research communications
μ-4-tert-butoxy-4-oxobut-2-en-2-olato)bis[(4-tert-butoxy-4-oxobut-2-en-2-olato)ethanolzinc(II)]
and Hirshfeld surface analysis of bis(aV. I. Vernadskii Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Akad. Palladin Ave 32/34, Kyiv 03142, Ukraine, and bSSI "Institute for Single Crystals" National Academy of Sciences of Ukraine, Nauki Ave 60, Kharkiv 61001, Ukraine
*Correspondence e-mail: Olej@meta.ua
The molecular and 2+ complex, [Zn2(C8H13O3)4(C2H5OH)2], with enolated anionic tert-butylacetoacetate and ethanol was analysed. The coordination polyhedra of the Zn atoms are distorted octahedra formed by six oxygen atoms that belong to three ligand molecules and a coordinated ethanol molecule. In the crystal phase, alternating layers can be distinguished parallel to the ac plane. A Hirshfeld surface analysis showed that there are no strong intermolecular interactions in the structure. The most significant contributions to the overall crystal packing are from H⋯H intermolecular contacts.
of the title binuclear ZnKeywords: crystal structure; complex; zinc; tert-butyl acetoacetate; keto ester; ethanol; binuclear structure.
CCDC reference: 2255847
1. Chemical context
Metal complexes with β-dicarbonyl ligands are widely used for obtaining metal oxides and, less often, metal films by the metal–organic chemical vapor deposition (MOCVD) process and its variations (Wei et al., 2014; Han et al., 2017, 2018; Nayak et al., 2007; Cosham et al., 2017; Kawazoe et al., 2006; Kamata et al., 1994), for the catalysis of reduction, oxidation, and of unsaturated compounds and cross-coupling reacti& Nobile et al., 1994). They also exhibit antiviral activity (Sechi et al., 2006), in which interest has increased significantly in recent years. In addition, β-dicarbonyl complexes of zinc are studied as luminescent materials and antioxidants (Aliaga-Alcalde et al., 2012; Nie et al., 2014; Turra et al., 2010).
Our research group is developing coordination compounds soluble in non-polar organic solvents, including metal complexes of acetoacetic acid et al., 2009), which can potentially be used as environmentally friendly additives to industrial products. Previously, we reported the structure of a trimeric zinc complex synthesized in a rather complicated way using diethyl zinc (Shtokvish et al., 2014). After that, we developed a much simpler and relatively more efficient method for the synthesis of cobalt and nickel ketoesterates (Shtokvish et al., 2015, 2017, Shtokvysh et al., 2018). The use of this method for the synthesis of Zn complexes made it possible to obtain dimeric complexes with cyclohexylacetoacetate (Shtokvysh et al., 2020) and tert-butylacetoacetate. In the present work, we report the synthesis and structural analysis of the new complex [Zn2(C8H10O3)4(C2H5OH)2].
(Koval2. Structural commentary
The title compound, μ-4-tert-butoxy-4-oxobut-2-en-2-olato)bis[(4-tert-butoxy-4-oxobut-2-en-2-olato)ethanolzinc(II)], is a binuclear complex that resides on a special position with the unit cell's central inversion centre being close to the refined zinc(II) atom and directly in between this and the symmetry-generated zinc atom [symmetry code: (i) −x + 1, −y + 1, −z + 1] (Fig. 1). The of the Zn centre is a distorted octahedron formed by six oxygen atoms. One bidentate acetylacetonate type ligand (O1, O2) binds only to one zinc centre. Its oxygen atoms occupy an axial (O1) and an equatorial position (O2). The second bidentate ligand (O4, O5) binds the zinc centre only equatorially, while O4 also binds the symmetry-generated second zinc atom of the binuclear complex. This also means that the symmetry-generated O4i atom occupies the fourth equatorial position. The octahedral coordination sphere is completed by axially coordinated ethanol (O7). The bonds of zinc atoms with the enol atom of the bridging ligand are not equivalent. The Zn1—O4 bond length in the chelate is shorter than the Zn1—O4i bond length with the symmetry-generated bridging ligand [2.076 (2) and 2.141 (3) Å, respectively; Table 1]. The Zn—O bond lengths of terminal ligands (O1, O2) are shorter than the Zn—O bonds of bridging ligands (O4, O5) with ranges of 2.031 (3) to 2.039 (3) and of 2.072 (3) to 2.076 (2) Å, respectively (Table 1). The Zn1—O7 bond length (the bond between the zinc atom and the oxygen of the coordinated ethanol molecule) is the longest in the at 2.201 (3) Å (Table 1). The values of the O—Zn—O bond angles lie in the range 85.30 (11) to 97.46 (12)° (Table 1). The connection between the nuclei of the complex is additionally stabilized by two intramolecular hydrogen bonds between the hydrogen atoms of the hydroxyl groups of ethanol and the enol oxygen atoms of the terminal ligands belonging to another nucleus (Table 2).
bis(3. Supramolecular features
There are no short intermolecular contacts between neighbouring molecules in the crystal phase. However, visually we can distinguish alternating layers parallel to the ac plane (Fig. 2a). Molecules in the layer are oriented identically with respect to each other and mirrored with respect to the molecules of the neighbouring layer (Fig. 2b).
4. Hirshfeld surface analysis and finger print plots
A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 21.5 software (Spackman et al., 2021), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of 0.0290 (white) to 1.706 (blue) a.u. (Fig. 3). Usually contacts shorter than the sums of van der Waals radii are shown in red, those longer in blue, and those approximately equal as white spots. There are no red spots on the dnorm surface. This indicates that there are no strong intermolecular interactions in the structure.
The overall two-dimensional fingerprint plot, and those decomposed into various interactions are given Fig. 4. The most significant contributions to the overall crystal packing are from H⋯H (89.2%) proximities, which are located mostly in the middle region of the fingerprint plot. There is also a small contribution from H⋯O/O⋯H (6.5%) and H⋯C/C⋯H (4.3%) intermolecular `contacts'.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, update November 2022; Groom et al., 2016; ConQuest 2022.3.0; Bruno et al., 2002) for binuclear complexes with different acetoacetic yielded seven structures that are very similar to the title compound. Among these structures are three structures with the metal being cobalt (refcodes BENNUG, BENPAO; Shtokvish et al., 2017; WARHAB; Shtokvish et al., 2015), three structures with nickel (refcodes WOCXOE, WOCXUK, WOCYAR; Shtokvysh et al., 2018) and one with zinc (refcode GARBOU; Shtokvysh et al., 2020). The coordination centres in all cases have an octahedral geometric environment. The M—O bond lengths (1.997 to 2.082 Å) are consistently shorter in the terminal ligand than the M—O bond lengths (2.088 to 2.184 Å) of the bridging ligands.
6. Synthesis and crystallization
The title compound was synthesized in accordance with the methodology reported earlier (Shtokvish et al., 2015). ZnCl2 (0.1 g, 7 mmol) was dissolved in 2 ml of ethanol (azeotrope with water, 95.6% alcohol). Then liquid tert-butyl acetoacetate was added to the solution (0.244 ml, 14 mmol). The components were then mixed. The test tube with the reaction mixture was placed in a container together with a vessel containing triethylamine (0.4 ml, 28 mmol). The container was sealed and left in the refrigerator for 1–2 days at a temperature of 281 K. The structural study was performed for a crystal taken directly and immediately from the reaction mixture, since this compound is prone to degradeation. The crystals were filtered on a P2 (P100) fritted glass filter (to separate thin powders of by-products and degradeation products), then washed several times with ethanol and dried in air for no more than 1 h. The yield is 0.078 g, which is 25.3% of the theoretical value. The obtained crystals can be stored at 261 K and below.
7. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions [C—H = 0.93 Å (0.96 Å for C-methyl)] and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 3
|
The C atoms of the coordinated ethanol molecule are disordered over two positions with an occupancy of 50%. Restraints were applied to the bond lengths in the disordered parts (O—C = 1.45 Å, C—C = 1.49 Å) within a standard deviation of 0.02 Å. The position of the O-bound hydrogen atom was determined from the electron-density map. The O-bound hydrogen atom was refined freely with full occupancy restraining only the O—H bond length to 0.86 Å within a standard deviation of 0.02 Å.
Supporting information
CCDC reference: 2255847
https://doi.org/10.1107/S2056989023003377/yz2031sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023003377/yz2031Isup2.hkl
Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); cell
CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); program(s) used to solve structure: olex2.solve 1.5 (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2019/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009), Mercury 2022.3.0 (Macrae et al., 2020); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).[Zn2(C8H13O3)4(C2H6O)2] | F(000) = 904 |
Mr = 851.61 | Dx = 1.249 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1689 (5) Å | Cell parameters from 2231 reflections |
b = 22.8882 (10) Å | θ = 3.7–21.8° |
c = 11.0743 (5) Å | µ = 1.12 mm−1 |
β = 103.043 (5)° | T = 295 K |
V = 2264.10 (19) Å3 | Block, colourless |
Z = 2 | 0.5 × 0.4 × 0.2 mm |
Xcalibur, Sapphire3 diffractometer | 3257 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.051 |
ω scans | θmax = 26.4°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −11→11 |
Tmin = 0.460, Tmax = 1.000 | k = −28→28 |
18037 measured reflections | l = −8→13 |
4622 independent reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0617P)2 + 0.6818P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
4622 reflections | Δρmax = 0.56 e Å−3 |
268 parameters | Δρmin = −0.34 e Å−3 |
53 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.54544 (5) | 0.44504 (2) | 0.42445 (4) | 0.0662 (2) | |
O1 | 0.3922 (3) | 0.47158 (13) | 0.2720 (3) | 0.0764 (8) | |
O2 | 0.6833 (3) | 0.41548 (12) | 0.3169 (2) | 0.0671 (7) | |
O3 | 0.7330 (3) | 0.38286 (15) | 0.1401 (3) | 0.0882 (9) | |
O4 | 0.3987 (3) | 0.46505 (12) | 0.5364 (2) | 0.0672 (7) | |
O5 | 0.4756 (3) | 0.35898 (12) | 0.4248 (3) | 0.0772 (8) | |
O6 | 0.3134 (3) | 0.28661 (12) | 0.4379 (2) | 0.0738 (7) | |
O7 | 0.7190 (4) | 0.43704 (14) | 0.5970 (3) | 0.0911 (9) | |
C1 | 0.2636 (5) | 0.4793 (2) | 0.0629 (4) | 0.0938 (15) | |
H1A | 0.172653 | 0.468769 | 0.086530 | 0.141* | |
H1B | 0.266070 | 0.461221 | −0.014835 | 0.141* | |
H1C | 0.267881 | 0.521015 | 0.054530 | 0.141* | |
C2 | 0.3957 (4) | 0.45897 (18) | 0.1606 (4) | 0.0672 (10) | |
C3 | 0.5095 (4) | 0.42909 (19) | 0.1243 (4) | 0.0706 (11) | |
H3 | 0.496600 | 0.421072 | 0.040242 | 0.085* | |
C4 | 0.6431 (4) | 0.40970 (17) | 0.2033 (4) | 0.0666 (10) | |
C5 | 0.8841 (5) | 0.3624 (2) | 0.1982 (5) | 0.0897 (14) | |
C6 | 0.9817 (5) | 0.4121 (3) | 0.2556 (6) | 0.1108 (18) | |
H6A | 0.963480 | 0.445332 | 0.201407 | 0.166* | |
H6B | 1.084927 | 0.400825 | 0.268616 | 0.166* | |
H6C | 0.959237 | 0.422025 | 0.333682 | 0.166* | |
C7 | 0.8762 (7) | 0.3149 (3) | 0.2906 (7) | 0.131 (2) | |
H7A | 0.845972 | 0.331407 | 0.360811 | 0.197* | |
H7B | 0.972864 | 0.297042 | 0.317296 | 0.197* | |
H7C | 0.804662 | 0.285930 | 0.252621 | 0.197* | |
C8 | 0.9363 (7) | 0.3385 (4) | 0.0867 (6) | 0.155 (3) | |
H8A | 0.862961 | 0.311646 | 0.042344 | 0.233* | |
H8B | 1.030025 | 0.318583 | 0.114494 | 0.233* | |
H8C | 0.948707 | 0.370145 | 0.033114 | 0.233* | |
C9 | 0.1984 (7) | 0.4577 (2) | 0.6368 (6) | 0.123 (2) | |
H9A | 0.256051 | 0.467295 | 0.717969 | 0.184* | |
H9B | 0.120541 | 0.430766 | 0.643732 | 0.184* | |
H9C | 0.154656 | 0.492652 | 0.596048 | 0.184* | |
C10 | 0.2986 (5) | 0.43028 (19) | 0.5624 (4) | 0.0705 (11) | |
C11 | 0.2793 (5) | 0.37331 (19) | 0.5304 (4) | 0.0739 (11) | |
H11 | 0.203184 | 0.353451 | 0.556179 | 0.089* | |
C12 | 0.3643 (5) | 0.34110 (17) | 0.4612 (3) | 0.0652 (10) | |
C13 | 0.3831 (5) | 0.24431 (19) | 0.3696 (4) | 0.0776 (12) | |
C14 | 0.2860 (7) | 0.1908 (2) | 0.3683 (5) | 0.1141 (19) | |
H14A | 0.285700 | 0.179792 | 0.451860 | 0.171* | |
H14B | 0.325115 | 0.159240 | 0.327984 | 0.171* | |
H14C | 0.185651 | 0.199405 | 0.324153 | 0.171* | |
C15 | 0.3773 (8) | 0.2664 (3) | 0.2393 (4) | 0.122 (2) | |
H15A | 0.275191 | 0.274108 | 0.198153 | 0.183* | |
H15B | 0.418317 | 0.237424 | 0.193851 | 0.183* | |
H15C | 0.434563 | 0.301784 | 0.243508 | 0.183* | |
C16 | 0.5409 (6) | 0.2315 (2) | 0.4396 (5) | 0.1051 (17) | |
H16A | 0.601067 | 0.265992 | 0.441878 | 0.158* | |
H16B | 0.581885 | 0.200646 | 0.398803 | 0.158* | |
H16C | 0.540080 | 0.219781 | 0.522665 | 0.158* | |
C17A | 0.7360 (17) | 0.3935 (4) | 0.6946 (9) | 0.120 (2) | 0.502 (9) |
H17A | 0.640986 | 0.375180 | 0.695965 | 0.144* | 0.502 (9) |
H17B | 0.777579 | 0.410583 | 0.775206 | 0.144* | 0.502 (9) |
C17B | 0.7398 (17) | 0.3790 (2) | 0.6508 (10) | 0.119 (2) | 0.498 (9) |
H17C | 0.758504 | 0.352034 | 0.588523 | 0.142* | 0.498 (9) |
H17D | 0.647661 | 0.367100 | 0.672769 | 0.142* | 0.498 (9) |
C18A | 0.8418 (16) | 0.3510 (6) | 0.6591 (14) | 0.151 (3) | 0.502 (9) |
H18A | 0.939453 | 0.368299 | 0.671692 | 0.226* | 0.502 (9) |
H18B | 0.807363 | 0.340685 | 0.573319 | 0.226* | 0.502 (9) |
H18C | 0.846888 | 0.316516 | 0.709264 | 0.226* | 0.502 (9) |
C18B | 0.8644 (15) | 0.3742 (6) | 0.7627 (12) | 0.142 (3) | 0.498 (9) |
H18D | 0.941201 | 0.349365 | 0.744778 | 0.212* | 0.498 (9) |
H18E | 0.827299 | 0.357902 | 0.829736 | 0.212* | 0.498 (9) |
H18F | 0.905194 | 0.412323 | 0.785632 | 0.212* | 0.498 (9) |
H7 | 0.692 (4) | 0.4672 (10) | 0.633 (3) | 0.079 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0695 (3) | 0.0780 (3) | 0.0560 (3) | 0.0014 (2) | 0.0247 (2) | 0.0122 (2) |
O1 | 0.0709 (18) | 0.101 (2) | 0.0607 (17) | 0.0149 (15) | 0.0226 (14) | 0.0153 (15) |
O2 | 0.0607 (15) | 0.0879 (18) | 0.0556 (16) | 0.0049 (13) | 0.0193 (13) | 0.0093 (14) |
O3 | 0.0650 (18) | 0.133 (3) | 0.0683 (19) | 0.0093 (17) | 0.0196 (15) | −0.0132 (18) |
O4 | 0.0752 (17) | 0.0740 (16) | 0.0594 (16) | −0.0039 (14) | 0.0297 (14) | 0.0126 (13) |
O5 | 0.0866 (19) | 0.0788 (18) | 0.0735 (19) | −0.0078 (16) | 0.0333 (16) | 0.0084 (14) |
O6 | 0.0857 (19) | 0.0751 (18) | 0.0636 (17) | −0.0105 (15) | 0.0233 (15) | −0.0032 (14) |
O7 | 0.110 (2) | 0.090 (2) | 0.073 (2) | 0.0219 (18) | 0.0186 (18) | 0.0182 (16) |
C1 | 0.067 (3) | 0.141 (4) | 0.072 (3) | 0.006 (3) | 0.012 (2) | 0.020 (3) |
C2 | 0.058 (2) | 0.086 (3) | 0.059 (2) | −0.008 (2) | 0.015 (2) | 0.016 (2) |
C3 | 0.058 (2) | 0.106 (3) | 0.050 (2) | −0.004 (2) | 0.0160 (19) | 0.002 (2) |
C4 | 0.062 (2) | 0.081 (3) | 0.063 (3) | −0.009 (2) | 0.026 (2) | −0.001 (2) |
C5 | 0.067 (3) | 0.120 (4) | 0.085 (3) | 0.015 (3) | 0.023 (3) | −0.001 (3) |
C6 | 0.063 (3) | 0.155 (5) | 0.113 (4) | −0.004 (3) | 0.019 (3) | 0.009 (4) |
C7 | 0.114 (5) | 0.112 (4) | 0.171 (7) | 0.034 (4) | 0.039 (5) | 0.020 (4) |
C8 | 0.090 (4) | 0.257 (9) | 0.123 (5) | 0.050 (5) | 0.032 (4) | −0.049 (5) |
C9 | 0.135 (5) | 0.100 (4) | 0.169 (6) | −0.036 (3) | 0.108 (5) | −0.027 (4) |
C10 | 0.074 (3) | 0.086 (3) | 0.058 (2) | −0.010 (2) | 0.027 (2) | 0.008 (2) |
C11 | 0.078 (3) | 0.084 (3) | 0.067 (3) | −0.020 (2) | 0.031 (2) | −0.002 (2) |
C12 | 0.075 (3) | 0.073 (3) | 0.046 (2) | −0.003 (2) | 0.0083 (19) | 0.0114 (18) |
C13 | 0.097 (3) | 0.084 (3) | 0.053 (2) | −0.007 (3) | 0.020 (2) | −0.001 (2) |
C14 | 0.144 (5) | 0.089 (3) | 0.113 (4) | −0.024 (3) | 0.037 (4) | −0.018 (3) |
C15 | 0.186 (6) | 0.125 (4) | 0.056 (3) | 0.002 (4) | 0.030 (4) | −0.001 (3) |
C16 | 0.109 (4) | 0.107 (4) | 0.103 (4) | 0.005 (3) | 0.032 (4) | −0.001 (3) |
C17A | 0.140 (4) | 0.111 (4) | 0.095 (4) | 0.033 (4) | −0.005 (4) | −0.002 (3) |
C17B | 0.138 (4) | 0.109 (4) | 0.095 (4) | 0.038 (4) | −0.003 (4) | 0.000 (3) |
C18A | 0.159 (6) | 0.139 (6) | 0.132 (6) | 0.027 (6) | −0.014 (6) | 0.004 (6) |
C18B | 0.157 (6) | 0.135 (6) | 0.114 (6) | 0.032 (5) | −0.008 (6) | 0.006 (5) |
Zn1—O1 | 2.031 (3) | C8—H8B | 0.9600 |
Zn1—O2 | 2.039 (3) | C8—H8C | 0.9600 |
Zn1—O4i | 2.141 (3) | C9—H9A | 0.9600 |
Zn1—O4 | 2.076 (2) | C9—H9B | 0.9600 |
Zn1—O5 | 2.072 (3) | C9—H9C | 0.9600 |
Zn1—O7 | 2.201 (3) | C9—C10 | 1.503 (6) |
O1—C2 | 1.273 (5) | C10—C11 | 1.352 (6) |
O2—C4 | 1.235 (5) | C11—H11 | 0.9300 |
O3—C4 | 1.345 (5) | C11—C12 | 1.417 (6) |
O3—C5 | 1.467 (5) | C13—C14 | 1.512 (6) |
O4—C10 | 1.295 (4) | C13—C15 | 1.519 (6) |
O5—C12 | 1.248 (5) | C13—C16 | 1.508 (6) |
O6—C12 | 1.336 (5) | C14—H14A | 0.9600 |
O6—C13 | 1.461 (5) | C14—H14B | 0.9600 |
O7—C17A | 1.452 (2) | C14—H14C | 0.9600 |
O7—C17B | 1.450 (2) | C15—H15A | 0.9600 |
O7—H7 | 0.860 (2) | C15—H15B | 0.9600 |
C1—H1A | 0.9600 | C15—H15C | 0.9600 |
C1—H1B | 0.9600 | C16—H16A | 0.9600 |
C1—H1C | 0.9600 | C16—H16B | 0.9600 |
C1—C2 | 1.505 (6) | C16—H16C | 0.9600 |
C2—C3 | 1.381 (5) | C17A—H17A | 0.9700 |
C3—H3 | 0.9300 | C17A—H17B | 0.9700 |
C3—C4 | 1.407 (6) | C17A—C18A | 1.489 (2) |
C5—C6 | 1.498 (7) | C17B—H17C | 0.9700 |
C5—C7 | 1.506 (7) | C17B—H17D | 0.9700 |
C5—C8 | 1.522 (7) | C17B—C18B | 1.487 (2) |
C6—H6A | 0.9600 | C18A—H18A | 0.9600 |
C6—H6B | 0.9600 | C18A—H18B | 0.9600 |
C6—H6C | 0.9600 | C18A—H18C | 0.9600 |
C7—H7A | 0.9600 | C18B—H18D | 0.9600 |
C7—H7B | 0.9600 | C18B—H18E | 0.9600 |
C7—H7C | 0.9600 | C18B—H18F | 0.9600 |
C8—H8A | 0.9600 | ||
O1—Zn1—O2 | 90.99 (11) | H8A—C8—H8C | 109.5 |
O1—Zn1—O4i | 88.27 (12) | H8B—C8—H8C | 109.5 |
O1—Zn1—O4 | 90.61 (11) | H9A—C9—H9B | 109.5 |
O1—Zn1—O5 | 97.46 (12) | H9A—C9—H9C | 109.5 |
O1—Zn1—O7 | 167.36 (12) | H9B—C9—H9C | 109.5 |
O2—Zn1—O4 | 173.35 (10) | C10—C9—H9A | 109.5 |
O2—Zn1—O4i | 106.60 (10) | C10—C9—H9B | 109.5 |
O2—Zn1—O5 | 85.30 (11) | C10—C9—H9C | 109.5 |
O2—Zn1—O7 | 93.30 (12) | O4—C10—C9 | 114.6 (4) |
O4—Zn1—O4i | 79.90 (10) | O4—C10—C11 | 126.3 (4) |
O4i—Zn1—O7 | 79.11 (11) | C11—C10—C9 | 119.1 (4) |
O4—Zn1—O7 | 86.49 (12) | C10—C11—H11 | 117.0 |
O5—Zn1—O4 | 88.08 (11) | C10—C11—C12 | 126.0 (4) |
O5—Zn1—O4i | 166.76 (10) | C12—C11—H11 | 117.0 |
O5—Zn1—O7 | 94.74 (12) | O5—C12—O6 | 121.2 (4) |
C2—O1—Zn1 | 125.0 (3) | O5—C12—C11 | 126.4 (4) |
C4—O2—Zn1 | 123.2 (3) | O6—C12—C11 | 112.3 (4) |
C4—O3—C5 | 123.2 (3) | O6—C13—C14 | 102.5 (4) |
Zn1—O4—Zn1i | 100.10 (10) | O6—C13—C15 | 110.2 (4) |
C10—O4—Zn1i | 134.0 (3) | O6—C13—C16 | 110.1 (4) |
C10—O4—Zn1 | 125.8 (3) | C14—C13—C15 | 111.5 (4) |
C12—O5—Zn1 | 126.0 (3) | C16—C13—C14 | 110.0 (4) |
C12—O6—C13 | 123.0 (3) | C16—C13—C15 | 112.2 (4) |
Zn1—O7—H7 | 96 (3) | C13—C14—H14A | 109.5 |
C17A—O7—Zn1 | 129.7 (7) | C13—C14—H14B | 109.5 |
C17A—O7—H7 | 102 (3) | C13—C14—H14C | 109.5 |
C17B—O7—Zn1 | 115.8 (5) | H14A—C14—H14B | 109.5 |
C17B—O7—H7 | 125 (3) | H14A—C14—H14C | 109.5 |
H1A—C1—H1B | 109.5 | H14B—C14—H14C | 109.5 |
H1A—C1—H1C | 109.5 | C13—C15—H15A | 109.5 |
H1B—C1—H1C | 109.5 | C13—C15—H15B | 109.5 |
C2—C1—H1A | 109.5 | C13—C15—H15C | 109.5 |
C2—C1—H1B | 109.5 | H15A—C15—H15B | 109.5 |
C2—C1—H1C | 109.5 | H15A—C15—H15C | 109.5 |
O1—C2—C1 | 115.7 (4) | H15B—C15—H15C | 109.5 |
O1—C2—C3 | 125.4 (4) | C13—C16—H16A | 109.5 |
C3—C2—C1 | 118.8 (4) | C13—C16—H16B | 109.5 |
C2—C3—H3 | 117.1 | C13—C16—H16C | 109.5 |
C2—C3—C4 | 125.7 (4) | H16A—C16—H16B | 109.5 |
C4—C3—H3 | 117.1 | H16A—C16—H16C | 109.5 |
O2—C4—O3 | 120.1 (4) | H16B—C16—H16C | 109.5 |
O2—C4—C3 | 128.1 (4) | O7—C17A—H17A | 111.2 |
O3—C4—C3 | 111.7 (4) | O7—C17A—H17B | 111.2 |
O3—C5—C6 | 111.0 (4) | O7—C17A—C18A | 102.6 (8) |
O3—C5—C7 | 110.1 (4) | H17A—C17A—H17B | 109.2 |
O3—C5—C8 | 101.4 (4) | C18A—C17A—H17A | 111.2 |
C6—C5—C7 | 112.0 (5) | C18A—C17A—H17B | 111.2 |
C6—C5—C8 | 110.5 (5) | O7—C17B—H17C | 108.6 |
C7—C5—C8 | 111.4 (5) | O7—C17B—H17D | 108.6 |
C5—C6—H6A | 109.5 | O7—C17B—C18B | 114.5 (8) |
C5—C6—H6B | 109.5 | H17C—C17B—H17D | 107.6 |
C5—C6—H6C | 109.5 | C18B—C17B—H17C | 108.6 |
H6A—C6—H6B | 109.5 | C18B—C17B—H17D | 108.6 |
H6A—C6—H6C | 109.5 | C17A—C18A—H18A | 109.5 |
H6B—C6—H6C | 109.5 | C17A—C18A—H18B | 109.5 |
C5—C7—H7A | 109.5 | C17A—C18A—H18C | 109.5 |
C5—C7—H7B | 109.5 | H18A—C18A—H18B | 109.5 |
C5—C7—H7C | 109.5 | H18A—C18A—H18C | 109.5 |
H7A—C7—H7B | 109.5 | H18B—C18A—H18C | 109.5 |
H7A—C7—H7C | 109.5 | C17B—C18B—H18D | 109.5 |
H7B—C7—H7C | 109.5 | C17B—C18B—H18E | 109.5 |
C5—C8—H8A | 109.5 | C17B—C18B—H18F | 109.5 |
C5—C8—H8B | 109.5 | H18D—C18B—H18E | 109.5 |
C5—C8—H8C | 109.5 | H18D—C18B—H18F | 109.5 |
H8A—C8—H8B | 109.5 | H18E—C18B—H18F | 109.5 |
Zn1—O1—C2—C1 | 175.2 (3) | C2—C3—C4—O2 | 0.0 (7) |
Zn1—O1—C2—C3 | −5.2 (6) | C2—C3—C4—O3 | −178.9 (4) |
Zn1—O2—C4—O3 | −171.2 (3) | C4—O3—C5—C6 | −60.4 (6) |
Zn1—O2—C4—C3 | 10.0 (6) | C4—O3—C5—C7 | 64.2 (6) |
Zn1i—O4—C10—C9 | −0.3 (6) | C4—O3—C5—C8 | −177.8 (5) |
Zn1—O4—C10—C9 | −174.9 (4) | C5—O3—C4—O2 | −3.7 (6) |
Zn1i—O4—C10—C11 | −179.5 (3) | C5—O3—C4—C3 | 175.2 (4) |
Zn1—O4—C10—C11 | 5.9 (6) | C9—C10—C11—C12 | −179.8 (5) |
Zn1—O5—C12—O6 | 168.2 (3) | C10—C11—C12—O5 | 4.4 (7) |
Zn1—O5—C12—C11 | −12.6 (6) | C10—C11—C12—O6 | −176.3 (4) |
Zn1—O7—C17A—C18A | 95.5 (12) | C12—O6—C13—C14 | −180.0 (4) |
Zn1—O7—C17B—C18B | 176.2 (11) | C12—O6—C13—C15 | −61.2 (5) |
O1—C2—C3—C4 | −2.8 (7) | C12—O6—C13—C16 | 63.0 (5) |
O4—C10—C11—C12 | −0.6 (8) | C13—O6—C12—O5 | 0.2 (6) |
C1—C2—C3—C4 | 176.8 (4) | C13—O6—C12—C11 | −179.1 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7···O1i | 0.86 (1) | 2.01 (1) | 2.861 (4) | 171 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
References
Aliaga-Alcalde, N., Rodríguez, L., Ferbinteanu, M., Höfer, P. & Weyhermüller, T. (2012). Inorg. Chem. 51, 864–873. CAS PubMed Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cosham, S. D., Richards, S. P., Manning, T., Hill, M. S., Johnson, A. L. & Molloy, K. C. (2017). Eur. J. Inorg. Chem. pp. 1868–1876. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Han, H., Wei, Zh., Barry, M. C., Carozza, J. C., Alkan, M., Rogachev, A. Yu., Filatov, A. S., Abakumov, A. M. & Dikarev, E. V. (2018). Chem. Sci. 9, 4736–4745. CSD CrossRef CAS PubMed Google Scholar
Han, H., Wei, Zh., Barry, M. C., Filatov, A. S. & Dikarev, E. V. (2017). Dalton Trans. 46, 5644–5649. CSD CrossRef CAS PubMed Google Scholar
Kamata, K., Nishino, J., Ohshio, S., Maruyama, K. & Ohtuki, M. (1994). J. Am. Ceram. Soc. 77, 505–508. CrossRef CAS Google Scholar
Kawazoe, T., Kobayashi, K. & Ohtsu, M. (2006). Appl. Phys. B, 84, 247–251. CrossRef CAS Google Scholar
Koval, L. I., Dzyuba, V. I., Bon, V. V., Ilnitska, O. L. & Pekhnyo, V. I. (2009). Polyhedron, 28, 2698–2702. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mastrorilli, P. & Nobile, C. F. (1994). J. Mol. Catal. 94, 19–26. CrossRef CAS Google Scholar
Nayak, S. K., Jena, A., Neelgund, G. M., Shivashankar, S. A. & Guru Row, T. N. (2007). Acta Cryst. E63, m1604. CSD CrossRef IUCr Journals Google Scholar
Nie, C., Zhang, Q., Ding, H., Huang, B., Wang, X., Zhao, X., Li, S., Zhou, H., Wu, J. & Tian, Y. (2014). Dalton Trans. 43, 599–608. CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sechi, M., Bacchi, A., Carcelli, M., Compari, C., Duce, E., Fisicaro, E., Rogolino, D., Gates, P., Derudas, M., Al-Mawsawi, L. Q. & Neamati, N. (2006). J. Med. Chem. 49, 4248–4260. CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shtokvish, O. O., Koval, L. I., Dyakonenko, V. V. & Pekhnyo, V. I. (2017). Ukr. Chem. J. 83, 34–37. https://ucj.org.ua/index.php/journal/issue/view/95/5-2017 Google Scholar
Shtokvish, O. O., Koval, L. I. & Pekhnyo, V. I. (2014). Acta Cryst. E70, 483–485. CSD CrossRef IUCr Journals Google Scholar
Shtokvish, O. O., Koval, L. I. & Pekhnyo, V. I. (2015). Ukr. Chem. J. 81, 92–98. https://ucj.org.ua/index.php/journal/issue/view/43/12-2015 Google Scholar
Shtokvysh, O., Koval, L., Dyakonenko, V. & Pekhnyo, V. (2020). Bull. Taras Shevchenko Nat. Univ. Kyiv Chem. 1, 66–69. https://doi.org/10.17721/1728-2209.2020.1(57).16 Google Scholar
Shtokvysh, O. O., Koval, L. I., Dyakonenko, V. V. & Pekhnyo, V. I. (2018). Ukr. Chem. J. 84, 13–19. https://ucj.org.ua/index.php/journal/issue/view/3/3 Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turrà, N., Neuenschwander, U., Baiker, A., Peeters, J. & Hermans, I. (2010). Chem. Eur. J. 16, 13226–13235. PubMed Google Scholar
Wei, Zh., Han, H., Filatov, A. S. & Dikarev, E. V. (2014). Chem. Sci. 5, 813–818. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.