1825.23 (13) Å3Needle, yellow
Z = 40.27 × 0.21 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3389 reflections with I > 2σ(I)
φ and ω scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.5°, θmin = 2.2°
Tmin = 0.926, Tmax = 0.967h = 1616
27710 measured reflectionsk = 87
3748 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.081H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.8377P]
where P = (Fo2 + 2Fc2)/3
3748 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.01633 (4)0.24885 (7)0.50226 (3)0.02094 (13)
S10.24044 (2)0.24765 (4)0.43523 (2)0.01763 (9)
O10.64543 (8)0.03548 (17)0.26660 (5)0.0316 (2)
O20.16843 (7)0.18478 (17)0.47128 (5)0.0312 (2)
O30.21772 (7)0.44290 (14)0.40648 (5)0.0250 (2)
O40.24943 (7)0.10353 (15)0.38547 (5)0.0292 (2)
O50.05048 (7)0.95638 (15)0.31489 (4)0.0259 (2)
H5A0.1110731.0035700.3327010.039*
H5B0.0264230.9943000.2747410.039*
O60.02512 (8)0.55977 (15)0.31795 (5)0.0278 (2)
H6A0.0365370.6825160.3194290.042*
H6B0.0837070.5126060.3402690.042*
O70.05415 (7)0.00275 (14)0.41756 (4)0.0214 (2)
H7A0.0294220.0035530.3844920.032*
H7B0.1168220.0352870.3974820.032*
O80.15677 (8)0.24814 (14)0.51810 (5)0.0267 (2)
H8A0.1830260.3299140.5393970.040*
H8B0.1709260.1354040.5305270.040*
O90.07335 (8)0.48983 (15)0.41848 (5)0.0292 (2)
H9A0.0449370.5085690.3874890.044*
H9B0.1202470.4025480.4052780.044*
N10.45695 (8)0.19223 (16)0.41179 (5)0.0173 (2)
H1N0.3941330.1539360.3846830.021*
N20.54648 (8)0.17969 (16)0.39713 (5)0.0184 (2)
N30.37653 (11)0.0270 (2)0.24994 (7)0.0407 (3)
N40.73936 (9)0.1439 (2)0.37031 (6)0.0331 (3)
H4N0.7285940.1834780.4100700.040*
C10.45890 (9)0.23787 (17)0.47751 (6)0.0160 (2)
C20.55436 (10)0.25797 (18)0.52682 (7)0.0203 (3)
H20.6182290.2403300.5159540.024*
C30.55603 (11)0.3035 (2)0.59141 (6)0.0243 (3)
H30.6213210.3165340.6246490.029*
C40.46382 (11)0.3304 (2)0.60838 (6)0.0254 (3)
H40.4658400.3631540.6527950.030*
C50.36862 (10)0.30915 (19)0.55994 (6)0.0220 (3)
H50.3051880.3264020.5713710.026*
C60.36531 (9)0.26271 (17)0.49470 (6)0.0167 (2)
C70.54846 (10)0.12221 (19)0.33855 (6)0.0206 (3)
C80.65335 (10)0.1044 (2)0.32786 (6)0.0254 (3)
C90.45515 (11)0.0676 (2)0.28728 (6)0.0253 (3)
C100.74403 (13)0.0023 (3)0.25222 (8)0.0457 (5)
H10C0.7305730.0485350.2067970.069*
H10D0.7855940.0931680.2839060.069*
H10E0.7826620.1260710.2562390.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0226 (3)0.0185 (3)0.0246 (3)0.00087 (19)0.0112 (2)0.00084 (19)
S10.01257 (15)0.01943 (17)0.02187 (16)0.00042 (10)0.00653 (12)0.00011 (11)
O10.0268 (5)0.0499 (7)0.0209 (5)0.0097 (5)0.0111 (4)0.0017 (4)
O20.0193 (5)0.0428 (6)0.0354 (5)0.0046 (4)0.0140 (4)0.0061 (5)
O30.0219 (4)0.0237 (5)0.0267 (5)0.0024 (4)0.0027 (4)0.0043 (4)
O40.0163 (4)0.0326 (5)0.0361 (5)0.0006 (4)0.0034 (4)0.0151 (4)
O50.0229 (4)0.0335 (5)0.0192 (4)0.0052 (4)0.0025 (4)0.0012 (4)
O60.0286 (5)0.0276 (5)0.0229 (5)0.0014 (4)0.0007 (4)0.0009 (4)
O70.0172 (4)0.0256 (5)0.0218 (4)0.0030 (3)0.0063 (3)0.0015 (4)
O80.0287 (5)0.0237 (5)0.0316 (5)0.0012 (4)0.0147 (4)0.0001 (4)
O90.0352 (5)0.0240 (5)0.0305 (5)0.0043 (4)0.0126 (4)0.0006 (4)
N10.0139 (5)0.0202 (5)0.0183 (5)0.0010 (4)0.0052 (4)0.0009 (4)
N20.0170 (5)0.0173 (5)0.0226 (5)0.0020 (4)0.0085 (4)0.0034 (4)
N30.0338 (7)0.0553 (9)0.0308 (7)0.0053 (6)0.0059 (6)0.0077 (6)
N40.0215 (6)0.0581 (9)0.0214 (5)0.0079 (6)0.0088 (5)0.0006 (6)
C10.0175 (6)0.0125 (5)0.0180 (6)0.0012 (4)0.0053 (5)0.0013 (4)
C20.0172 (6)0.0191 (6)0.0233 (6)0.0015 (4)0.0038 (5)0.0011 (5)
C30.0259 (6)0.0215 (6)0.0211 (6)0.0039 (5)0.0005 (5)0.0009 (5)
C40.0372 (7)0.0224 (7)0.0165 (6)0.0018 (6)0.0076 (5)0.0009 (5)
C50.0270 (6)0.0195 (6)0.0230 (6)0.0003 (5)0.0125 (5)0.0008 (5)
C60.0169 (6)0.0141 (6)0.0194 (6)0.0003 (4)0.0059 (5)0.0014 (4)
C70.0208 (6)0.0220 (6)0.0202 (6)0.0030 (5)0.0079 (5)0.0028 (5)
C80.0237 (6)0.0334 (7)0.0220 (6)0.0083 (5)0.0111 (5)0.0053 (5)
C90.0275 (7)0.0299 (7)0.0214 (6)0.0019 (6)0.0118 (5)0.0008 (5)
C100.0317 (8)0.0826 (14)0.0273 (7)0.0189 (8)0.0155 (6)0.0014 (8)
Geometric parameters (Å, º) top
Na1—O22.3407 (11)O9—H9B0.8500
Na1—O7i2.3530 (10)N1—N21.3178 (14)
Na1—O9ii2.4061 (11)N1—C11.4049 (15)
Na1—O82.4237 (11)N1—H1N0.9050
Na1—O72.4276 (10)N2—C71.2961 (16)
Na1—O92.4511 (11)N3—C91.1474 (19)
Na1—Na1i3.4206 (10)N4—C81.2621 (18)
Na1—Na1ii3.4517 (10)N4—H4N0.9254
Na1—H9B2.5336C1—C21.3967 (17)
S1—O21.4466 (9)C1—C61.4045 (17)
S1—O31.4572 (10)C2—C31.3826 (19)
S1—O41.4627 (10)C2—H20.9500
S1—C61.7730 (13)C3—C41.386 (2)
O1—C81.3424 (16)C3—H30.9500
O1—C101.4482 (17)C4—C51.3864 (19)
O5—H5A0.8498C4—H40.9500
O5—H5B0.8501C5—C61.3916 (18)
O6—H6A0.8500C5—H50.9500
O6—H6B0.8500C7—C91.4398 (18)
O7—H7A0.8496C7—C81.4832 (17)
O7—H7B0.8500C10—H10C0.9800
O8—H8A0.8500C10—H10D0.9800
O8—H8B0.8503C10—H10E0.9800
O9—H9A0.8501
O2—Na1—O7i92.10 (4)Na1i—O7—H7B121.5
O2—Na1—O9ii101.69 (4)Na1—O7—H7B107.5
O7i—Na1—O9ii94.98 (4)H7A—O7—H7B99.5
O2—Na1—O8166.44 (4)Na1—O8—H8A128.5
O7i—Na1—O885.30 (3)Na1—O8—H8B110.3
O9ii—Na1—O891.80 (4)H8A—O8—H8B105.8
O2—Na1—O781.51 (4)Na1ii—O9—Na190.57 (4)
O7i—Na1—O788.64 (3)Na1ii—O9—H9A107.1
O9ii—Na1—O7175.04 (4)Na1—O9—H9A114.5
O8—Na1—O785.12 (3)Na1ii—O9—H9B143.2
O2—Na1—O9102.11 (4)Na1—O9—H9B85.7
O7i—Na1—O9163.96 (4)H9A—O9—H9B107.7
O9ii—Na1—O989.43 (4)N2—N1—C1118.67 (10)
O8—Na1—O979.14 (4)N2—N1—H1N124.9
O7—Na1—O986.18 (4)C1—N1—H1N115.6
O2—Na1—Na1i85.44 (3)C7—N2—N1120.42 (11)
O7i—Na1—Na1i45.20 (3)C8—N4—H4N110.6
O9ii—Na1—Na1i140.07 (4)C2—C1—C6119.09 (11)
O8—Na1—Na1i83.29 (3)C2—C1—N1120.22 (11)
O7—Na1—Na1i43.45 (2)C6—C1—N1120.68 (11)
O9—Na1—Na1i127.86 (4)C3—C2—C1120.10 (12)
O2—Na1—Na1ii106.87 (4)C3—C2—H2120.0
O7i—Na1—Na1ii137.99 (4)C1—C2—H2120.0
O9ii—Na1—Na1ii45.24 (3)C2—C3—C4120.96 (12)
O8—Na1—Na1ii83.58 (3)C2—C3—H3119.5
O7—Na1—Na1ii130.32 (3)C4—C3—H3119.5
O9—Na1—Na1ii44.19 (3)C3—C4—C5119.41 (12)
Na1i—Na1—Na1ii166.02 (3)C3—C4—H4120.3
O2—Na1—H9B109.6C5—C4—H4120.3
O7i—Na1—H9B146.3C4—C5—C6120.48 (12)
O9ii—Na1—H9B105.0C4—C5—H5119.8
O8—Na1—H9B67.5C6—C5—H5119.8
O7—Na1—H9B70.2C5—C6—C1119.95 (11)
O9—Na1—H9B19.5C5—C6—S1117.54 (10)
Na1i—Na1—H9B109.4C1—C6—S1122.45 (9)
Na1ii—Na1—H9B60.7N2—C7—C9122.47 (11)
O2—S1—O3113.36 (6)N2—C7—C8116.37 (11)
O2—S1—O4112.05 (6)C9—C7—C8121.07 (11)
O3—S1—O4111.68 (6)N4—C8—O1123.70 (12)
O2—S1—C6106.26 (6)N4—C8—C7125.53 (12)
O3—S1—C6106.22 (5)O1—C8—C7110.75 (11)
O4—S1—C6106.71 (5)N3—C9—C7174.65 (14)
C8—O1—C10115.26 (11)O1—C10—H10C109.5
S1—O2—Na1147.89 (7)O1—C10—H10D109.5
H5A—O5—H5B111.1H10C—C10—H10D109.5
H6A—O6—H6B103.1O1—C10—H10E109.5
Na1i—O7—Na191.36 (3)H10C—C10—H10E109.5
Na1i—O7—H7A119.5H10D—C10—H10E109.5
Na1—O7—H7A118.2
O3—S1—O2—Na15.69 (15)N1—C1—C6—S12.39 (16)
O4—S1—O2—Na1121.84 (12)O2—S1—C6—C530.12 (12)
C6—S1—O2—Na1121.98 (12)O3—S1—C6—C590.88 (10)
C1—N1—N2—C7174.30 (11)O4—S1—C6—C5149.84 (10)
N2—N1—C1—C23.68 (17)O2—S1—C6—C1152.62 (10)
N2—N1—C1—C6176.71 (11)O3—S1—C6—C186.38 (11)
C6—C1—C2—C30.59 (18)O4—S1—C6—C132.90 (12)
N1—C1—C2—C3179.80 (11)N1—N2—C7—C90.71 (19)
C1—C2—C3—C40.2 (2)N1—N2—C7—C8177.34 (11)
C2—C3—C4—C50.7 (2)C10—O1—C8—N41.9 (2)
C3—C4—C5—C60.5 (2)C10—O1—C8—C7176.78 (13)
C4—C5—C6—C10.26 (19)N2—C7—C8—N41.5 (2)
C4—C5—C6—S1177.60 (10)C9—C7—C8—N4178.15 (15)
C2—C1—C6—C50.81 (17)N2—C7—C8—O1177.19 (12)
N1—C1—C6—C5179.58 (11)C9—C7—C8—O10.51 (18)
C2—C1—C6—S1178.00 (9)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4iii0.851.982.8243 (13)173
O5—H5B···O6iv0.851.922.7660 (13)176
O6—H6A···O50.851.882.7295 (15)174
O6—H6B···O30.851.982.8169 (13)168
O7—H7A···O5v0.852.062.8978 (13)171
O7—H7B···N4vi0.851.982.8141 (14)167
O8—H8A···O3ii0.852.052.8874 (14)168
O8—H8B···O2i0.852.182.9689 (15)153
O9—H9A···O60.851.972.8241 (14)178
N4—H4N···O8vii0.932.383.0905 (16)133
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y1, z; (vi) x1, y, z; (vii) x+1, y, z.
 

Acknowledgements

VA thanks the Fundação para a Ciência e a Tecnologia (FCT) (Portugal), Associação do Instituto Superior Técnico para Investigação e Desenvolvimento for her research fellowship through grant No. BL110/2022-IST-ID and Baku State University. The contributions of the authors are as follows. Conceptualization, MA and AB; synthesis, VAA and FSA; X-ray analysis, VAA, SÖY and MA; writing (review and editing of the manuscript), MA and AB; funding acquisition, VAA and FSA; supervision, MA and AB.

Funding information

Funding for this research was provided by: Fundação para a Ciência e a Tecnologia (grant No. BL110/2022-IST-ID).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, S., Zhu, Z.-B., Huo, L.-H. & Ng, S. W. (2005). Acta Cryst. E61, m279–m281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031.  CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHu, M., Du, Y., Li, S., Jiang, Y., Liu, Z. & Geng, C. (2005). Acta Cryst. E61, m15–m17.  CrossRef IUCr Journals Google Scholar
First citationKopylovich, M. N., Mizar, A., Guedes da Silva, M. F. C., Mac Leod, T. C. O., Mahmudov, K. T. & Pombeiro, A. J. L. (2013). Chem. Eur. J. 19, 588–600.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.  CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationPolyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds