research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,2′-[(3,5-di-tert-butyl-4-hy­dr­oxy­phen­yl)methanedi­yl]bis­­(3-hy­dr­oxy-5,5-di­methyl­cyclo­hex-2-en-1-one)

crossmark logo

a"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, bDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 10 March 2023; accepted 5 April 2023; online 14 April 2023)

In the title compound, C31H44O5, mol­ecules are connected by O—H⋯O and C—H⋯O hydrogen bonds, forming hydrogen-bonded zigzag chains running along the b axis and parallel to the (001) plane. The mol­ecular packing is stabilized by van der Waals inter­actions between these chains along the a and c axes. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.

1. Chemical context

The various carbon–carbon bond-formation techniques play important roles in organic chemistry (Celik et al., 2023[Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.]; Chalkha et al., 2023[Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.]; Tapera et al., 2022[Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.]). Xanthene derivatives have broad applications in medicine as a result of their anti-inflammatory, anti­bacterial, anti­viral, anti­fungal, anti-depressant, anti­plasmodial and anti-malarial activity (Maia et al., 2021[Maia, M., Resende, D. I. S. P., Durães, F., Pinto, M. M. M. & Sousa, E. (2021). Eur. J. Med. Chem. 210, 113085.]). They are a special class of oxygen-incorporating tricyclic systems. The xanthene moiety is also found in various natural compounds and has a wide spectrum of therapeutic and pharmacological properties. Aside from medicinal applications, xanthene dyes have been used for diagnostic and imaging applications (Khan & Sekar, 2022[Khan, Z. & Sekar, N. (2022). Dyes Pigments, 208, 110735.]; Majumdar et al., 2022[Majumdar, D., Philip, J. E., Tüzün, B., Frontera, A., Gomila, R. M., Roy, S. & Bankura, K. (2022). J. Inorg. Organomet. Polym. 32, 4320-4339.]; Lakhrissi et al., 2022[Lakhrissi, Y., Rbaa, M., Tuzun, B., Hichar, A., Anouar, H., Ounine, K., Almalki, F., Hadda, T. B., Zarrouk, A. & Lakhrissi, B. (2022). J. Mol. Struct. 1259, 132683.]).

[Scheme 1]

Thus, in the framework of our ongoing structural studies (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]; Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, 2,2′-[(3,5-di-tert-butyl-4-hy­droxy­phen­yl)methanedi­yl]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one).

2. Structural commentary

As seen in Fig. 1[link], each of the cyclo­hexenone rings (C2–C7 and C10–C15) of the title compound adopts an envelope conformation. The puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.5027 (12) Å, θ = 63.26 (14)°, φ = 179.78 (16)° for the C2–C7 ring, and QT = 0.4920 (11) Å, θ = 67.89 (13)°, φ = 167.63 (14)° for the C10–C15 ring. The mean planes [maximum deviations are 0.353 (1) Å for C5 and 0.332 (1) Å for C13] of the cyclo­hexane rings C2–C7 and C10–C15 subtend a dihedral angle of 39.59 (5)°, and they form dihedral angles of 56.25 (5) and 50.23 (5)°, respectively, with the benzene ring (C18–C23) of the 3,5-di-tert-butyl-4-hy­droxy­phenyl moiety. The bond lengths and angles in the title compound are within normal ranges. The orientation of the hy­droxy and carbonyl O atoms permits the formation of two intra­molecular O—H⋯O hydrogen bonds as they face one another (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4 0.930 (19) 1.711 (19) 2.6201 (11) 164.7 (17)
O3—H3O⋯O2 0.950 (19) 1.68 (2) 2.6174 (11) 170.3 (17)
O5—H5O⋯O4i 0.848 (19) 2.128 (18) 2.8285 (11) 139.7 (16)
C14—H14A⋯O5ii 0.99 2.48 3.1912 (12) 128
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules, forming zigzag chains running along the [010] direction and parallel to the (001) plane (Figs. 2[link] and 3[link]). The mol­ecular packing is stabilized by van der Waals inter­actions between these chains along the a and c axes.

[Figure 2]
Figure 2
The packing of the title compound viewed along the a-axis with O—H⋯O and C—H⋯O hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
A view of the zigzag chains running along the b-axis direction of the title compound with O—H⋯O and C—H⋯O hydrogen bonds shown as dashed lines.

To qu­antify the inter­molecular inter­actions, a Hirshfeld surface analysis was performed and CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to obtain the accompanying two-dimensional fingerprint plots. Fig. 4[link] shows the Hirshfeld surface mapped onto dnorm using a common surface resolution and a constant color scale of −0.4467 (red) to 1.6498 (blue) a.u. On the Hirshfeld surface, shorter and longer contacts are indicated by red and blue spots, respectively, and contacts with lengths about equal to the sum of the van der Waals radii are indicated by white spots. The O—H⋯O and C—H⋯O inter­actions are represented by the two most significant red spots on the dnorm surface (Tables 1[link] and 2[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

H4B⋯H16B 2.39 x, [{3\over 2}] − y, [{1\over 2}] + z
H4A⋯H1 2.31 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
H17B⋯O2 2.65 1 − x, 1 − y, 1 − z
O4⋯H5O 2.12 2 − x, [{1\over 2}] + y, [{3\over 2}] − z
C17⋯H30B 3.10 x, [{1\over 2}] − y, −[{1\over 2}] + z
H26C⋯H6A 2.58 1 + x, y, z
H25B⋯H17A 2.57 2 − x, 1 − y, 1 − z
[Figure 4]
Figure 4
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.4467 to 1.6498 a.u.

Fig. 5[link] depicts the two-dimensional fingerprint plots of (di, de) points from all the contacts contributing to the Hirshfeld surface analysis in normal mode for all atoms. The most important inter­molecular inter­actions are H⋯H contacts, contributing 76.8% to the overall crystal packing. Other inter­actions and their respective contributions are O⋯H/H⋯O (15.2%), C⋯H/H⋯C (6.9%) and O⋯O (1.0%). The Hirshfeld surface study verifies the significance of H-atom inter­actions in the packing formation. The significant frequency of H⋯H and O⋯H/H⋯O inter­actions implies that van der Waals inter­actions and hydrogen bonding are important in crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.]

4. Database survey

The ten most similar compounds found in a search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2,2′-(ethane-1,1-di­yl)bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one) moiety are 2,2′-[(4-eth­oxy­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1- one) (I; Sureshbabu & Sughanya, 2012[Sureshbabu, N. & Sughanya, V. (2012). Acta Cryst. E68, o2638.]), 2,2′-[(3-bromo-4-hy­droxy-5-meth­oxy­phen­yl)methyl­idene]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one) (II; Sughanya & Sureshbabu, 2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2875-o2876.]), 2,2′-[(1E)-3-phenyl­prop-2-ene-1,1-di­yl]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one) (III; Zhu et al., 2011[Zhu, Y.-L., Xiao, G.-L., Chen, Y.-F., Chen, R.-T. & Zhou, Y. (2011). Acta Cryst. E67, o2398.]), (E)-2,2′-[3-(4-chloro­phen­yl)prop-2-ene-1,1-di­yl]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one) (IV; Cha et al., 2013a[Cha, J. H., Lee, J. K., Min, S.-J., Cho, Y. S. & Park, J. (2013a). Acta Cryst. E69, o1347.]), (E)-2,2′-[3-(4-fluoro­phen­yl)prop-2-ene-1,1-di­yl]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one) (V; Cha et al., 2013b[Cha, J. H., Min, S.-J., Cho, Y. S., Lee, J. K. & Park, J. (2013b). Acta Cryst. E69, o397.]), (E)-2,2′-[3-(2-nitro­phen­yl)prop-2-ene-1,1-di­yl]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex- 2-en-1-one) (VI; Cha et al., 2011[Cha, J. H., Kim, Y. H., Min, S.-J., Cho, Y. S. & Lee, J. K. (2011). Acta Cryst. E67, o3153.]), 2,2′-[(E)-3-(4-nitro­phen­yl)prop-2-ene-1,1-di­yl]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one) (VII; Cha et al., 2012[Cha, J. H., Cho, Y. S., Lee, J. K., Park, J. & Sato, H. (2012). Acta Cryst. E68, o2510.]), bis­(2- hy­droxy-4,4-dimethyl-6-oxo-1-cyclo­hex­en­yl)phenyl­methane (VIII; Bolte et al., 1997a[Bolte, M., Degen, A. & Rühl, S. (1997a). Acta Cryst. C53, 340-342.]), 2,2′-[(2-nitro­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en­one) (IX; Steiger et al., 2020[Steiger, S. A., Li, C., Gates, C. & Natale, N. R. (2020). Acta Cryst. E76, 125-131.]) and 2,2′-[(3-hy­droxy­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-dimethyl-2-cyclo­hexen-1-one) (X; Bolte et al., 2001b[Bolte, M., Degen, A. & Rühl, S. (2001b). Acta Cryst. E57, o170-o171.]).

In I, II, III, IV, VIII, IX and X, the two cyclo­hexane rings adopt an envelope conformation, while in VI and VII they exhibit a half-chair conformation. In all of these crystals, mol­ecules are connected via O—H⋯O hydrogen bonds. In X, there are also O—H⋯O hydrogen bonds involving the water mol­ecules. In III, IV, V, VI, VII and IX, C—H⋯O hydrogen bonds also contribute to the cohesion of the crystal structure.

5. Synthesis and crystallization

To a solution of 3,5-di-tert-butyl-4-hy­droxy­benzaldehyde (1 g, 4.3 mmol) and 5,5-di­methyl­cyclo­hexane-1,3-dione (1.2 g, 8.6 mmol) in ethanol (15 mL), piperidine (2–3 drops) was added and the mixture was refluxed for 3 h. Then 10 mL of ethanol was removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (4:1) solution (yield 65%; m.p. 465–466 K).

1H NMR (300 MHz, CDCl3, ppm): 1.05 (s, 6H, 2CH3), 1.08 (s, 6H, 2CH3), 1.41 (s, 18H, 6CH3), 2.05–2.35 (m, 8H, 4CH2), 5.39 (s, 1H, CH), 5.69 (s, 1H, OH), 6.65 (s, 2H, arom.), 11.21 (s, 2H, 2OH); 13C NMR (75 MHz, CDCl3, ppm): 26.4, 28.7, 30.8, 31.7, 32.6, 36.5, 45.3, 51.8, 111.6, 122.9, 13.8, 136.8, 153.2, 176.4, 202.3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The O-bound H atoms were located in a difference-Fourier map and were freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C31H44O5
Mr 496.66
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.40591 (9), 10.98934 (10), 20.58063 (17)
β (°) 98.4293 (7)
V3) 2775.50 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.63
Crystal size (mm) 0.33 × 0.21 × 0.18
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.362, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 61789, 5870, 5540
Rint 0.047
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.03
No. of reflections 5870
No. of parameters 347
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.26
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.72a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.42.72a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.72a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2,2'-[(3,5-Di-tert-butyl-4-hydroxyphenyl)methanediyl]bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) top
Crystal data top
C31H44O5F(000) = 1080
Mr = 496.66Dx = 1.189 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.40591 (9) ÅCell parameters from 41183 reflections
b = 10.98934 (10) Åθ = 3.6–77.8°
c = 20.58063 (17) ŵ = 0.63 mm1
β = 98.4293 (7)°T = 100 K
V = 2775.50 (4) Å3Prism, colourless
Z = 40.33 × 0.21 × 0.18 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5540 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.047
φ and ω scansθmax = 77.9°, θmin = 3.6°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 1315
Tmin = 0.362, Tmax = 1.000k = 1313
61789 measured reflectionsl = 2626
5870 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.9674P]
where P = (Fo2 + 2Fc2)/3
5870 reflections(Δ/σ)max = 0.001
347 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67352 (6)0.68092 (7)0.79581 (4)0.02223 (17)
H1O0.7151 (15)0.6706 (16)0.7621 (9)0.046 (5)*
O20.39003 (6)0.48506 (8)0.65828 (4)0.02641 (18)
O30.47791 (6)0.57142 (7)0.55974 (4)0.02175 (17)
H3O0.4532 (15)0.5356 (17)0.5969 (9)0.049 (5)*
O40.79022 (6)0.69306 (7)0.69970 (3)0.01951 (16)
O50.99582 (6)0.26695 (8)0.81386 (4)0.02279 (17)
H5O1.0464 (15)0.2572 (16)0.7907 (9)0.041 (4)*
C10.61903 (8)0.51072 (9)0.68241 (5)0.0160 (2)
H10.57580.44550.65660.019*
C20.54278 (8)0.56043 (9)0.72776 (5)0.0171 (2)
C30.57463 (8)0.63356 (9)0.78073 (5)0.0186 (2)
C40.50033 (9)0.66692 (11)0.82932 (6)0.0245 (2)
H4A0.47010.74910.81860.029*
H4B0.54350.67070.87370.029*
C50.40583 (9)0.57748 (10)0.83053 (5)0.0217 (2)
C60.35058 (9)0.56319 (12)0.75965 (6)0.0265 (2)
H6A0.29470.49850.75790.032*
H6B0.31270.64010.74540.032*
C70.42799 (9)0.53188 (10)0.71194 (5)0.0211 (2)
C80.32572 (10)0.62886 (12)0.87359 (6)0.0307 (3)
H8A0.36320.64010.91850.046*
H8B0.26500.57190.87390.046*
H8C0.29770.70730.85590.046*
C90.44652 (10)0.45389 (12)0.85835 (6)0.0304 (3)
H9A0.49650.41890.83070.046*
H9B0.38440.39910.85900.046*
H9C0.48480.46460.90310.046*
C100.64598 (8)0.60075 (9)0.63062 (5)0.0162 (2)
C110.57732 (8)0.61877 (9)0.57293 (5)0.0176 (2)
C120.60567 (8)0.69745 (10)0.51805 (5)0.0197 (2)
H12A0.57570.78000.52240.024*
H12B0.57090.66340.47560.024*
C130.72887 (8)0.70697 (10)0.51767 (5)0.0192 (2)
C140.78192 (8)0.74319 (10)0.58701 (5)0.0193 (2)
H14A0.86140.72920.59050.023*
H14B0.77070.83150.59260.023*
C150.74074 (8)0.67709 (9)0.64281 (5)0.0169 (2)
C160.75463 (10)0.80530 (11)0.46958 (6)0.0266 (2)
H16A0.72210.88260.48040.040*
H16B0.72440.78140.42470.040*
H16C0.83380.81480.47280.040*
C170.77368 (9)0.58492 (10)0.49695 (5)0.0231 (2)
H17A0.85320.58990.50020.035*
H17B0.74220.56670.45150.035*
H17C0.75430.52020.52590.035*
C180.72031 (8)0.44419 (9)0.71819 (5)0.0169 (2)
C190.80443 (8)0.41235 (9)0.68346 (5)0.0176 (2)
H190.79820.43410.63840.021*
C200.89755 (8)0.34983 (9)0.71204 (5)0.0174 (2)
C210.90520 (8)0.32072 (9)0.77939 (5)0.0177 (2)
C220.82019 (8)0.34622 (9)0.81580 (5)0.0175 (2)
C230.72883 (8)0.40755 (9)0.78330 (5)0.0177 (2)
H230.67020.42480.80680.021*
C240.98864 (9)0.31798 (10)0.67141 (5)0.0206 (2)
C250.95624 (10)0.35071 (13)0.59845 (5)0.0307 (3)
H25A0.88850.30870.58110.046*
H25B1.01420.32550.57380.046*
H25C0.94540.43880.59410.046*
C261.09148 (9)0.39337 (11)0.69613 (6)0.0249 (2)
H26A1.07420.48030.69160.037*
H26B1.14910.37340.67000.037*
H26C1.11640.37430.74240.037*
C271.01253 (9)0.17986 (11)0.67306 (6)0.0249 (2)
H27A1.03040.15290.71880.037*
H27B1.07420.16320.64960.037*
H27C0.94810.13590.65190.037*
C280.82892 (9)0.31386 (10)0.88945 (5)0.0190 (2)
C290.72191 (9)0.33977 (11)0.91629 (5)0.0248 (2)
H29A0.70480.42670.91180.037*
H29B0.72990.31670.96280.037*
H29C0.66280.29240.89140.037*
C300.85384 (9)0.17769 (10)0.90225 (5)0.0221 (2)
H30A0.79660.12840.87690.033*
H30B0.85640.16040.94920.033*
H30C0.92440.15780.88880.033*
C310.91838 (9)0.39252 (10)0.92908 (5)0.0235 (2)
H31A0.98790.37830.91300.035*
H31B0.92540.37050.97570.035*
H31C0.89870.47870.92370.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0206 (4)0.0269 (4)0.0198 (4)0.0059 (3)0.0049 (3)0.0048 (3)
O20.0183 (4)0.0367 (5)0.0231 (4)0.0052 (3)0.0008 (3)0.0003 (3)
O30.0160 (4)0.0296 (4)0.0183 (4)0.0029 (3)0.0017 (3)0.0008 (3)
O40.0183 (4)0.0242 (4)0.0154 (3)0.0040 (3)0.0005 (3)0.0014 (3)
O50.0179 (4)0.0335 (4)0.0168 (3)0.0085 (3)0.0021 (3)0.0044 (3)
C10.0152 (5)0.0165 (5)0.0156 (4)0.0006 (4)0.0002 (3)0.0001 (4)
C20.0156 (5)0.0178 (5)0.0178 (5)0.0016 (4)0.0017 (4)0.0031 (4)
C30.0178 (5)0.0184 (5)0.0196 (5)0.0007 (4)0.0030 (4)0.0029 (4)
C40.0252 (6)0.0245 (5)0.0254 (5)0.0009 (4)0.0093 (4)0.0035 (4)
C50.0180 (5)0.0250 (5)0.0231 (5)0.0034 (4)0.0061 (4)0.0048 (4)
C60.0157 (5)0.0384 (7)0.0255 (6)0.0018 (4)0.0034 (4)0.0043 (5)
C70.0175 (5)0.0236 (5)0.0215 (5)0.0004 (4)0.0008 (4)0.0044 (4)
C80.0269 (6)0.0366 (7)0.0312 (6)0.0074 (5)0.0129 (5)0.0055 (5)
C90.0268 (6)0.0315 (6)0.0352 (6)0.0062 (5)0.0124 (5)0.0131 (5)
C100.0162 (5)0.0165 (5)0.0157 (4)0.0008 (4)0.0015 (4)0.0007 (3)
C110.0169 (5)0.0182 (5)0.0173 (5)0.0016 (4)0.0009 (4)0.0022 (4)
C120.0198 (5)0.0221 (5)0.0161 (5)0.0021 (4)0.0007 (4)0.0009 (4)
C130.0203 (5)0.0225 (5)0.0145 (5)0.0002 (4)0.0015 (4)0.0016 (4)
C140.0191 (5)0.0210 (5)0.0177 (5)0.0030 (4)0.0022 (4)0.0002 (4)
C150.0165 (5)0.0180 (5)0.0159 (4)0.0018 (4)0.0016 (4)0.0009 (4)
C160.0274 (6)0.0315 (6)0.0210 (5)0.0006 (5)0.0033 (4)0.0075 (4)
C170.0234 (5)0.0273 (6)0.0185 (5)0.0028 (4)0.0033 (4)0.0015 (4)
C180.0160 (5)0.0163 (5)0.0177 (5)0.0002 (4)0.0005 (4)0.0001 (4)
C190.0189 (5)0.0190 (5)0.0147 (4)0.0002 (4)0.0015 (4)0.0004 (4)
C200.0165 (5)0.0188 (5)0.0166 (5)0.0005 (4)0.0017 (4)0.0007 (4)
C210.0167 (5)0.0184 (5)0.0170 (5)0.0018 (4)0.0003 (4)0.0011 (4)
C220.0193 (5)0.0175 (5)0.0155 (5)0.0004 (4)0.0017 (4)0.0007 (4)
C230.0168 (5)0.0183 (5)0.0182 (5)0.0012 (4)0.0036 (4)0.0004 (4)
C240.0178 (5)0.0278 (6)0.0164 (5)0.0046 (4)0.0032 (4)0.0019 (4)
C250.0249 (6)0.0499 (8)0.0182 (5)0.0127 (5)0.0067 (4)0.0051 (5)
C260.0192 (5)0.0281 (6)0.0279 (5)0.0018 (4)0.0048 (4)0.0071 (4)
C270.0223 (5)0.0286 (6)0.0235 (5)0.0050 (4)0.0024 (4)0.0053 (4)
C280.0211 (5)0.0209 (5)0.0151 (5)0.0025 (4)0.0029 (4)0.0012 (4)
C290.0258 (6)0.0315 (6)0.0184 (5)0.0060 (4)0.0072 (4)0.0039 (4)
C300.0265 (5)0.0211 (5)0.0186 (5)0.0018 (4)0.0028 (4)0.0031 (4)
C310.0272 (6)0.0237 (5)0.0189 (5)0.0006 (4)0.0011 (4)0.0018 (4)
Geometric parameters (Å, º) top
O1—C31.3268 (13)C14—H14B0.9900
O1—H1O0.930 (19)C16—H16A0.9800
O2—C71.2466 (14)C16—H16B0.9800
O3—C111.3293 (13)C16—H16C0.9800
O3—H3O0.950 (19)C17—H17A0.9800
O4—C151.2521 (12)C17—H17B0.9800
O5—C211.3720 (12)C17—H17C0.9800
O5—H5O0.848 (19)C18—C231.3882 (14)
C1—C21.5241 (14)C18—C191.3931 (14)
C1—C101.5270 (14)C19—C201.3977 (14)
C1—C181.5442 (13)C19—H190.9500
C1—H11.0000C20—C211.4121 (14)
C2—C31.3654 (15)C20—C241.5414 (14)
C2—C71.4479 (14)C21—C221.4085 (14)
C3—C41.5015 (14)C22—C231.4014 (14)
C4—C51.5329 (15)C22—C281.5453 (13)
C4—H4A0.9900C23—H230.9500
C4—H4B0.9900C24—C251.5390 (14)
C5—C61.5262 (16)C24—C261.5436 (16)
C5—C91.5305 (15)C24—C271.5459 (16)
C5—C81.5329 (15)C25—H25A0.9800
C6—C71.5104 (15)C25—H25B0.9800
C6—H6A0.9900C25—H25C0.9800
C6—H6B0.9900C26—H26A0.9800
C8—H8A0.9800C26—H26B0.9800
C8—H8B0.9800C26—H26C0.9800
C8—H8C0.9800C27—H27A0.9800
C9—H9A0.9800C27—H27B0.9800
C9—H9B0.9800C27—H27C0.9800
C9—H9C0.9800C28—C291.5373 (14)
C10—C111.3703 (14)C28—C311.5423 (15)
C10—C151.4361 (14)C28—C301.5429 (14)
C11—C121.5044 (14)C29—H29A0.9800
C12—C131.5332 (14)C29—H29B0.9800
C12—H12A0.9900C29—H29C0.9800
C12—H12B0.9900C30—H30A0.9800
C13—C161.5305 (15)C30—H30B0.9800
C13—C141.5338 (14)C30—H30C0.9800
C13—C171.5360 (15)C31—H31A0.9800
C14—C151.5098 (14)C31—H31B0.9800
C14—H14A0.9900C31—H31C0.9800
C3—O1—H1O111.9 (11)H16A—C16—H16B109.5
C11—O3—H3O113.4 (11)C13—C16—H16C109.5
C21—O5—H5O112.4 (12)H16A—C16—H16C109.5
C2—C1—C10114.48 (8)H16B—C16—H16C109.5
C2—C1—C18114.35 (8)C13—C17—H17A109.5
C10—C1—C18113.17 (8)C13—C17—H17B109.5
C2—C1—H1104.4H17A—C17—H17B109.5
C10—C1—H1104.4C13—C17—H17C109.5
C18—C1—H1104.4H17A—C17—H17C109.5
C3—C2—C7117.84 (9)H17B—C17—H17C109.5
C3—C2—C1124.54 (9)C23—C18—C19117.75 (9)
C7—C2—C1117.58 (9)C23—C18—C1122.62 (9)
O1—C3—C2124.54 (9)C19—C18—C1119.51 (9)
O1—C3—C4112.67 (9)C18—C19—C20122.87 (9)
C2—C3—C4122.78 (10)C18—C19—H19118.6
C3—C4—C5113.58 (9)C20—C19—H19118.6
C3—C4—H4A108.9C19—C20—C21117.18 (9)
C5—C4—H4A108.9C19—C20—C24120.65 (9)
C3—C4—H4B108.9C21—C20—C24122.14 (9)
C5—C4—H4B108.9O5—C21—C22115.54 (9)
H4A—C4—H4B107.7O5—C21—C20122.49 (9)
C6—C5—C9110.09 (10)C22—C21—C20121.96 (9)
C6—C5—C4106.73 (9)C23—C22—C21117.25 (9)
C9—C5—C4111.35 (9)C23—C22—C28120.95 (9)
C6—C5—C8110.61 (9)C21—C22—C28121.73 (9)
C9—C5—C8108.47 (9)C18—C23—C22122.82 (9)
C4—C5—C8109.60 (10)C18—C23—H23118.6
C7—C6—C5113.92 (9)C22—C23—H23118.6
C7—C6—H6A108.8C25—C24—C20111.64 (9)
C5—C6—H6A108.8C25—C24—C26106.33 (9)
C7—C6—H6B108.8C20—C24—C26109.60 (9)
C5—C6—H6B108.8C25—C24—C27105.83 (9)
H6A—C6—H6B107.7C20—C24—C27111.38 (9)
O2—C7—C2121.33 (10)C26—C24—C27111.91 (9)
O2—C7—C6118.45 (10)C24—C25—H25A109.5
C2—C7—C6120.18 (10)C24—C25—H25B109.5
C5—C8—H8A109.5H25A—C25—H25B109.5
C5—C8—H8B109.5C24—C25—H25C109.5
H8A—C8—H8B109.5H25A—C25—H25C109.5
C5—C8—H8C109.5H25B—C25—H25C109.5
H8A—C8—H8C109.5C24—C26—H26A109.5
H8B—C8—H8C109.5C24—C26—H26B109.5
C5—C9—H9A109.5H26A—C26—H26B109.5
C5—C9—H9B109.5C24—C26—H26C109.5
H9A—C9—H9B109.5H26A—C26—H26C109.5
C5—C9—H9C109.5H26B—C26—H26C109.5
H9A—C9—H9C109.5C24—C27—H27A109.5
H9B—C9—H9C109.5C24—C27—H27B109.5
C11—C10—C15117.13 (9)H27A—C27—H27B109.5
C11—C10—C1121.77 (9)C24—C27—H27C109.5
C15—C10—C1120.93 (8)H27A—C27—H27C109.5
O3—C11—C10124.11 (9)H27B—C27—H27C109.5
O3—C11—C12112.55 (8)C29—C28—C31107.37 (9)
C10—C11—C12123.32 (9)C29—C28—C30106.28 (9)
C11—C12—C13112.71 (8)C31—C28—C30110.04 (9)
C11—C12—H12A109.1C29—C28—C22111.71 (8)
C13—C12—H12A109.0C31—C28—C22109.34 (8)
C11—C12—H12B109.0C30—C28—C22111.97 (8)
C13—C12—H12B109.1C28—C29—H29A109.5
H12A—C12—H12B107.8C28—C29—H29B109.5
C16—C13—C12110.75 (9)H29A—C29—H29B109.5
C16—C13—C14108.46 (9)C28—C29—H29C109.5
C12—C13—C14107.76 (8)H29A—C29—H29C109.5
C16—C13—C17108.58 (9)H29B—C29—H29C109.5
C12—C13—C17110.09 (9)C28—C30—H30A109.5
C14—C13—C17111.20 (8)C28—C30—H30B109.5
C15—C14—C13115.84 (9)H30A—C30—H30B109.5
C15—C14—H14A108.3C28—C30—H30C109.5
C13—C14—H14A108.3H30A—C30—H30C109.5
C15—C14—H14B108.3H30B—C30—H30C109.5
C13—C14—H14B108.3C28—C31—H31A109.5
H14A—C14—H14B107.4C28—C31—H31B109.5
O4—C15—C10121.45 (9)H31A—C31—H31B109.5
O4—C15—C14118.02 (9)C28—C31—H31C109.5
C10—C15—C14120.51 (9)H31A—C31—H31C109.5
C13—C16—H16A109.5H31B—C31—H31C109.5
C13—C16—H16B109.5
C10—C1—C2—C380.31 (12)C11—C10—C15—O4159.09 (10)
C18—C1—C2—C352.59 (13)C1—C10—C15—O416.20 (15)
C10—C1—C2—C797.16 (11)C11—C10—C15—C1419.37 (14)
C18—C1—C2—C7129.95 (9)C1—C10—C15—C14165.34 (9)
C7—C2—C3—O1170.29 (10)C13—C14—C15—O4171.74 (9)
C1—C2—C3—O17.17 (16)C13—C14—C15—C109.75 (14)
C7—C2—C3—C410.96 (15)C2—C1—C18—C2314.42 (14)
C1—C2—C3—C4171.58 (9)C10—C1—C18—C23147.93 (10)
O1—C3—C4—C5156.69 (9)C2—C1—C18—C19169.61 (9)
C2—C3—C4—C522.20 (15)C10—C1—C18—C1936.10 (13)
C3—C4—C5—C651.77 (12)C23—C18—C19—C202.46 (15)
C3—C4—C5—C968.40 (12)C1—C18—C19—C20178.62 (9)
C3—C4—C5—C8171.58 (9)C18—C19—C20—C211.08 (15)
C9—C5—C6—C769.22 (12)C18—C19—C20—C24179.42 (10)
C4—C5—C6—C751.76 (13)C19—C20—C21—O5175.48 (9)
C8—C5—C6—C7170.91 (10)C24—C20—C21—O52.84 (16)
C3—C2—C7—O2166.72 (10)C19—C20—C21—C223.91 (15)
C1—C2—C7—O210.92 (15)C24—C20—C21—C22177.77 (10)
C3—C2—C7—C610.86 (15)O5—C21—C22—C23176.38 (9)
C1—C2—C7—C6171.50 (9)C20—C21—C22—C233.06 (15)
C5—C6—C7—O2159.86 (10)O5—C21—C22—C280.72 (14)
C5—C6—C7—C222.50 (15)C20—C21—C22—C28179.85 (9)
C2—C1—C10—C1182.41 (12)C19—C18—C23—C223.40 (15)
C18—C1—C10—C11144.14 (9)C1—C18—C23—C22179.43 (9)
C2—C1—C10—C1592.66 (11)C21—C22—C23—C180.72 (15)
C18—C1—C10—C1540.79 (12)C28—C22—C23—C18176.40 (10)
C15—C10—C11—O3167.64 (9)C19—C20—C24—C256.12 (15)
C1—C10—C11—O37.61 (15)C21—C20—C24—C25175.62 (10)
C15—C10—C11—C1210.77 (15)C19—C20—C24—C26111.43 (11)
C1—C10—C11—C12173.97 (9)C21—C20—C24—C2666.83 (13)
O3—C11—C12—C13155.18 (9)C19—C20—C24—C27124.18 (10)
C10—C11—C12—C1326.24 (14)C21—C20—C24—C2757.56 (13)
C11—C12—C13—C16169.61 (9)C23—C22—C28—C298.36 (14)
C11—C12—C13—C1451.12 (11)C21—C22—C28—C29174.66 (10)
C11—C12—C13—C1770.30 (11)C23—C22—C28—C31110.35 (11)
C16—C13—C14—C15163.76 (9)C21—C22—C28—C3166.63 (12)
C12—C13—C14—C1543.82 (12)C23—C22—C28—C30127.43 (10)
C17—C13—C14—C1576.92 (11)C21—C22—C28—C3055.59 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.930 (19)1.711 (19)2.6201 (11)164.7 (17)
O3—H3O···O20.950 (19)1.68 (2)2.6174 (11)170.3 (17)
O5—H5O···O4i0.848 (19)2.128 (18)2.8285 (11)139.7 (16)
C14—H14A···O5ii0.992.483.1912 (12)128
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
Summary of short interatomic contacts (Å) in the title compound top
H4B···H16B2.39x, 3/2 - y, 1/2 + z
H4A···H12.311 - x, 1/2 + y, 3/2 - z
H17B···O22.651 - x, 1 - y, 1 - z
O4···H5O2.122 - x, 1/2 + y, 3/2 - z
C17···H30B3.10x, 1/2 - y, -1/2 + z
H26C···H6A2.581 + x, y, z
H25B···H17A2.572 - x, 1 - y, 1 - z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and AB; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK, RMR and LVA; supervision, ANK and MA.

Funding information

This paper was supported by Baku State University, UNEC and the RUDN University Strategic Academic Leadership Program.

References

First citationBolte, M., Degen, A. & Rühl, S. (1997a). Acta Cryst. C53, 340–342.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBolte, M., Degen, A. & Rühl, S. (2001b). Acta Cryst. E57, o170–o171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.  Google Scholar
First citationCha, J. H., Cho, Y. S., Lee, J. K., Park, J. & Sato, H. (2012). Acta Cryst. E68, o2510.  CSD CrossRef IUCr Journals Google Scholar
First citationCha, J. H., Kim, Y. H., Min, S.-J., Cho, Y. S. & Lee, J. K. (2011). Acta Cryst. E67, o3153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCha, J. H., Lee, J. K., Min, S.-J., Cho, Y. S. & Park, J. (2013a). Acta Cryst. E69, o1347.  CSD CrossRef IUCr Journals Google Scholar
First citationCha, J. H., Min, S.-J., Cho, Y. S., Lee, J. K. & Park, J. (2013b). Acta Cryst. E69, o397.  CSD CrossRef IUCr Journals Google Scholar
First citationChalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.  Web of Science CSD CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKhan, Z. & Sekar, N. (2022). Dyes Pigments, 208, 110735.  Web of Science CrossRef Google Scholar
First citationLakhrissi, Y., Rbaa, M., Tuzun, B., Hichar, A., Anouar, H., Ounine, K., Almalki, F., Hadda, T. B., Zarrouk, A. & Lakhrissi, B. (2022). J. Mol. Struct. 1259, 132683.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.  Google Scholar
First citationMaia, M., Resende, D. I. S. P., Durães, F., Pinto, M. M. M. & Sousa, E. (2021). Eur. J. Med. Chem. 210, 113085.  Web of Science CrossRef PubMed Google Scholar
First citationMajumdar, D., Philip, J. E., Tüzün, B., Frontera, A., Gomila, R. M., Roy, S. & Bankura, K. (2022). J. Inorg. Organomet. Polym. 32, 4320–4339.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Li, C., Gates, C. & Natale, N. R. (2020). Acta Cryst. E76, 125–131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2875–o2876.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2012). Acta Cryst. E68, o2638.  CSD CrossRef IUCr Journals Google Scholar
First citationTapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.  Web of Science CSD CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationZhu, Y.-L., Xiao, G.-L., Chen, Y.-F., Chen, R.-T. & Zhou, Y. (2011). Acta Cryst. E67, o2398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds