research communications
Syntheses, crystal structures and Hirshfeld surface analysis of 2-(benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole and 2-[(2-chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole
aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent, 100170, Uzbekistan, and bNational University of Uzbekistan named after Mirzo Ulugbek, University Str. 4, Tashkent, 100174, Uzbekistan
*Correspondence e-mail: raxul@mail.ru
The title compounds were synthesized by alkylation of 5-[(4-dimethylamino)phenyl]-1,3,4-oxadiazole-2-thiol with benzyl chloride or 2-chloro-6-fluorobenzyl chloride in the presence of potassium carbonate. The yields of 2-(benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole, C17H17N3OS (I), and 2-[(2-chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole, C17H15ClFN3OS (II), were 96 and 92%, respectively. In the crystal structures of (I) and (II), C–H⋯π interactions are observed between neighboring molecules. Hirshfeld surface analysis indicates that H⋯H and H⋯C/C⋯H interactions make the most important contributions to the crystal packing.
1. Chemical context
For the synthesis of pharmacologically active
a study of the relationship between structure and activity is of great interest. The various five-membered aromatic have a diverse range of action. These include oxadiazoles, consisting of two carbon atoms, two nitrogen atoms and one oxygen atom, which have four different isomeric structures: 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole.There is much information in the literature indicating that 1,3,4-oxadiazole compounds or substituted 1,3,4-oxadiazoles have a wide spectrum of biological activity (Şahin et al., 2002; Erensoy et al., 2020; Glomb & Świątek, 2021) with substituted 5-aryl-1,3,4-oxadiazole-2(3H)thiones exhibiting anti-inflammatory, anti-cancer, analgesic and anticonvulsant activity (Chen et al., 2007; Zheng et al., 2010; Mamatha et al., 2019; Pathak et al., 2020). In this article, we report the synthesis and structure of two S-derivatives of 5-aryl-1,3,4-oxadiazole-2-thiole derivatives. From the reaction of 5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole-2-thiole with benzyl chloride or 2-chloro-6-fluorobenzyl chloride, the corresponding S-products, 2-(benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I) and 2-[(2-chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II) were obtained in high yield.
2. Structural commentary
Compound (I) crystallizes in Ia. The crystal studied was refined as an with matrix [ 0 0, 0 0, 0 0 ] ; the resulting BASF value is 0.43 (2). Compound (II) crystallizes in P211/c.
In compounds (I) and (II), the oxadiazole rings (centroid Cg1) are almost coplanar with the attached benzene (C1A–C6A, centroid Cg2) rings, forming dihedral angles of 3.36 (18) and 2.93 (14)°, respectively (Figs. 1 and 2). Such an arrangement of the benzene or phenyl fragment is also observed in many similar structures (Singh et al., 2007; Zareef et al., 2008; Zheng et al., 2010; Ji & Xu 2011; Zou et al., 2020). This arrangement indicates conjugation of π-electrons between the benzene and the 1,3,4-oxadiazole rings.
The bond angle C2—S1—C7B is 99.79 (16)° in (I) and 100.11 (10)° in (II). The dihedral angle subtended by the benzene (C1B–C6B, centroid Cg3) and 1,3,4-oxadiazole rings is 74.94 (10)° in (I) and 73.12 (7)°in (II).
3. Supramolecular features
In crystal structures of the title compounds, weak intermolecular contacts of the C—X⋯π type are observed. In (I), weak C7A—H7AC⋯Cg2 interactions link the molecules, forming infinite chains along the b-axis direction (Fig. 3). Between these chains, other interactions of the C7B—H7BA⋯Cg3 type are observed, which consolidate the (Table 1). In the of (II), the formation of an infinite chain is also observed as a result of the C2B—Cl1⋯Cg1 interaction, which links molecules along the c-axis direction (Fig. 4). Intermolecular C8A—H8AB⋯Cg3 and C7B—H7BA⋯Cg3 interactions between these chains consolidate the (Table 2).
|
In order to visualize and quantify the intermolecular interactions in (I) and (II), a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with Crystal Explorer 21 (Spackman et al., 2021) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) generated. The Hirshfeld surfaces for the molecules in (I) and (II) are shown in Figs. 5 and 6 in which the two-dimensional fingerprint plots of the most dominant contacts are also presented.
For structure (I), H⋯H contacts are responsible for the largest contribution (47.8%) to the Hirshfeld surface. Besides these contacts, H⋯C/C⋯H (20.5%), H⋯N/N⋯H (12.4%), H⋯S/S⋯H (7.2%), C⋯C (4.1%) and H⋯O/O⋯H (3.5%) interactions contribute significantly to the total Hirshfeld surface (Fig. 5). The contributions of other contacts are O⋯C/C⋯O (2.0%), O⋯S/S⋯O (1.3%), S⋯C/C⋯S (0.9%), N⋯C/C⋯N (0.4%) and N⋯N (0.1%).
In the structure of (II), the percentage contributions of the most significant contacts differ because of the presence of H⋯F/F⋯H and H⋯Cl/Cl⋯H interactions and amount to H⋯H (31.8%), H⋯C/C⋯H (20.0%), H⋯N/N⋯H (9.8%), H⋯F/F⋯H (7.5%), H⋯S/S⋯H (7.1%), H⋯Cl/Cl⋯H (5.7%), H⋯O/O⋯H (5.0%) and C⋯C (3.9%) (Fig. 6). The contributions of other contacts are Cl⋯C/C⋯Cl (2.8%), Cl⋯F/F⋯Cl (1.4%), N⋯S/S⋯N (1.0%), Cl⋯O/O⋯Cl (0.9%), O⋯C/C⋯O (0.4%), N⋯C/C⋯N (0.4%), S⋯Cl/Cl⋯S (0.3%), S⋯C/C⋯S (0.3%) and N⋯O/O⋯N (0.2%).
As seen from Figs. 5 and 6, the most significant contributions to the overall Hirshfeld surface in the crystal structures of (I) and (II) are from H⋯H and H⋯C/C⋯H contacts (together they amount to more than 50% for both cases).
4. Database survey
A search in the Cambridge Structural Database (CSD, version 2022.3.0; Groom et al., 2016) yielded 45 derivatives of 5-phenyl-1,3,4-oxadiazole-2-thiole, nine of which are 2-(benzylsulfanyl)-5-phenyl-1,3,4-oxadiazole derivatives, and no structure was found for a 5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole-2-thiole derivative. When searching for similar structures in the CSD, two matches were found: 2-(4-methoxyphenyl)-5-({[3-(trifluoromethyl)phenyl] methyl}sulfanyl)-1,3,4-oxadiazole (SOXGOE; Hamdani et al., 2020) and 2-benzylsulfanyl-5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazole (GIDKEK; Chen et al., 2007), in which the benzene rings and 1,3,4-oxadiazole fragments are arranged in a similar manner as the title compounds. However, in the structures of SOXGOE and GIGKEK, intermolecular interactions are not observed, the molecules being stabilized mainly by van der Waals forces.
5. Synthesis and crystallization
A mixture of 5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole-2-thiole (0.005 mol), benzyl chloride or 2-chloro-6-fluorobenzyl chloride (0.005 mol) and K2CO3 (0.005 mol) was boiled in 20 ml of dry acetone for 6 h. The solvent was then removed, the residue washed with water and with 2% NaOH solution to remove unreacted oxadiazolthione, and then washed with water until neutral. The resulting target products were dried in air and recrystallized from ethanol solution. Compound (I): yield 96%, m.p. 404–405 K. Compound (II): yield 92%, m.p. 406–407 K.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (with C—H distances of 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) [Uiso = 1.5Ueq(C) for methyl H atoms]. For (I), the crystal studied was refined as an with matrix [ 0 0, 0 0, 0 0 ] ; the resulting BASF value is 0.43 (2).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989023004164/dx2051sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023004164/dx2051Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023004164/dx2051IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023004164/dx2051Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023004164/dx2051IIsup5.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C17H17N3OS | F(000) = 656 |
Mr = 311.39 | Dx = 1.329 Mg m−3 |
Monoclinic, Ia | Cu Kα radiation, λ = 1.54184 Å |
a = 16.816 (3) Å | Cell parameters from 4218 reflections |
b = 4.7848 (10) Å | θ = 3.0–71.2° |
c = 20.123 (4) Å | µ = 1.88 mm−1 |
β = 105.96 (3)° | T = 297 K |
V = 1556.7 (6) Å3 | Prizmatic, colorless |
Z = 4 | 0.35 × 0.20 × 0.15 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 2732 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2583 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.026 |
ω scans | θmax = 71.5°, θmin = 4.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −20→20 |
Tmin = 0.749, Tmax = 1.000 | k = −5→5 |
6572 measured reflections | l = −24→24 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0541P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.089 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.15 e Å−3 |
2732 reflections | Δρmin = −0.21 e Å−3 |
202 parameters | Absolute structure: Refined as an inversion twin |
2 restraints | Absolute structure parameter: 0.43 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.35188 (5) | 0.65967 (15) | 0.24394 (4) | 0.0675 (2) | |
O1 | 0.38557 (12) | 0.2829 (4) | 0.15990 (10) | 0.0546 (4) | |
N3 | 0.25142 (15) | 0.3621 (5) | 0.13720 (14) | 0.0607 (6) | |
N4 | 0.26466 (15) | 0.1612 (5) | 0.09008 (14) | 0.0595 (6) | |
N1A | 0.51675 (14) | −0.6015 (5) | −0.02778 (13) | 0.0614 (6) | |
C2 | 0.32356 (17) | 0.4249 (6) | 0.17577 (14) | 0.0561 (6) | |
C5 | 0.34386 (17) | 0.1194 (6) | 0.10548 (14) | 0.0518 (6) | |
C1A | 0.38914 (15) | −0.0700 (6) | 0.07351 (13) | 0.0497 (5) | |
C2A | 0.34682 (16) | −0.2469 (6) | 0.02095 (15) | 0.0541 (6) | |
H2AA | 0.289305 | −0.245654 | 0.007619 | 0.065* | |
C3A | 0.38831 (17) | −0.4238 (6) | −0.01174 (14) | 0.0543 (6) | |
H3AA | 0.358087 | −0.539335 | −0.046814 | 0.065* | |
C4A | 0.47522 (16) | −0.4349 (6) | 0.00637 (14) | 0.0514 (6) | |
C5A | 0.51775 (17) | −0.2603 (6) | 0.06167 (16) | 0.0555 (6) | |
H5AA | 0.575192 | −0.266824 | 0.076730 | 0.067* | |
C6A | 0.47585 (16) | −0.0824 (6) | 0.09332 (14) | 0.0549 (6) | |
H6AA | 0.505497 | 0.032849 | 0.128737 | 0.066* | |
C7A | 0.4722 (2) | −0.7707 (7) | −0.08530 (18) | 0.0681 (8) | |
H7AA | 0.510695 | −0.863023 | −0.105354 | 0.102* | |
H7AB | 0.436148 | −0.653916 | −0.119410 | 0.102* | |
H7AC | 0.439939 | −0.907932 | −0.069428 | 0.102* | |
C8A | 0.60506 (19) | −0.6514 (7) | 0.0000 (2) | 0.0718 (9) | |
H8AA | 0.622912 | −0.784539 | −0.028621 | 0.108* | |
H8AB | 0.615965 | −0.723417 | 0.046118 | 0.108* | |
H8AC | 0.634547 | −0.479131 | 0.000665 | 0.108* | |
C1B | 0.20329 (17) | 0.5859 (6) | 0.27839 (14) | 0.0536 (6) | |
C2B | 0.23312 (18) | 0.5105 (7) | 0.34681 (15) | 0.0605 (7) | |
H2BA | 0.283977 | 0.579459 | 0.372557 | 0.073* | |
C3B | 0.1890 (2) | 0.3346 (7) | 0.37792 (18) | 0.0723 (9) | |
H3BA | 0.209881 | 0.285927 | 0.424205 | 0.087* | |
C4B | 0.1137 (3) | 0.2317 (9) | 0.3397 (2) | 0.0826 (10) | |
H4BA | 0.083364 | 0.114435 | 0.360365 | 0.099* | |
C5B | 0.0837 (2) | 0.3010 (10) | 0.2720 (2) | 0.0863 (11) | |
H5BA | 0.033294 | 0.228498 | 0.246285 | 0.104* | |
C6B | 0.1276 (2) | 0.4787 (8) | 0.24093 (17) | 0.0710 (8) | |
H6BA | 0.106285 | 0.526586 | 0.194651 | 0.085* | |
C7B | 0.2500 (2) | 0.7858 (6) | 0.24513 (19) | 0.0687 (8) | |
H7BA | 0.256392 | 0.962089 | 0.269826 | 0.082* | |
H7BB | 0.217555 | 0.820846 | 0.197995 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0666 (4) | 0.0746 (4) | 0.0645 (4) | −0.0124 (4) | 0.0234 (3) | −0.0030 (4) |
O1 | 0.0501 (10) | 0.0581 (9) | 0.0555 (10) | −0.0021 (8) | 0.0144 (8) | 0.0069 (8) |
N3 | 0.0516 (12) | 0.0674 (14) | 0.0641 (14) | 0.0038 (10) | 0.0177 (11) | 0.0037 (11) |
N4 | 0.0465 (12) | 0.0681 (14) | 0.0619 (14) | 0.0035 (10) | 0.0116 (10) | 0.0036 (11) |
N1A | 0.0471 (12) | 0.0666 (14) | 0.0680 (15) | −0.0002 (10) | 0.0114 (11) | −0.0029 (11) |
C2 | 0.0564 (16) | 0.0568 (14) | 0.0578 (15) | −0.0004 (11) | 0.0201 (13) | 0.0116 (12) |
C5 | 0.0471 (13) | 0.0552 (13) | 0.0515 (14) | −0.0025 (11) | 0.0108 (11) | 0.0121 (11) |
C1A | 0.0448 (12) | 0.0528 (12) | 0.0506 (13) | 0.0000 (10) | 0.0115 (11) | 0.0127 (10) |
C2A | 0.0398 (13) | 0.0597 (14) | 0.0601 (15) | −0.0042 (10) | 0.0092 (11) | 0.0115 (12) |
C3A | 0.0451 (13) | 0.0565 (14) | 0.0571 (15) | −0.0047 (11) | 0.0069 (11) | 0.0061 (12) |
C4A | 0.0438 (12) | 0.0521 (13) | 0.0556 (15) | −0.0040 (10) | 0.0091 (11) | 0.0119 (11) |
C5A | 0.0400 (12) | 0.0612 (14) | 0.0600 (15) | −0.0034 (11) | 0.0048 (12) | 0.0073 (12) |
C6A | 0.0469 (13) | 0.0576 (14) | 0.0552 (14) | −0.0041 (11) | 0.0058 (11) | 0.0041 (12) |
C7A | 0.0636 (18) | 0.0708 (18) | 0.0676 (19) | −0.0046 (15) | 0.0145 (15) | −0.0064 (15) |
C8A | 0.0473 (15) | 0.084 (2) | 0.084 (2) | 0.0032 (15) | 0.0178 (15) | −0.0042 (17) |
C1B | 0.0555 (14) | 0.0531 (13) | 0.0541 (14) | 0.0088 (11) | 0.0184 (12) | −0.0046 (11) |
C2B | 0.0550 (15) | 0.0725 (17) | 0.0527 (15) | −0.0006 (13) | 0.0126 (12) | −0.0028 (12) |
C3B | 0.071 (2) | 0.089 (2) | 0.0609 (18) | 0.0056 (16) | 0.0252 (16) | 0.0073 (15) |
C4B | 0.074 (2) | 0.101 (3) | 0.084 (2) | −0.0115 (19) | 0.042 (2) | −0.006 (2) |
C5B | 0.0556 (18) | 0.119 (3) | 0.087 (2) | −0.0168 (18) | 0.0245 (17) | −0.027 (2) |
C6B | 0.0580 (16) | 0.097 (2) | 0.0563 (17) | 0.0077 (16) | 0.0121 (14) | −0.0097 (16) |
C7B | 0.083 (2) | 0.0529 (15) | 0.0729 (19) | 0.0070 (14) | 0.0255 (16) | 0.0060 (13) |
S1—C2 | 1.735 (3) | C7A—H7AA | 0.9600 |
S1—C7B | 1.823 (4) | C7A—H7AB | 0.9600 |
O1—C2 | 1.354 (3) | C7A—H7AC | 0.9600 |
O1—C5 | 1.371 (3) | C8A—H8AA | 0.9600 |
N3—C2 | 1.283 (4) | C8A—H8AB | 0.9600 |
N3—N4 | 1.410 (4) | C8A—H8AC | 0.9600 |
N4—C5 | 1.297 (4) | C1B—C2B | 1.378 (4) |
N1A—C4A | 1.364 (4) | C1B—C6B | 1.387 (5) |
N1A—C7A | 1.442 (4) | C1B—C7B | 1.506 (5) |
N1A—C8A | 1.455 (4) | C2B—C3B | 1.381 (5) |
C5—C1A | 1.444 (4) | C2B—H2BA | 0.9300 |
C1A—C2A | 1.388 (4) | C3B—C4B | 1.379 (6) |
C1A—C6A | 1.403 (4) | C3B—H3BA | 0.9300 |
C2A—C3A | 1.374 (4) | C4B—C5B | 1.358 (7) |
C2A—H2AA | 0.9300 | C4B—H4BA | 0.9300 |
C3A—C4A | 1.407 (4) | C5B—C6B | 1.383 (6) |
C3A—H3AA | 0.9300 | C5B—H5BA | 0.9300 |
C4A—C5A | 1.418 (4) | C6B—H6BA | 0.9300 |
C5A—C6A | 1.369 (4) | C7B—H7BA | 0.9700 |
C5A—H5AA | 0.9300 | C7B—H7BB | 0.9700 |
C6A—H6AA | 0.9300 | ||
C2—S1—C7B | 99.79 (16) | N1A—C7A—H7AC | 109.5 |
C2—O1—C5 | 102.5 (2) | H7AA—C7A—H7AC | 109.5 |
C2—N3—N4 | 105.6 (2) | H7AB—C7A—H7AC | 109.5 |
C5—N4—N3 | 106.6 (2) | N1A—C8A—H8AA | 109.5 |
C4A—N1A—C7A | 120.5 (2) | N1A—C8A—H8AB | 109.5 |
C4A—N1A—C8A | 120.8 (3) | H8AA—C8A—H8AB | 109.5 |
C7A—N1A—C8A | 117.8 (3) | N1A—C8A—H8AC | 109.5 |
N3—C2—O1 | 113.6 (3) | H8AA—C8A—H8AC | 109.5 |
N3—C2—S1 | 129.6 (2) | H8AB—C8A—H8AC | 109.5 |
O1—C2—S1 | 116.7 (2) | C2B—C1B—C6B | 118.3 (3) |
N4—C5—O1 | 111.6 (3) | C2B—C1B—C7B | 121.3 (3) |
N4—C5—C1A | 128.5 (3) | C6B—C1B—C7B | 120.4 (3) |
O1—C5—C1A | 119.8 (2) | C1B—C2B—C3B | 121.3 (3) |
C2A—C1A—C6A | 117.7 (3) | C1B—C2B—H2BA | 119.3 |
C2A—C1A—C5 | 120.0 (2) | C3B—C2B—H2BA | 119.3 |
C6A—C1A—C5 | 122.3 (2) | C4B—C3B—C2B | 119.3 (3) |
C3A—C2A—C1A | 121.3 (3) | C4B—C3B—H3BA | 120.3 |
C3A—C2A—H2AA | 119.4 | C2B—C3B—H3BA | 120.3 |
C1A—C2A—H2AA | 119.4 | C5B—C4B—C3B | 120.2 (4) |
C2A—C3A—C4A | 121.8 (3) | C5B—C4B—H4BA | 119.9 |
C2A—C3A—H3AA | 119.1 | C3B—C4B—H4BA | 119.9 |
C4A—C3A—H3AA | 119.1 | C4B—C5B—C6B | 120.4 (4) |
N1A—C4A—C3A | 122.1 (3) | C4B—C5B—H5BA | 119.8 |
N1A—C4A—C5A | 121.5 (2) | C6B—C5B—H5BA | 119.8 |
C3A—C4A—C5A | 116.4 (3) | C5B—C6B—C1B | 120.4 (3) |
C6A—C5A—C4A | 121.2 (3) | C5B—C6B—H6BA | 119.8 |
C6A—C5A—H5AA | 119.4 | C1B—C6B—H6BA | 119.8 |
C4A—C5A—H5AA | 119.4 | C1B—C7B—S1 | 113.7 (2) |
C5A—C6A—C1A | 121.4 (3) | C1B—C7B—H7BA | 108.8 |
C5A—C6A—H6AA | 119.3 | S1—C7B—H7BA | 108.8 |
C1A—C6A—H6AA | 119.3 | C1B—C7B—H7BB | 108.8 |
N1A—C7A—H7AA | 109.5 | S1—C7B—H7BB | 108.8 |
N1A—C7A—H7AB | 109.5 | H7BA—C7B—H7BB | 107.7 |
H7AA—C7A—H7AB | 109.5 | ||
C2—N3—N4—C5 | 0.8 (3) | C7A—N1A—C4A—C5A | −178.0 (3) |
N4—N3—C2—O1 | −0.6 (3) | C8A—N1A—C4A—C5A | 13.0 (4) |
N4—N3—C2—S1 | 179.7 (2) | C2A—C3A—C4A—N1A | −177.2 (3) |
C5—O1—C2—N3 | 0.2 (3) | C2A—C3A—C4A—C5A | 2.0 (4) |
C5—O1—C2—S1 | 179.95 (18) | N1A—C4A—C5A—C6A | 176.4 (3) |
C7B—S1—C2—N3 | 0.7 (3) | C3A—C4A—C5A—C6A | −2.8 (4) |
C7B—S1—C2—O1 | −179.1 (2) | C4A—C5A—C6A—C1A | 1.5 (4) |
N3—N4—C5—O1 | −0.8 (3) | C2A—C1A—C6A—C5A | 0.6 (4) |
N3—N4—C5—C1A | 178.9 (2) | C5—C1A—C6A—C5A | −179.0 (3) |
C2—O1—C5—N4 | 0.4 (3) | C6B—C1B—C2B—C3B | −0.5 (4) |
C2—O1—C5—C1A | −179.3 (2) | C7B—C1B—C2B—C3B | 177.8 (3) |
N4—C5—C1A—C2A | −3.2 (4) | C1B—C2B—C3B—C4B | 0.2 (5) |
O1—C5—C1A—C2A | 176.4 (2) | C2B—C3B—C4B—C5B | 0.6 (6) |
N4—C5—C1A—C6A | 176.4 (3) | C3B—C4B—C5B—C6B | −1.0 (6) |
O1—C5—C1A—C6A | −4.0 (4) | C4B—C5B—C6B—C1B | 0.7 (6) |
C6A—C1A—C2A—C3A | −1.5 (4) | C2B—C1B—C6B—C5B | 0.1 (5) |
C5—C1A—C2A—C3A | 178.2 (2) | C7B—C1B—C6B—C5B | −178.3 (3) |
C1A—C2A—C3A—C4A | 0.1 (4) | C2B—C1B—C7B—S1 | 61.9 (3) |
C7A—N1A—C4A—C3A | 1.1 (4) | C6B—C1B—C7B—S1 | −119.8 (3) |
C8A—N1A—C4A—C3A | −167.9 (3) | C2—S1—C7B—C1B | 77.7 (3) |
Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7A—H7AC···Cg2i | 0.96 | 2.80 | 3.626 (4) | 145 |
C7B—H7BA···Cg3ii | 0.97 | 2.93 | 3.738 (4) | 141 |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z. |
C17H15ClFN3OS | F(000) = 752 |
Mr = 363.83 | Dx = 1.460 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 16.308 (3) Å | Cell parameters from 4884 reflections |
b = 7.9787 (16) Å | θ = 2.8–70.7° |
c = 13.072 (3) Å | µ = 3.40 mm−1 |
β = 103.33 (3)° | T = 296 K |
V = 1655.1 (6) Å3 | Prizmatic, colorless |
Z = 4 | 0.30 × 0.25 × 0.15 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 3181 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2771 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.021 |
ω scans | θmax = 71.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −19→19 |
Tmin = 0.704, Tmax = 1.000 | k = −9→9 |
8579 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0548P)2 + 0.3561P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3181 reflections | Δρmax = 0.18 e Å−3 |
219 parameters | Δρmin = −0.33 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.70024 (3) | 0.25638 (6) | 0.67262 (4) | 0.05766 (17) | |
F1 | 0.53784 (8) | 0.62390 (19) | 0.74016 (9) | 0.0710 (4) | |
Cl1 | 0.65329 (4) | 0.42921 (8) | 0.43372 (4) | 0.07189 (19) | |
N3 | 0.70438 (10) | 0.4438 (2) | 0.85013 (13) | 0.0575 (4) | |
N4 | 0.76430 (11) | 0.4635 (2) | 0.94693 (13) | 0.0591 (4) | |
N4A | 1.13318 (11) | 0.2937 (3) | 1.24513 (14) | 0.0645 (5) | |
O1 | 0.81509 (8) | 0.28552 (16) | 0.84836 (9) | 0.0484 (3) | |
C2 | 0.73729 (11) | 0.3394 (2) | 0.79712 (14) | 0.0469 (4) | |
C5 | 0.82736 (11) | 0.3695 (2) | 0.94229 (13) | 0.0459 (4) | |
C1A | 0.90528 (11) | 0.3437 (2) | 1.02033 (13) | 0.0458 (4) | |
C2A | 0.91795 (13) | 0.4247 (3) | 1.11650 (15) | 0.0569 (5) | |
H2AA | 0.875254 | 0.491431 | 1.130992 | 0.068* | |
C3A | 0.99218 (13) | 0.4085 (3) | 1.19079 (15) | 0.0583 (5) | |
H3AA | 0.998800 | 0.464500 | 1.254560 | 0.070* | |
C4A | 1.05833 (11) | 0.3090 (2) | 1.17239 (14) | 0.0490 (4) | |
C5A | 1.04385 (13) | 0.2249 (3) | 1.07595 (16) | 0.0583 (5) | |
H5AA | 1.085423 | 0.154883 | 1.061691 | 0.070* | |
C6A | 0.96948 (13) | 0.2437 (3) | 1.00180 (15) | 0.0560 (5) | |
H6AA | 0.962246 | 0.187883 | 0.937881 | 0.067* | |
C7A | 1.14655 (15) | 0.3781 (4) | 1.34498 (18) | 0.0783 (7) | |
H7AA | 1.103965 | 0.344344 | 1.380639 | 0.118* | |
H7AB | 1.143475 | 0.497119 | 1.333810 | 0.118* | |
H7AC | 1.201117 | 0.349276 | 1.387036 | 0.118* | |
C8A | 1.20022 (14) | 0.1914 (3) | 1.2238 (2) | 0.0734 (6) | |
H8AA | 1.180549 | 0.078396 | 1.209806 | 0.110* | |
H8AB | 1.247110 | 0.192586 | 1.283686 | 0.110* | |
H8AC | 1.217624 | 0.234985 | 1.163709 | 0.110* | |
C1B | 0.59678 (10) | 0.5336 (2) | 0.60183 (12) | 0.0413 (4) | |
C2B | 0.62301 (10) | 0.5823 (2) | 0.51172 (13) | 0.0447 (4) | |
C3B | 0.62432 (12) | 0.7473 (3) | 0.48082 (16) | 0.0555 (5) | |
H3BA | 0.643266 | 0.775274 | 0.421154 | 0.067* | |
C4B | 0.59745 (14) | 0.8693 (3) | 0.53885 (19) | 0.0641 (6) | |
H4BA | 0.598734 | 0.980957 | 0.518853 | 0.077* | |
C5B | 0.56857 (13) | 0.8285 (3) | 0.62650 (18) | 0.0618 (5) | |
H5BA | 0.549420 | 0.911110 | 0.665483 | 0.074* | |
C6B | 0.56865 (11) | 0.6628 (3) | 0.65515 (14) | 0.0487 (4) | |
C7B | 0.59662 (12) | 0.3548 (2) | 0.63726 (16) | 0.0537 (5) | |
H7BA | 0.561130 | 0.289986 | 0.581406 | 0.064* | |
H7BB | 0.571488 | 0.350251 | 0.697611 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0609 (3) | 0.0489 (3) | 0.0553 (3) | 0.0077 (2) | −0.0030 (2) | −0.0039 (2) |
F1 | 0.0611 (7) | 0.1044 (10) | 0.0511 (6) | 0.0122 (7) | 0.0199 (5) | −0.0031 (6) |
Cl1 | 0.0721 (4) | 0.0899 (4) | 0.0532 (3) | 0.0172 (3) | 0.0134 (2) | −0.0173 (3) |
N3 | 0.0510 (9) | 0.0600 (10) | 0.0562 (9) | 0.0113 (8) | 0.0010 (7) | 0.0001 (8) |
N4 | 0.0550 (9) | 0.0651 (10) | 0.0532 (9) | 0.0145 (8) | 0.0046 (7) | −0.0054 (8) |
N4A | 0.0483 (9) | 0.0850 (12) | 0.0551 (9) | 0.0034 (9) | 0.0013 (7) | 0.0009 (9) |
O1 | 0.0478 (7) | 0.0486 (7) | 0.0460 (6) | 0.0071 (5) | 0.0050 (5) | −0.0008 (5) |
C2 | 0.0466 (9) | 0.0408 (9) | 0.0500 (9) | 0.0025 (8) | 0.0043 (8) | 0.0053 (7) |
C5 | 0.0481 (10) | 0.0438 (9) | 0.0455 (9) | 0.0032 (8) | 0.0102 (7) | 0.0005 (7) |
C1A | 0.0454 (9) | 0.0463 (9) | 0.0447 (9) | 0.0038 (8) | 0.0088 (7) | 0.0015 (7) |
C2A | 0.0552 (11) | 0.0628 (12) | 0.0518 (10) | 0.0154 (9) | 0.0107 (9) | −0.0077 (9) |
C3A | 0.0636 (12) | 0.0639 (12) | 0.0449 (10) | 0.0076 (10) | 0.0072 (9) | −0.0093 (9) |
C4A | 0.0459 (10) | 0.0549 (10) | 0.0454 (9) | −0.0020 (8) | 0.0093 (7) | 0.0066 (8) |
C5A | 0.0504 (11) | 0.0717 (13) | 0.0524 (10) | 0.0171 (10) | 0.0110 (9) | −0.0048 (9) |
C6A | 0.0560 (11) | 0.0650 (12) | 0.0455 (10) | 0.0124 (9) | 0.0087 (9) | −0.0080 (9) |
C7A | 0.0620 (13) | 0.109 (2) | 0.0565 (12) | −0.0168 (14) | −0.0021 (10) | −0.0042 (13) |
C8A | 0.0484 (11) | 0.0855 (16) | 0.0824 (15) | 0.0075 (11) | 0.0071 (10) | 0.0184 (13) |
C1B | 0.0319 (8) | 0.0469 (9) | 0.0415 (8) | −0.0017 (7) | 0.0008 (6) | −0.0021 (7) |
C2B | 0.0340 (8) | 0.0545 (10) | 0.0423 (8) | 0.0003 (7) | 0.0018 (7) | −0.0044 (7) |
C3B | 0.0431 (10) | 0.0641 (12) | 0.0553 (11) | −0.0049 (9) | 0.0031 (8) | 0.0125 (9) |
C4B | 0.0555 (12) | 0.0470 (11) | 0.0818 (15) | −0.0011 (9) | −0.0005 (10) | 0.0053 (10) |
C5B | 0.0522 (11) | 0.0545 (11) | 0.0731 (13) | 0.0080 (9) | 0.0032 (10) | −0.0161 (10) |
C6B | 0.0367 (8) | 0.0633 (11) | 0.0437 (9) | 0.0029 (8) | 0.0048 (7) | −0.0064 (8) |
C7B | 0.0448 (10) | 0.0522 (10) | 0.0589 (11) | −0.0064 (8) | 0.0014 (8) | 0.0019 (8) |
S1—C2 | 1.7317 (19) | C5A—H5AA | 0.9300 |
S1—C7B | 1.824 (2) | C6A—H6AA | 0.9300 |
F1—C6B | 1.357 (2) | C7A—H7AA | 0.9600 |
Cl1—C2B | 1.7346 (18) | C7A—H7AB | 0.9600 |
N3—C2 | 1.278 (2) | C7A—H7AC | 0.9600 |
N3—N4 | 1.418 (2) | C8A—H8AA | 0.9600 |
N4—C5 | 1.286 (2) | C8A—H8AB | 0.9600 |
N4A—C4A | 1.369 (2) | C8A—H8AC | 0.9600 |
N4A—C7A | 1.440 (3) | C1B—C6B | 1.381 (2) |
N4A—C8A | 1.442 (3) | C1B—C2B | 1.398 (2) |
O1—C2 | 1.361 (2) | C1B—C7B | 1.500 (2) |
O1—C5 | 1.372 (2) | C2B—C3B | 1.378 (3) |
C5—C1A | 1.449 (2) | C3B—C4B | 1.367 (3) |
C1A—C6A | 1.382 (3) | C3B—H3BA | 0.9300 |
C1A—C2A | 1.386 (3) | C4B—C5B | 1.375 (3) |
C2A—C3A | 1.372 (3) | C4B—H4BA | 0.9300 |
C2A—H2AA | 0.9300 | C5B—C6B | 1.374 (3) |
C3A—C4A | 1.404 (3) | C5B—H5BA | 0.9300 |
C3A—H3AA | 0.9300 | C7B—H7BA | 0.9700 |
C4A—C5A | 1.399 (3) | C7B—H7BB | 0.9700 |
C5A—C6A | 1.375 (3) | ||
C2—S1—C7B | 100.11 (10) | N4A—C7A—H7AC | 109.5 |
C2—N3—N4 | 105.48 (15) | H7AA—C7A—H7AC | 109.5 |
C5—N4—N3 | 106.70 (15) | H7AB—C7A—H7AC | 109.5 |
C4A—N4A—C7A | 120.80 (19) | N4A—C8A—H8AA | 109.5 |
C4A—N4A—C8A | 120.70 (19) | N4A—C8A—H8AB | 109.5 |
C7A—N4A—C8A | 118.50 (19) | H8AA—C8A—H8AB | 109.5 |
C2—O1—C5 | 102.31 (14) | N4A—C8A—H8AC | 109.5 |
N3—C2—O1 | 113.54 (16) | H8AA—C8A—H8AC | 109.5 |
N3—C2—S1 | 131.27 (14) | H8AB—C8A—H8AC | 109.5 |
O1—C2—S1 | 115.19 (13) | C6B—C1B—C2B | 114.82 (16) |
N4—C5—O1 | 111.96 (16) | C6B—C1B—C7B | 121.99 (17) |
N4—C5—C1A | 129.11 (17) | C2B—C1B—C7B | 123.18 (16) |
O1—C5—C1A | 118.93 (15) | C3B—C2B—C1B | 122.74 (17) |
C6A—C1A—C2A | 117.89 (17) | C3B—C2B—Cl1 | 118.33 (15) |
C6A—C1A—C5 | 122.38 (16) | C1B—C2B—Cl1 | 118.91 (14) |
C2A—C1A—C5 | 119.70 (17) | C4B—C3B—C2B | 119.26 (19) |
C3A—C2A—C1A | 121.37 (18) | C4B—C3B—H3BA | 120.4 |
C3A—C2A—H2AA | 119.3 | C2B—C3B—H3BA | 120.4 |
C1A—C2A—H2AA | 119.3 | C3B—C4B—C5B | 120.6 (2) |
C2A—C3A—C4A | 121.29 (18) | C3B—C4B—H4BA | 119.7 |
C2A—C3A—H3AA | 119.4 | C5B—C4B—H4BA | 119.7 |
C4A—C3A—H3AA | 119.4 | C6B—C5B—C4B | 118.43 (19) |
N4A—C4A—C5A | 121.42 (18) | C6B—C5B—H5BA | 120.8 |
N4A—C4A—C3A | 121.92 (18) | C4B—C5B—H5BA | 120.8 |
C5A—C4A—C3A | 116.66 (17) | F1—C6B—C5B | 117.80 (18) |
C6A—C5A—C4A | 121.41 (18) | F1—C6B—C1B | 118.12 (18) |
C6A—C5A—H5AA | 119.3 | C5B—C6B—C1B | 124.07 (18) |
C4A—C5A—H5AA | 119.3 | C1B—C7B—S1 | 114.87 (13) |
C5A—C6A—C1A | 121.35 (18) | C1B—C7B—H7BA | 108.6 |
C5A—C6A—H6AA | 119.3 | S1—C7B—H7BA | 108.6 |
C1A—C6A—H6AA | 119.3 | C1B—C7B—H7BB | 108.6 |
N4A—C7A—H7AA | 109.5 | S1—C7B—H7BB | 108.6 |
N4A—C7A—H7AB | 109.5 | H7BA—C7B—H7BB | 107.5 |
H7AA—C7A—H7AB | 109.5 | ||
C2—N3—N4—C5 | 0.2 (2) | C2A—C3A—C4A—C5A | −1.4 (3) |
N4—N3—C2—O1 | −0.4 (2) | N4A—C4A—C5A—C6A | −178.3 (2) |
N4—N3—C2—S1 | 179.84 (15) | C3A—C4A—C5A—C6A | 2.1 (3) |
C5—O1—C2—N3 | 0.4 (2) | C4A—C5A—C6A—C1A | −1.3 (3) |
C5—O1—C2—S1 | −179.82 (12) | C2A—C1A—C6A—C5A | −0.2 (3) |
C7B—S1—C2—N3 | −1.9 (2) | C5—C1A—C6A—C5A | 178.09 (19) |
C7B—S1—C2—O1 | 178.28 (13) | C6B—C1B—C2B—C3B | 2.8 (2) |
N3—N4—C5—O1 | 0.0 (2) | C7B—C1B—C2B—C3B | −178.83 (17) |
N3—N4—C5—C1A | 179.96 (18) | C6B—C1B—C2B—Cl1 | −175.93 (12) |
C2—O1—C5—N4 | −0.2 (2) | C7B—C1B—C2B—Cl1 | 2.5 (2) |
C2—O1—C5—C1A | 179.82 (16) | C1B—C2B—C3B—C4B | −1.3 (3) |
N4—C5—C1A—C6A | −176.9 (2) | Cl1—C2B—C3B—C4B | 177.37 (15) |
O1—C5—C1A—C6A | 3.1 (3) | C2B—C3B—C4B—C5B | −0.7 (3) |
N4—C5—C1A—C2A | 1.4 (3) | C3B—C4B—C5B—C6B | 1.0 (3) |
O1—C5—C1A—C2A | −178.60 (17) | C4B—C5B—C6B—F1 | −178.26 (17) |
C6A—C1A—C2A—C3A | 0.9 (3) | C4B—C5B—C6B—C1B | 0.6 (3) |
C5—C1A—C2A—C3A | −177.46 (19) | C2B—C1B—C6B—F1 | 176.46 (14) |
C1A—C2A—C3A—C4A | −0.1 (3) | C7B—C1B—C6B—F1 | −2.0 (2) |
C7A—N4A—C4A—C5A | −178.7 (2) | C2B—C1B—C6B—C5B | −2.4 (2) |
C8A—N4A—C4A—C5A | 0.8 (3) | C7B—C1B—C6B—C5B | 179.15 (17) |
C7A—N4A—C4A—C3A | 0.9 (3) | C6B—C1B—C7B—S1 | −118.50 (17) |
C8A—N4A—C4A—C3A | −179.6 (2) | C2B—C1B—C7B—S1 | 63.2 (2) |
C2A—C3A—C4A—N4A | 179.0 (2) | C2—S1—C7B—C1B | 78.87 (15) |
Cg1 and Cg3 are the centroids of the O1/C2/N3/N4/C5 and C1B–C6B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2B—Cl1···Cg1i | 1.74 (1) | 3.30 (1) | 4.939 (2) | 156 (1) |
C8A—H8AB···Cg3ii | 0.96 | 2.94 | 3.857 (3) | 161 |
C7B—H7BA···Cg3iii | 0.97 | 2.85 | 3.674 (2) | 143 |
Symmetry codes: (i) x, −y−1/2, z−3/2; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
We are especially grateful to Professor B. Tashkhodzhaev for help in discussing the results.
References
Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989. Web of Science CSD CrossRef PubMed CAS Google Scholar
Erensoy, G., Ding, K., Zhan, C. G., Elmezayen, A., Yelekçi, K., Duracik, M., Özakpinar, Ö. B. & Küçükgüzel, İ. (2020). J. Res. Pharm. 24, 436–451. CAS Google Scholar
Glomb, T. & Świątek, P. (2021). Int. J. Mol. Sci. 22, 6979–6979. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hamdani, S. S., Khan, B. A., Ahmed, M. N., Hameed, S., Akhter, K., Ayub, K. & Mahmood, T. (2020). J. Mol. Struct. 1200, 127085–127085. CSD CrossRef Google Scholar
Ji, H. & Xu, X.-D. (2011). Acta Cryst. E67, o3490. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mamatha, S. V., Bhat, M., Sagar, B. K. & Meenakshi, S. K. (2019). J. Mol. Struct. 1196, 186–193. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Pathak, S., Sharma, S., Pathak, V. & Prasad, M. (2020). J. Appl. Pharm. Res. 8, 50–61. CrossRef CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Şahin, G., Palaska, E., Ekizoğlu, M. & Özalp, M. (2002). Farmaco, 57, 539–542. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782–o784. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zareef, M., Iqbal, R., Arfan, M. & Parvez, M. (2008). Acta Cryst. E64, o736. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, Q. Z., Zhang, X. M., Xu, Y., Cheng, K., Jiao, Q. C. & Zhu, H. L. (2010). Bioorg. Med. Chem. 18, 7836–7841. CSD CrossRef CAS PubMed Google Scholar
Zou, J., Zhao, C. L., Zhang, Q. L., Pan, L. T. & He, K. (2020). Z. Kristallogr. New Cryst. Struct. 235, 745–746. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.