research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of bis­­(μ-4-tert-but­­oxy-4-oxobut-2-en-2-olato)bis­­[(4-tert-but­­oxy-4-oxobut-2-en-2-olato)ethano­lzinc(II)]

crossmark logo

aV. I. Vernadskii Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Akad. Palladin Ave 32/34, Kyiv 03142, Ukraine, and bSSI "Institute for Single Crystals" National Academy of Sciences of Ukraine, Nauki Ave 60, Kharkiv 61001, Ukraine
*Correspondence e-mail: Olej@meta.ua

Edited by C. Schulzke, Universität Greifswald, Germany (Received 10 March 2023; accepted 12 April 2023; online 21 April 2023)

The mol­ecular and crystal structure of the title binuclear Zn2+ complex, [Zn2(C8H13O3)4(C2H5OH)2], with enolated anionic tert-butyl­aceto­acetate and ethanol was analysed. The coordination polyhedra of the Zn atoms are distorted octa­hedra formed by six oxygen atoms that belong to three ligand mol­ecules and a coordinated ethanol mol­ecule. In the crystal phase, alternating layers can be distinguished parallel to the ac plane. A Hirshfeld surface analysis showed that there are no strong inter­molecular inter­actions in the structure. The most significant contributions to the overall crystal packing are from H⋯H inter­molecular contacts.

1. Chemical context

Metal complexes with β-dicarbonyl ligands are widely used for obtaining metal oxides and, less often, metal films by the metal–organic chemical vapor deposition (MOCVD) process and its variations (Wei et al., 2014[Wei, Zh., Han, H., Filatov, A. S. & Dikarev, E. V. (2014). Chem. Sci. 5, 813-818.]; Han et al., 2017[Han, H., Wei, Zh., Barry, M. C., Filatov, A. S. & Dikarev, E. V. (2017). Dalton Trans. 46, 5644-5649.], 2018[Han, H., Wei, Zh., Barry, M. C., Carozza, J. C., Alkan, M., Rogachev, A. Yu., Filatov, A. S., Abakumov, A. M. & Dikarev, E. V. (2018). Chem. Sci. 9, 4736-4745.]; Nayak et al., 2007[Nayak, S. K., Jena, A., Neelgund, G. M., Shivashankar, S. A. & Guru Row, T. N. (2007). Acta Cryst. E63, m1604.]; Cosham et al., 2017[Cosham, S. D., Richards, S. P., Manning, T., Hill, M. S., Johnson, A. L. & Molloy, K. C. (2017). Eur. J. Inorg. Chem. pp. 1868-1876.]; Kawazoe et al., 2006[Kawazoe, T., Kobayashi, K. & Ohtsu, M. (2006). Appl. Phys. B, 84, 247-251.]; Kamata et al., 1994[Kamata, K., Nishino, J., Ohshio, S., Maruyama, K. & Ohtuki, M. (1994). J. Am. Ceram. Soc. 77, 505-508.]), for the catalysis of reduction, oxidation, and oligomerization of unsaturated compounds and cross-coupling reacti& Nobile et al., 1994[Mastrorilli, P. & Nobile, C. F. (1994). J. Mol. Catal. 94, 19-26.]). They also exhibit anti­viral activity (Sechi et al., 2006[Sechi, M., Bacchi, A., Carcelli, M., Compari, C., Duce, E., Fisicaro, E., Rogolino, D., Gates, P., Derudas, M., Al-Mawsawi, L. Q. & Neamati, N. (2006). J. Med. Chem. 49, 4248-4260.]), in which inter­est has increased significantly in recent years. In addition, β-dicarbonyl complexes of zinc are studied as luminescent materials and anti­oxidants (Aliaga-Alcalde et al., 2012[Aliaga-Alcalde, N., Rodríguez, L., Ferbinteanu, M., Höfer, P. & Weyhermüller, T. (2012). Inorg. Chem. 51, 864-873.]; Nie et al., 2014[Nie, C., Zhang, Q., Ding, H., Huang, B., Wang, X., Zhao, X., Li, S., Zhou, H., Wu, J. & Tian, Y. (2014). Dalton Trans. 43, 599-608.]; Turra et al., 2010[Turrà, N., Neuenschwander, U., Baiker, A., Peeters, J. & Hermans, I. (2010). Chem. Eur. J. 16, 13226-13235.]).

[Scheme 1]

Our research group is developing coordination compounds soluble in non-polar organic solvents, including metal complexes of aceto­acetic acid esters (Koval et al., 2009[Koval, L. I., Dzyuba, V. I., Bon, V. V., Ilnitska, O. L. & Pekhnyo, V. I. (2009). Polyhedron, 28, 2698-2702.]), which can potentially be used as environmentally friendly additives to industrial products. Previously, we reported the structure of a trimeric zinc complex synthesized in a rather complicated way using diethyl zinc (Shtokvish et al., 2014[Shtokvish, O. O., Koval, L. I. & Pekhnyo, V. I. (2014). Acta Cryst. E70, 483-485.]). After that, we developed a much simpler and relatively more efficient method for the synthesis of cobalt and nickel ketoesterates (Shtokvish et al., 2015[Shtokvish, O. O., Koval, L. I. & Pekhnyo, V. I. (2015). Ukr. Chem. J. 81, 92-98. https://ucj.org.ua/index.php/journal/issue/view/43/12-2015], 2017[Shtokvish, O. O., Koval, L. I., Dyakonenko, V. V. & Pekhnyo, V. I. (2017). Ukr. Chem. J. 83, 34-37. https://ucj.org.ua/index.php/journal/issue/view/95/5-2017], Shtokvysh et al., 2018[Shtokvysh, O. O., Koval, L. I., Dyakonenko, V. V. & Pekhnyo, V. I. (2018). Ukr. Chem. J. 84, 13-19. https://ucj.org.ua/index.php/journal/issue/view/3/3]). The use of this method for the synthesis of Zn complexes made it possible to obtain dimeric complexes with cyclo­hexyl­aceto­acetate (Shtokvysh et al., 2020[Shtokvysh, O., Koval, L., Dyakonenko, V. & Pekhnyo, V. (2020). Bull. Taras Shevchenko Nat. Univ. Kyiv Chem. 1, 66-69. https://doi.org/10.17721/1728-2209.2020.1(57).16]) and tert-butyl­aceto­acetate. In the present work, we report the synthesis and structural analysis of the new complex [Zn2(C8H10O3)4(C2H5OH)2].

2. Structural commentary

The title compound, systematic name bis­(μ-4-tert-but­oxy-4-oxobut-2-en-2-olato)bis­[(4-tert-but­oxy-4-oxobut-2-en-2-ol­ato)ethano­lzinc(II)], is a binuclear complex that resides on a special position with the unit cell's central inversion centre being close to the refined zinc(II) atom and directly in between this and the symmetry-generated zinc atom [symmetry code: (i) −x + 1, −y + 1, −z + 1] (Fig. 1[link]). The coordination polyhedron of the Zn centre is a distorted octa­hedron formed by six oxygen atoms. One bidentate acetyl­acetonate type ligand (O1, O2) binds only to one zinc centre. Its oxygen atoms occupy an axial (O1) and an equatorial position (O2). The second bidentate ligand (O4, O5) binds the zinc centre only equatorially, while O4 also binds the symmetry-generated second zinc atom of the binuclear complex. This also means that the symmetry-generated O4i atom occupies the fourth equatorial position. The octa­hedral coordination sphere is completed by axially coordinated ethanol (O7). The bonds of zinc atoms with the enol atom of the bridging ligand are not equivalent. The Zn1—O4 bond length in the chelate is shorter than the Zn1—O4i bond length with the symmetry-generated bridging ligand [2.076 (2) and 2.141 (3) Å, respectively; Table 1[link]]. The Zn—O bond lengths of terminal ligands (O1, O2) are shorter than the Zn—O bonds of bridging ligands (O4, O5) with ranges of 2.031 (3) to 2.039 (3) and of 2.072 (3) to 2.076 (2) Å, respectively (Table 1[link]). The Zn1—O7 bond length (the bond between the zinc atom and the oxygen of the coordinated ethanol mol­ecule) is the longest in the coordination polyhedron at 2.201 (3) Å (Table 1[link]). The values of the O—Zn—O bond angles lie in the range 85.30 (11) to 97.46 (12)° (Table 1[link]). The connection between the nuclei of the complex is additionally stabilized by two intra­molecular hydrogen bonds between the hydrogen atoms of the hydroxyl groups of ethanol and the enol oxygen atoms of the terminal ligands belonging to another nucleus (Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 2.031 (3) Zn1—O4 2.076 (2)
Zn1—O2 2.039 (3) Zn1—O5 2.072 (3)
Zn1—O4i 2.141 (3) Zn1—O7 2.201 (3)
       
O1—Zn1—O2 90.99 (11) O2—Zn1—O7 93.30 (12)
O1—Zn1—O4 90.61 (11) O4—Zn1—O7 86.49 (12)
O1—Zn1—O5 97.46 (12) O5—Zn1—O4 88.08 (11)
O2—Zn1—O5 85.30 (11) O5—Zn1—O7 94.74 (12)
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O1i 0.86 (1) 2.01 (1) 2.861 (4) 171 (4)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms and the minor occupancy disordered component have been omitted for clarity. Unlabelled atoms are related by the symmetry operation 1 − x, 1 − y, 1 − z.

3. Supra­molecular features

There are no short inter­molecular contacts between neighbouring mol­ecules in the crystal phase. However, visually we can distinguish alternating layers parallel to the ac plane (Fig. 2[link]a). Mol­ecules in the layer are oriented identically with respect to each other and mirrored with respect to the mol­ecules of the neighbouring layer (Fig. 2[link]b).

[Figure 2]
Figure 2
(a) Crystal packing of the title compound and (b) differently-coloured layers in the same projection.

4. Hirshfeld surface analysis and finger print plots

A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 21.5 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of 0.0290 (white) to 1.706 (blue) a.u. (Fig. 3[link]). Usually contacts shorter than the sums of van der Waals radii are shown in red, those longer in blue, and those approximately equal as white spots. There are no red spots on the dnorm surface. This indicates that there are no strong inter­molecular inter­actions in the structure.

[Figure 3]
Figure 3
A projection of dnorm mapped on the Hirshfeld surface, showing the inter­molecular inter­actions within the mol­ecule.

The overall two-dimensional fingerprint plot, and those decomposed into various inter­actions are given Fig. 4[link]. The most significant contributions to the overall crystal packing are from H⋯H (89.2%) proximities, which are located mostly in the middle region of the fingerprint plot. There is also a small contribution from H⋯O/O⋯H (6.5%) and H⋯C/C⋯H (4.3%) inter­molecular `contacts'.

[Figure 4]
Figure 4
The overall two-dimensional fingerprint plot and those delineated into specified inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; ConQuest 2022.3.0; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for binuclear complexes with different aceto­acetic esters yielded seven structures that are very similar to the title compound. Among these structures are three structures with the metal being cobalt (refcodes BENNUG, BENPAO; Shtokvish et al., 2017[Shtokvish, O. O., Koval, L. I., Dyakonenko, V. V. & Pekhnyo, V. I. (2017). Ukr. Chem. J. 83, 34-37. https://ucj.org.ua/index.php/journal/issue/view/95/5-2017]; WARHAB; Shtokvish et al., 2015[Shtokvish, O. O., Koval, L. I. & Pekhnyo, V. I. (2015). Ukr. Chem. J. 81, 92-98. https://ucj.org.ua/index.php/journal/issue/view/43/12-2015]), three structures with nickel (refcodes WOCXOE, WOCXUK, WOCYAR; Shtokvysh et al., 2018[Shtokvysh, O. O., Koval, L. I., Dyakonenko, V. V. & Pekhnyo, V. I. (2018). Ukr. Chem. J. 84, 13-19. https://ucj.org.ua/index.php/journal/issue/view/3/3]) and one with zinc (refcode GARBOU; Shtokvysh et al., 2020[Shtokvysh, O., Koval, L., Dyakonenko, V. & Pekhnyo, V. (2020). Bull. Taras Shevchenko Nat. Univ. Kyiv Chem. 1, 66-69. https://doi.org/10.17721/1728-2209.2020.1(57).16]). The coordination centres in all cases have an octa­hedral geometric environment. The M—O bond lengths (1.997 to 2.082 Å) are consistently shorter in the terminal ligand than the M—O bond lengths (2.088 to 2.184 Å) of the bridging ligands.

6. Synthesis and crystallization

The title compound was synthesized in accordance with the methodology reported earlier (Shtokvish et al., 2015[Shtokvish, O. O., Koval, L. I. & Pekhnyo, V. I. (2015). Ukr. Chem. J. 81, 92-98. https://ucj.org.ua/index.php/journal/issue/view/43/12-2015]). ZnCl2 (0.1 g, 7 mmol) was dissolved in 2 ml of ethanol (azeotrope with water, 95.6% alcohol). Then liquid tert-butyl aceto­acetate was added to the solution (0.244 ml, 14 mmol). The components were then mixed. The test tube with the reaction mixture was placed in a container together with a vessel containing tri­ethyl­amine (0.4 ml, 28 mmol). The container was sealed and left in the refrigerator for 1–2 days at a temperature of 281 K. The structural study was performed for a crystal taken directly and immediately from the reaction mixture, since this compound is prone to degradeation. The crystals were filtered on a P2 (P100) fritted glass filter (to separate thin powders of by-products and degradeation products), then washed several times with ethanol and dried in air for no more than 1 h. The yield is 0.078 g, which is 25.3% of the theoretical value. The obtained crystals can be stored at 261 K and below.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions [C—H = 0.93 Å (0.96 Å for C-meth­yl)] and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula [Zn2(C8H13O3)4(C2H6O)2]
Mr 851.61
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 9.1689 (5), 22.8882 (10), 11.0743 (5)
β (°) 103.043 (5)
V3) 2264.10 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.12
Crystal size (mm) 0.5 × 0.4 × 0.2
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.460, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18037, 4622, 3257
Rint 0.051
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.154, 1.09
No. of reflections 4622
No. of parameters 268
No. of restraints 53
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2(Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

The C atoms of the coordinated ethanol mol­ecule are disordered over two positions with an occupancy of 50%. Restraints were applied to the bond lengths in the disordered parts (O—C = 1.45 Å, C—C = 1.49 Å) within a standard deviation of 0.02 Å. The position of the O-bound hydrogen atom was determined from the electron-density map. The O-bound hydrogen atom was refined freely with full occupancy restraining only the O—H bond length to 0.86 Å within a standard deviation of 0.02 Å.

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); program(s) used to solve structure: olex2.solve 1.5 (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2019/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009), Mercury 2022.3.0 (Macrae et al., 2020); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Bis(µ-4-tert-butoxy-4-oxobut-2-en-2-olato)bis[(4-tert-butoxy-4-oxobut-2-en-2-olato)ethanolzinc(II)] top
Crystal data top
[Zn2(C8H13O3)4(C2H6O)2]F(000) = 904
Mr = 851.61Dx = 1.249 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1689 (5) ÅCell parameters from 2231 reflections
b = 22.8882 (10) Åθ = 3.7–21.8°
c = 11.0743 (5) ŵ = 1.12 mm1
β = 103.043 (5)°T = 295 K
V = 2264.10 (19) Å3Block, colourless
Z = 20.5 × 0.4 × 0.2 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
3257 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.051
ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1111
Tmin = 0.460, Tmax = 1.000k = 2828
18037 measured reflectionsl = 813
4622 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.6818P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4622 reflectionsΔρmax = 0.56 e Å3
268 parametersΔρmin = 0.34 e Å3
53 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.54544 (5)0.44504 (2)0.42445 (4)0.0662 (2)
O10.3922 (3)0.47158 (13)0.2720 (3)0.0764 (8)
O20.6833 (3)0.41548 (12)0.3169 (2)0.0671 (7)
O30.7330 (3)0.38286 (15)0.1401 (3)0.0882 (9)
O40.3987 (3)0.46505 (12)0.5364 (2)0.0672 (7)
O50.4756 (3)0.35898 (12)0.4248 (3)0.0772 (8)
O60.3134 (3)0.28661 (12)0.4379 (2)0.0738 (7)
O70.7190 (4)0.43704 (14)0.5970 (3)0.0911 (9)
C10.2636 (5)0.4793 (2)0.0629 (4)0.0938 (15)
H1A0.1726530.4687690.0865300.141*
H1B0.2660700.4612210.0148350.141*
H1C0.2678810.5210150.0545300.141*
C20.3957 (4)0.45897 (18)0.1606 (4)0.0672 (10)
C30.5095 (4)0.42909 (19)0.1243 (4)0.0706 (11)
H30.4966000.4210720.0402420.085*
C40.6431 (4)0.40970 (17)0.2033 (4)0.0666 (10)
C50.8841 (5)0.3624 (2)0.1982 (5)0.0897 (14)
C60.9817 (5)0.4121 (3)0.2556 (6)0.1108 (18)
H6A0.9634800.4453320.2014070.166*
H6B1.0849270.4008250.2686160.166*
H6C0.9592370.4220250.3336820.166*
C70.8762 (7)0.3149 (3)0.2906 (7)0.131 (2)
H7A0.8459720.3314070.3608110.197*
H7B0.9728640.2970420.3172960.197*
H7C0.8046620.2859300.2526210.197*
C80.9363 (7)0.3385 (4)0.0867 (6)0.155 (3)
H8A0.8629610.3116460.0423440.233*
H8B1.0300250.3185830.1144940.233*
H8C0.9487070.3701450.0331140.233*
C90.1984 (7)0.4577 (2)0.6368 (6)0.123 (2)
H9A0.2560510.4672950.7179690.184*
H9B0.1205410.4307660.6437320.184*
H9C0.1546560.4926520.5960480.184*
C100.2986 (5)0.43028 (19)0.5624 (4)0.0705 (11)
C110.2793 (5)0.37331 (19)0.5304 (4)0.0739 (11)
H110.2031840.3534510.5561790.089*
C120.3643 (5)0.34110 (17)0.4612 (3)0.0652 (10)
C130.3831 (5)0.24431 (19)0.3696 (4)0.0776 (12)
C140.2860 (7)0.1908 (2)0.3683 (5)0.1141 (19)
H14A0.2857000.1797920.4518600.171*
H14B0.3251150.1592400.3279840.171*
H14C0.1856510.1994050.3241530.171*
C150.3773 (8)0.2664 (3)0.2393 (4)0.122 (2)
H15A0.2751910.2741080.1981530.183*
H15B0.4183170.2374240.1938510.183*
H15C0.4345630.3017840.2435080.183*
C160.5409 (6)0.2315 (2)0.4396 (5)0.1051 (17)
H16A0.6010670.2659920.4418780.158*
H16B0.5818850.2006460.3988030.158*
H16C0.5400800.2197810.5226650.158*
C17A0.7360 (17)0.3935 (4)0.6946 (9)0.120 (2)0.502 (9)
H17A0.6409860.3751800.6959650.144*0.502 (9)
H17B0.7775790.4105830.7752060.144*0.502 (9)
C17B0.7398 (17)0.3790 (2)0.6508 (10)0.119 (2)0.498 (9)
H17C0.7585040.3520340.5885230.142*0.498 (9)
H17D0.6476610.3671000.6727690.142*0.498 (9)
C18A0.8418 (16)0.3510 (6)0.6591 (14)0.151 (3)0.502 (9)
H18A0.9394530.3682990.6716920.226*0.502 (9)
H18B0.8073630.3406850.5733190.226*0.502 (9)
H18C0.8468880.3165160.7092640.226*0.502 (9)
C18B0.8644 (15)0.3742 (6)0.7627 (12)0.142 (3)0.498 (9)
H18D0.9412010.3493650.7447780.212*0.498 (9)
H18E0.8272990.3579020.8297360.212*0.498 (9)
H18F0.9051940.4123230.7856320.212*0.498 (9)
H70.692 (4)0.4672 (10)0.633 (3)0.079 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0695 (3)0.0780 (3)0.0560 (3)0.0014 (2)0.0247 (2)0.0122 (2)
O10.0709 (18)0.101 (2)0.0607 (17)0.0149 (15)0.0226 (14)0.0153 (15)
O20.0607 (15)0.0879 (18)0.0556 (16)0.0049 (13)0.0193 (13)0.0093 (14)
O30.0650 (18)0.133 (3)0.0683 (19)0.0093 (17)0.0196 (15)0.0132 (18)
O40.0752 (17)0.0740 (16)0.0594 (16)0.0039 (14)0.0297 (14)0.0126 (13)
O50.0866 (19)0.0788 (18)0.0735 (19)0.0078 (16)0.0333 (16)0.0084 (14)
O60.0857 (19)0.0751 (18)0.0636 (17)0.0105 (15)0.0233 (15)0.0032 (14)
O70.110 (2)0.090 (2)0.073 (2)0.0219 (18)0.0186 (18)0.0182 (16)
C10.067 (3)0.141 (4)0.072 (3)0.006 (3)0.012 (2)0.020 (3)
C20.058 (2)0.086 (3)0.059 (2)0.008 (2)0.015 (2)0.016 (2)
C30.058 (2)0.106 (3)0.050 (2)0.004 (2)0.0160 (19)0.002 (2)
C40.062 (2)0.081 (3)0.063 (3)0.009 (2)0.026 (2)0.001 (2)
C50.067 (3)0.120 (4)0.085 (3)0.015 (3)0.023 (3)0.001 (3)
C60.063 (3)0.155 (5)0.113 (4)0.004 (3)0.019 (3)0.009 (4)
C70.114 (5)0.112 (4)0.171 (7)0.034 (4)0.039 (5)0.020 (4)
C80.090 (4)0.257 (9)0.123 (5)0.050 (5)0.032 (4)0.049 (5)
C90.135 (5)0.100 (4)0.169 (6)0.036 (3)0.108 (5)0.027 (4)
C100.074 (3)0.086 (3)0.058 (2)0.010 (2)0.027 (2)0.008 (2)
C110.078 (3)0.084 (3)0.067 (3)0.020 (2)0.031 (2)0.002 (2)
C120.075 (3)0.073 (3)0.046 (2)0.003 (2)0.0083 (19)0.0114 (18)
C130.097 (3)0.084 (3)0.053 (2)0.007 (3)0.020 (2)0.001 (2)
C140.144 (5)0.089 (3)0.113 (4)0.024 (3)0.037 (4)0.018 (3)
C150.186 (6)0.125 (4)0.056 (3)0.002 (4)0.030 (4)0.001 (3)
C160.109 (4)0.107 (4)0.103 (4)0.005 (3)0.032 (4)0.001 (3)
C17A0.140 (4)0.111 (4)0.095 (4)0.033 (4)0.005 (4)0.002 (3)
C17B0.138 (4)0.109 (4)0.095 (4)0.038 (4)0.003 (4)0.000 (3)
C18A0.159 (6)0.139 (6)0.132 (6)0.027 (6)0.014 (6)0.004 (6)
C18B0.157 (6)0.135 (6)0.114 (6)0.032 (5)0.008 (6)0.006 (5)
Geometric parameters (Å, º) top
Zn1—O12.031 (3)C8—H8B0.9600
Zn1—O22.039 (3)C8—H8C0.9600
Zn1—O4i2.141 (3)C9—H9A0.9600
Zn1—O42.076 (2)C9—H9B0.9600
Zn1—O52.072 (3)C9—H9C0.9600
Zn1—O72.201 (3)C9—C101.503 (6)
O1—C21.273 (5)C10—C111.352 (6)
O2—C41.235 (5)C11—H110.9300
O3—C41.345 (5)C11—C121.417 (6)
O3—C51.467 (5)C13—C141.512 (6)
O4—C101.295 (4)C13—C151.519 (6)
O5—C121.248 (5)C13—C161.508 (6)
O6—C121.336 (5)C14—H14A0.9600
O6—C131.461 (5)C14—H14B0.9600
O7—C17A1.452 (2)C14—H14C0.9600
O7—C17B1.450 (2)C15—H15A0.9600
O7—H70.860 (2)C15—H15B0.9600
C1—H1A0.9600C15—H15C0.9600
C1—H1B0.9600C16—H16A0.9600
C1—H1C0.9600C16—H16B0.9600
C1—C21.505 (6)C16—H16C0.9600
C2—C31.381 (5)C17A—H17A0.9700
C3—H30.9300C17A—H17B0.9700
C3—C41.407 (6)C17A—C18A1.489 (2)
C5—C61.498 (7)C17B—H17C0.9700
C5—C71.506 (7)C17B—H17D0.9700
C5—C81.522 (7)C17B—C18B1.487 (2)
C6—H6A0.9600C18A—H18A0.9600
C6—H6B0.9600C18A—H18B0.9600
C6—H6C0.9600C18A—H18C0.9600
C7—H7A0.9600C18B—H18D0.9600
C7—H7B0.9600C18B—H18E0.9600
C7—H7C0.9600C18B—H18F0.9600
C8—H8A0.9600
O1—Zn1—O290.99 (11)H8A—C8—H8C109.5
O1—Zn1—O4i88.27 (12)H8B—C8—H8C109.5
O1—Zn1—O490.61 (11)H9A—C9—H9B109.5
O1—Zn1—O597.46 (12)H9A—C9—H9C109.5
O1—Zn1—O7167.36 (12)H9B—C9—H9C109.5
O2—Zn1—O4173.35 (10)C10—C9—H9A109.5
O2—Zn1—O4i106.60 (10)C10—C9—H9B109.5
O2—Zn1—O585.30 (11)C10—C9—H9C109.5
O2—Zn1—O793.30 (12)O4—C10—C9114.6 (4)
O4—Zn1—O4i79.90 (10)O4—C10—C11126.3 (4)
O4i—Zn1—O779.11 (11)C11—C10—C9119.1 (4)
O4—Zn1—O786.49 (12)C10—C11—H11117.0
O5—Zn1—O488.08 (11)C10—C11—C12126.0 (4)
O5—Zn1—O4i166.76 (10)C12—C11—H11117.0
O5—Zn1—O794.74 (12)O5—C12—O6121.2 (4)
C2—O1—Zn1125.0 (3)O5—C12—C11126.4 (4)
C4—O2—Zn1123.2 (3)O6—C12—C11112.3 (4)
C4—O3—C5123.2 (3)O6—C13—C14102.5 (4)
Zn1—O4—Zn1i100.10 (10)O6—C13—C15110.2 (4)
C10—O4—Zn1i134.0 (3)O6—C13—C16110.1 (4)
C10—O4—Zn1125.8 (3)C14—C13—C15111.5 (4)
C12—O5—Zn1126.0 (3)C16—C13—C14110.0 (4)
C12—O6—C13123.0 (3)C16—C13—C15112.2 (4)
Zn1—O7—H796 (3)C13—C14—H14A109.5
C17A—O7—Zn1129.7 (7)C13—C14—H14B109.5
C17A—O7—H7102 (3)C13—C14—H14C109.5
C17B—O7—Zn1115.8 (5)H14A—C14—H14B109.5
C17B—O7—H7125 (3)H14A—C14—H14C109.5
H1A—C1—H1B109.5H14B—C14—H14C109.5
H1A—C1—H1C109.5C13—C15—H15A109.5
H1B—C1—H1C109.5C13—C15—H15B109.5
C2—C1—H1A109.5C13—C15—H15C109.5
C2—C1—H1B109.5H15A—C15—H15B109.5
C2—C1—H1C109.5H15A—C15—H15C109.5
O1—C2—C1115.7 (4)H15B—C15—H15C109.5
O1—C2—C3125.4 (4)C13—C16—H16A109.5
C3—C2—C1118.8 (4)C13—C16—H16B109.5
C2—C3—H3117.1C13—C16—H16C109.5
C2—C3—C4125.7 (4)H16A—C16—H16B109.5
C4—C3—H3117.1H16A—C16—H16C109.5
O2—C4—O3120.1 (4)H16B—C16—H16C109.5
O2—C4—C3128.1 (4)O7—C17A—H17A111.2
O3—C4—C3111.7 (4)O7—C17A—H17B111.2
O3—C5—C6111.0 (4)O7—C17A—C18A102.6 (8)
O3—C5—C7110.1 (4)H17A—C17A—H17B109.2
O3—C5—C8101.4 (4)C18A—C17A—H17A111.2
C6—C5—C7112.0 (5)C18A—C17A—H17B111.2
C6—C5—C8110.5 (5)O7—C17B—H17C108.6
C7—C5—C8111.4 (5)O7—C17B—H17D108.6
C5—C6—H6A109.5O7—C17B—C18B114.5 (8)
C5—C6—H6B109.5H17C—C17B—H17D107.6
C5—C6—H6C109.5C18B—C17B—H17C108.6
H6A—C6—H6B109.5C18B—C17B—H17D108.6
H6A—C6—H6C109.5C17A—C18A—H18A109.5
H6B—C6—H6C109.5C17A—C18A—H18B109.5
C5—C7—H7A109.5C17A—C18A—H18C109.5
C5—C7—H7B109.5H18A—C18A—H18B109.5
C5—C7—H7C109.5H18A—C18A—H18C109.5
H7A—C7—H7B109.5H18B—C18A—H18C109.5
H7A—C7—H7C109.5C17B—C18B—H18D109.5
H7B—C7—H7C109.5C17B—C18B—H18E109.5
C5—C8—H8A109.5C17B—C18B—H18F109.5
C5—C8—H8B109.5H18D—C18B—H18E109.5
C5—C8—H8C109.5H18D—C18B—H18F109.5
H8A—C8—H8B109.5H18E—C18B—H18F109.5
Zn1—O1—C2—C1175.2 (3)C2—C3—C4—O20.0 (7)
Zn1—O1—C2—C35.2 (6)C2—C3—C4—O3178.9 (4)
Zn1—O2—C4—O3171.2 (3)C4—O3—C5—C660.4 (6)
Zn1—O2—C4—C310.0 (6)C4—O3—C5—C764.2 (6)
Zn1i—O4—C10—C90.3 (6)C4—O3—C5—C8177.8 (5)
Zn1—O4—C10—C9174.9 (4)C5—O3—C4—O23.7 (6)
Zn1i—O4—C10—C11179.5 (3)C5—O3—C4—C3175.2 (4)
Zn1—O4—C10—C115.9 (6)C9—C10—C11—C12179.8 (5)
Zn1—O5—C12—O6168.2 (3)C10—C11—C12—O54.4 (7)
Zn1—O5—C12—C1112.6 (6)C10—C11—C12—O6176.3 (4)
Zn1—O7—C17A—C18A95.5 (12)C12—O6—C13—C14180.0 (4)
Zn1—O7—C17B—C18B176.2 (11)C12—O6—C13—C1561.2 (5)
O1—C2—C3—C42.8 (7)C12—O6—C13—C1663.0 (5)
O4—C10—C11—C120.6 (8)C13—O6—C12—O50.2 (6)
C1—C2—C3—C4176.8 (4)C13—O6—C12—C11179.1 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O1i0.86 (1)2.01 (1)2.861 (4)171 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAliaga-Alcalde, N., Rodríguez, L., Ferbinteanu, M., Höfer, P. & Weyhermüller, T. (2012). Inorg. Chem. 51, 864–873.  CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCosham, S. D., Richards, S. P., Manning, T., Hill, M. S., Johnson, A. L. & Molloy, K. C. (2017). Eur. J. Inorg. Chem. pp. 1868–1876.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, H., Wei, Zh., Barry, M. C., Carozza, J. C., Alkan, M., Rogachev, A. Yu., Filatov, A. S., Abakumov, A. M. & Dikarev, E. V. (2018). Chem. Sci. 9, 4736–4745.  CSD CrossRef CAS PubMed Google Scholar
First citationHan, H., Wei, Zh., Barry, M. C., Filatov, A. S. & Dikarev, E. V. (2017). Dalton Trans. 46, 5644–5649.  CSD CrossRef CAS PubMed Google Scholar
First citationKamata, K., Nishino, J., Ohshio, S., Maruyama, K. & Ohtuki, M. (1994). J. Am. Ceram. Soc. 77, 505–508.  CrossRef CAS Google Scholar
First citationKawazoe, T., Kobayashi, K. & Ohtsu, M. (2006). Appl. Phys. B, 84, 247–251.  CrossRef CAS Google Scholar
First citationKoval, L. I., Dzyuba, V. I., Bon, V. V., Ilnitska, O. L. & Pekhnyo, V. I. (2009). Polyhedron, 28, 2698–2702.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMastrorilli, P. & Nobile, C. F. (1994). J. Mol. Catal. 94, 19–26.  CrossRef CAS Google Scholar
First citationNayak, S. K., Jena, A., Neelgund, G. M., Shivashankar, S. A. & Guru Row, T. N. (2007). Acta Cryst. E63, m1604.  CSD CrossRef IUCr Journals Google Scholar
First citationNie, C., Zhang, Q., Ding, H., Huang, B., Wang, X., Zhao, X., Li, S., Zhou, H., Wu, J. & Tian, Y. (2014). Dalton Trans. 43, 599–608.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSechi, M., Bacchi, A., Carcelli, M., Compari, C., Duce, E., Fisicaro, E., Rogolino, D., Gates, P., Derudas, M., Al-Mawsawi, L. Q. & Neamati, N. (2006). J. Med. Chem. 49, 4248–4260.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShtokvish, O. O., Koval, L. I., Dyakonenko, V. V. & Pekhnyo, V. I. (2017). Ukr. Chem. J. 83, 34–37. https://ucj.org.ua/index.php/journal/issue/view/95/5-2017  Google Scholar
First citationShtokvish, O. O., Koval, L. I. & Pekhnyo, V. I. (2014). Acta Cryst. E70, 483–485.  CSD CrossRef IUCr Journals Google Scholar
First citationShtokvish, O. O., Koval, L. I. & Pekhnyo, V. I. (2015). Ukr. Chem. J. 81, 92–98. https://ucj.org.ua/index.php/journal/issue/view/43/12-2015  Google Scholar
First citationShtokvysh, O., Koval, L., Dyakonenko, V. & Pekhnyo, V. (2020). Bull. Taras Shevchenko Nat. Univ. Kyiv Chem. 1, 66–69. https://doi.org/10.17721/1728-2209.2020.1(57).16  Google Scholar
First citationShtokvysh, O. O., Koval, L. I., Dyakonenko, V. V. & Pekhnyo, V. I. (2018). Ukr. Chem. J. 84, 13–19. https://ucj.org.ua/index.php/journal/issue/view/3/3  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurrà, N., Neuenschwander, U., Baiker, A., Peeters, J. & Hermans, I. (2010). Chem. Eur. J. 16, 13226–13235.  PubMed Google Scholar
First citationWei, Zh., Han, H., Filatov, A. S. & Dikarev, E. V. (2014). Chem. Sci. 5, 813–818.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds