research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, crystal structures and Hirshfeld surface analysis of 2-(benzyl­sulfan­yl)-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole and 2-[(2-chloro-6-fluoro­benz­yl)sulfan­yl]-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole

crossmark logo

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent, 100170, Uzbekistan, and bNational University of Uzbekistan named after Mirzo Ulugbek, University Str. 4, Tashkent, 100174, Uzbekistan
*Correspondence e-mail: raxul@mail.ru

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 5 April 2023; accepted 12 May 2023; online 19 May 2023)

The title compounds were synthesized by alkyl­ation of 5-[(4-di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole-2-thiol with benzyl chloride or 2-chloro-6-fluoro­benzyl chloride in the presence of potassium carbonate. The yields of 2-(benzyl­sulfan­yl)-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole, C17H17N3OS (I), and 2-[(2-chloro-6-fluoro­benz­yl)sulfan­yl]-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole, C17H15ClFN3OS (II), were 96 and 92%, respectively. In the crystal structures of (I) and (II), C–H⋯π inter­actions are observed between neighboring mol­ecules. Hirshfeld surface analysis indicates that H⋯H and H⋯C/C⋯H inter­actions make the most important contributions to the crystal packing.

1. Chemical context

For the synthesis of pharmacologically active heterocyclic compounds, a study of the relationship between structure and activity is of great inter­est. The various five-membered aromatic heterocyclic compounds have a diverse range of action. These include oxa­diazo­les, consisting of two carbon atoms, two nitro­gen atoms and one oxygen atom, which have four different isomeric structures: 1,2,3-oxa­diazole, 1,2,4-oxa­diazole, 1,2,5-oxa­diazole, 1,3,4-oxa­diazole.

There is much information in the literature indicating that 1,3,4-oxa­diazole compounds or substituted 1,3,4-oxa­diazo­les have a wide spectrum of biological activity (Şahin et al., 2002[Şahin, G., Palaska, E., Ekizoğlu, M. & Özalp, M. (2002). Farmaco, 57, 539-542.]; Erensoy et al., 2020[Erensoy, G., Ding, K., Zhan, C. G., Elmezayen, A., Yelekçi, K., Duracik, M., Özakpinar, Ö. B. & Küçükgüzel, İ. (2020). J. Res. Pharm. 24, 436-451.]; Glomb & Świątek, 2021[Glomb, T. & Świątek, P. (2021). Int. J. Mol. Sci. 22, 6979-6979.]) with substituted 5-aryl-1,3,4-oxa­diazole-2(3H)thio­nes exhibiting anti-inflammatory, anti-cancer, analgesic and anti­convulsant activity (Chen et al., 2007[Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981-3989.]; Zheng et al., 2010[Zheng, Q. Z., Zhang, X. M., Xu, Y., Cheng, K., Jiao, Q. C. & Zhu, H. L. (2010). Bioorg. Med. Chem. 18, 7836-7841.]; Mamatha et al., 2019[Mamatha, S. V., Bhat, M., Sagar, B. K. & Meenakshi, S. K. (2019). J. Mol. Struct. 1196, 186-193.]; Pathak et al., 2020[Pathak, S., Sharma, S., Pathak, V. & Prasad, M. (2020). J. Appl. Pharm. Res. 8, 50-61.]). In this article, we report the synthesis and structure of two S-derivatives of 5-aryl-1,3,4-oxa­diazole-2-thiole derivatives. From the reaction of 5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole-2-thiole with benzyl chloride or 2-chloro-6-fluoro­benzyl chloride, the corresponding S-products, 2-(benzyl­sulfan­yl)-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole (I)[link] and 2-[(2-chloro-6-fluoro­benz­yl)sulfan­yl]-5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole (II)[link] were obtained in high yield.

[Scheme 1]

2. Structural commentary

Compound (I)[link] crystallizes in space group Ia. The crystal studied was refined as an inversion twin with matrix [[\overline{1}] 0 0, 0 [\overline{1}] 0, 0 0 [\overline{1}]] ; the resulting BASF value is 0.43 (2). Compound (II)[link] crystallizes in P211/c.

In compounds (I)[link] and (II)[link], the oxa­diazole rings (centroid Cg1) are almost coplanar with the attached benzene (C1A–C6A, centroid Cg2) rings, forming dihedral angles of 3.36 (18) and 2.93 (14)°, respectively (Figs. 1[link] and 2[link]). Such an arrangement of the benzene or phenyl fragment is also observed in many similar structures (Singh et al., 2007[Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782-o784.]; Zareef et al., 2008[Zareef, M., Iqbal, R., Arfan, M. & Parvez, M. (2008). Acta Cryst. E64, o736.]; Zheng et al., 2010[Zheng, Q. Z., Zhang, X. M., Xu, Y., Cheng, K., Jiao, Q. C. & Zhu, H. L. (2010). Bioorg. Med. Chem. 18, 7836-7841.]; Ji & Xu 2011[Ji, H. & Xu, X.-D. (2011). Acta Cryst. E67, o3490.]; Zou et al., 2020[Zou, J., Zhao, C. L., Zhang, Q. L., Pan, L. T. & He, K. (2020). Z. Kristallogr. New Cryst. Struct. 235, 745-746.]). This arrangement indicates conjugation of π-electrons between the benzene and the 1,3,4-oxa­diazole rings.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] with atom labeling. Ellipsoids represent 30% probability levels.
[Figure 2]
Figure 2
The asymmetric unit of (II)[link] with atom labeling. Ellipsoids represent 30% probability levels.

The bond angle C2—S1—C7B is 99.79 (16)° in (I)[link] and 100.11 (10)° in (II)[link]. The dihedral angle subtended by the benzene (C1B–C6B, centroid Cg3) and 1,3,4-oxa­diazole rings is 74.94 (10)° in (I)[link] and 73.12 (7)°in (II)[link].

3. Supra­molecular features

In crystal structures of the title compounds, weak inter­molecular contacts of the C—Xπ type are observed. In (I)[link], weak C7A—H7ACCg2 inter­actions link the mol­ecules, forming infinite chains along the b-axis direction (Fig. 3[link]). Between these chains, other inter­actions of the C7B—H7BACg3 type are observed, which consolidate the crystal structure (Table 1[link]). In the crystal structure of (II)[link], the formation of an infinite chain is also observed as a result of the C2B—Cl1⋯Cg1 inter­action, which links mol­ecules along the c-axis direction (Fig. 4[link]). Inter­molecular C8A—H8ABCg3 and C7B—H7BACg3 inter­actions between these chains consolidate the crystal structure (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7A—H7ACCg2i 0.96 2.80 3.626 (4) 145
C7B—H7BACg3ii 0.97 2.93 3.738 (4) 141
Symmetry codes: (i) [x, y-1, z]; (ii) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg3 are the centroids of the O1/C2/N3/N4/C5 and C1B–C6B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—Cl1⋯Cg1i 1.74 (1) 3.30 (1) 4.939 (2) 156 (1)
C8A—H8ABCg3ii 0.96 2.94 3.857 (3) 161
C7B—H7BACg3iii 0.97 2.85 3.674 (2) 143
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) [-x+2, -y+1, -z+2]; (iii) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Observed weak inter­molecular C7A—H7ACCg2 inter­actions in the crystal structure of (I)[link] (the mol­ecules are linked along the b-axis direction).
[Figure 4]
Figure 4
Observed inter­molecular C2B—Cl1⋯Cg1 inter­actions in the crystal structure of (II)[link] (the mol­ecules are linked along the c-axis direction).

In order to visualize and qu­antify the inter­molecular inter­actions in (I)[link] and (II)[link], a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed with Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) generated. The Hirshfeld surfaces for the mol­ecules in (I)[link] and (II)[link] are shown in Figs. 5[link] and 6[link] in which the two-dimensional fingerprint plots of the most dominant contacts are also presented.

[Figure 5]
Figure 5
Three-dimensional Hirshfeld surfaces of compound (I)[link] plotted over dnorm in the range 0.0145 to 1.3066 a.u. Hirshfeld fingerprint plots for all contacts and decomposed into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯S/S⋯H, C⋯C and H⋯O/O⋯H contacts. di and de denote the closest inter­nal and external distances (in Å) from a point on the surface.
[Figure 6]
Figure 6
Three-dimensional Hirshfeld surfaces of the compound (II)[link] plotted over dnorm in the range −0.0964 to 1.2943 a.u. Hirshfeld fingerprint plots for all contacts and decomposed into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯F/F⋯H, H⋯S/S⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H and C⋯C contacts. di and de denote the closest inter­nal and external distances (in Å) from a point on the surface.

For structure (I)[link], H⋯H contacts are responsible for the largest contribution (47.8%) to the Hirshfeld surface. Besides these contacts, H⋯C/C⋯H (20.5%), H⋯N/N⋯H (12.4%), H⋯S/S⋯H (7.2%), C⋯C (4.1%) and H⋯O/O⋯H (3.5%) inter­actions contribute significantly to the total Hirshfeld surface (Fig. 5[link]). The contributions of other contacts are O⋯C/C⋯O (2.0%), O⋯S/S⋯O (1.3%), S⋯C/C⋯S (0.9%), N⋯C/C⋯N (0.4%) and N⋯N (0.1%).

In the structure of (II)[link], the percentage contributions of the most significant contacts differ because of the presence of H⋯F/F⋯H and H⋯Cl/Cl⋯H inter­actions and amount to H⋯H (31.8%), H⋯C/C⋯H (20.0%), H⋯N/N⋯H (9.8%), H⋯F/F⋯H (7.5%), H⋯S/S⋯H (7.1%), H⋯Cl/Cl⋯H (5.7%), H⋯O/O⋯H (5.0%) and C⋯C (3.9%) (Fig. 6[link]). The contributions of other contacts are Cl⋯C/C⋯Cl (2.8%), Cl⋯F/F⋯Cl (1.4%), N⋯S/S⋯N (1.0%), Cl⋯O/O⋯Cl (0.9%), O⋯C/C⋯O (0.4%), N⋯C/C⋯N (0.4%), S⋯Cl/Cl⋯S (0.3%), S⋯C/C⋯S (0.3%) and N⋯O/O⋯N (0.2%).

As seen from Figs. 5[link] and 6[link], the most significant contributions to the overall Hirshfeld surface in the crystal structures of (I)[link] and (II)[link] are from H⋯H and H⋯C/C⋯H contacts (together they amount to more than 50% for both cases).

4. Database survey

A search in the Cambridge Structural Database (CSD, version 2022.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 45 derivatives of 5-phenyl-1,3,4-oxa­diazole-2-thiole, nine of which are 2-(benz­yl­sulfan­yl)-5-phenyl-1,3,4-oxa­diazole derivatives, and no structure was found for a 5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole-2-thiole derivative. When searching for similar structures in the CSD, two matches were found: 2-(4-meth­oxy­phen­yl)-5-({[3-(tri­fluoro­meth­yl)phen­yl] meth­yl}sulfan­yl)-1,3,4-oxa­diazole (SOXGOE; Hamdani et al., 2020[Hamdani, S. S., Khan, B. A., Ahmed, M. N., Hameed, S., Akhter, K., Ayub, K. & Mahmood, T. (2020). J. Mol. Struct. 1200, 127085-127085.]) and 2-benzyl­sulfanyl-5-(3,4,5-tri­meth­oxy­phen­yl)-1,3,4-oxa­diazole (GIDKEK; Chen et al., 2007[Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981-3989.]), in which the benzene rings and 1,3,4-oxa­diazole fragments are arranged in a similar manner as the title compounds. However, in the structures of SOXGOE and GIGKEK, inter­molecular inter­actions are not observed, the mol­ecules being stabilized mainly by van der Waals forces.

5. Synthesis and crystallization

A mixture of 5-[4-(di­methyl­amino)­phen­yl]-1,3,4-oxa­diazole-2-thiole (0.005 mol), benzyl chloride or 2-chloro-6-fluoro­benzyl chloride (0.005 mol) and K2CO3 (0.005 mol) was boiled in 20 ml of dry acetone for 6 h. The solvent was then removed, the residue washed with water and with 2% NaOH solution to remove unreacted oxa­diazo­lthione, and then washed with water until neutral. The resulting target products were dried in air and recrystallized from ethanol solution. Compound (I)[link]: yield 96%, m.p. 404–405 K. Compound (II)[link]: yield 92%, m.p. 406–407 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geom­etrically (with C—H distances of 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) [Uiso = 1.5Ueq(C) for methyl H atoms]. For (I)[link], the crystal studied was refined as an inversion twin with matrix [[\overline{1}] 0 0, 0 [\overline{1}] 0, 0 0 [\overline{1}]] ; the resulting BASF value is 0.43 (2).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C17H17N3OS C17H15ClFN3OS
Mr 311.39 363.83
Crystal system, space group Monoclinic, Ia Monoclinic, P21/c
Temperature (K) 297 296
a, b, c (Å) 16.816 (3), 4.7848 (10), 20.123 (4) 16.308 (3), 7.9787 (16), 13.072 (3)
β (°) 105.96 (3) 103.33 (3)
V3) 1556.7 (6) 1655.1 (6)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 1.88 3.40
Crystal size (mm) 0.35 × 0.20 × 0.15 0.30 × 0.25 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.749, 1.000 0.704, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6572, 2732, 2583 8579, 3181, 2771
Rint 0.026 0.021
(sin θ/λ)max−1) 0.615 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.04 0.039, 0.106, 1.05
No. of reflections 2732 3181
No. of parameters 202 219
No. of restraints 2 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.21 0.18, −0.33
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.43 (2)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97, SHELXTL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

2-(Benzylsulfanyl)-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (I) top
Crystal data top
C17H17N3OSF(000) = 656
Mr = 311.39Dx = 1.329 Mg m3
Monoclinic, IaCu Kα radiation, λ = 1.54184 Å
a = 16.816 (3) ÅCell parameters from 4218 reflections
b = 4.7848 (10) Åθ = 3.0–71.2°
c = 20.123 (4) ŵ = 1.88 mm1
β = 105.96 (3)°T = 297 K
V = 1556.7 (6) Å3Prizmatic, colorless
Z = 40.35 × 0.20 × 0.15 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
2732 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2583 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.026
ω scansθmax = 71.5°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2020
Tmin = 0.749, Tmax = 1.000k = 55
6572 measured reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0541P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.15 e Å3
2732 reflectionsΔρmin = 0.21 e Å3
202 parametersAbsolute structure: Refined as an inversion twin
2 restraintsAbsolute structure parameter: 0.43 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35188 (5)0.65967 (15)0.24394 (4)0.0675 (2)
O10.38557 (12)0.2829 (4)0.15990 (10)0.0546 (4)
N30.25142 (15)0.3621 (5)0.13720 (14)0.0607 (6)
N40.26466 (15)0.1612 (5)0.09008 (14)0.0595 (6)
N1A0.51675 (14)0.6015 (5)0.02778 (13)0.0614 (6)
C20.32356 (17)0.4249 (6)0.17577 (14)0.0561 (6)
C50.34386 (17)0.1194 (6)0.10548 (14)0.0518 (6)
C1A0.38914 (15)0.0700 (6)0.07351 (13)0.0497 (5)
C2A0.34682 (16)0.2469 (6)0.02095 (15)0.0541 (6)
H2AA0.2893050.2456540.0076190.065*
C3A0.38831 (17)0.4238 (6)0.01174 (14)0.0543 (6)
H3AA0.3580870.5393350.0468140.065*
C4A0.47522 (16)0.4349 (6)0.00637 (14)0.0514 (6)
C5A0.51775 (17)0.2603 (6)0.06167 (16)0.0555 (6)
H5AA0.5751920.2668240.0767300.067*
C6A0.47585 (16)0.0824 (6)0.09332 (14)0.0549 (6)
H6AA0.5054970.0328490.1287370.066*
C7A0.4722 (2)0.7707 (7)0.08530 (18)0.0681 (8)
H7AA0.5106950.8630230.1053540.102*
H7AB0.4361480.6539160.1194100.102*
H7AC0.4399390.9079320.0694280.102*
C8A0.60506 (19)0.6514 (7)0.0000 (2)0.0718 (9)
H8AA0.6229120.7845390.0286210.108*
H8AB0.6159650.7234170.0461180.108*
H8AC0.6345470.4791310.0006650.108*
C1B0.20329 (17)0.5859 (6)0.27839 (14)0.0536 (6)
C2B0.23312 (18)0.5105 (7)0.34681 (15)0.0605 (7)
H2BA0.2839770.5794590.3725570.073*
C3B0.1890 (2)0.3346 (7)0.37792 (18)0.0723 (9)
H3BA0.2098810.2859270.4242050.087*
C4B0.1137 (3)0.2317 (9)0.3397 (2)0.0826 (10)
H4BA0.0833640.1144350.3603650.099*
C5B0.0837 (2)0.3010 (10)0.2720 (2)0.0863 (11)
H5BA0.0332940.2284980.2462850.104*
C6B0.1276 (2)0.4787 (8)0.24093 (17)0.0710 (8)
H6BA0.1062850.5265860.1946510.085*
C7B0.2500 (2)0.7858 (6)0.24513 (19)0.0687 (8)
H7BA0.2563920.9620890.2698260.082*
H7BB0.2175550.8208460.1979950.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0666 (4)0.0746 (4)0.0645 (4)0.0124 (4)0.0234 (3)0.0030 (4)
O10.0501 (10)0.0581 (9)0.0555 (10)0.0021 (8)0.0144 (8)0.0069 (8)
N30.0516 (12)0.0674 (14)0.0641 (14)0.0038 (10)0.0177 (11)0.0037 (11)
N40.0465 (12)0.0681 (14)0.0619 (14)0.0035 (10)0.0116 (10)0.0036 (11)
N1A0.0471 (12)0.0666 (14)0.0680 (15)0.0002 (10)0.0114 (11)0.0029 (11)
C20.0564 (16)0.0568 (14)0.0578 (15)0.0004 (11)0.0201 (13)0.0116 (12)
C50.0471 (13)0.0552 (13)0.0515 (14)0.0025 (11)0.0108 (11)0.0121 (11)
C1A0.0448 (12)0.0528 (12)0.0506 (13)0.0000 (10)0.0115 (11)0.0127 (10)
C2A0.0398 (13)0.0597 (14)0.0601 (15)0.0042 (10)0.0092 (11)0.0115 (12)
C3A0.0451 (13)0.0565 (14)0.0571 (15)0.0047 (11)0.0069 (11)0.0061 (12)
C4A0.0438 (12)0.0521 (13)0.0556 (15)0.0040 (10)0.0091 (11)0.0119 (11)
C5A0.0400 (12)0.0612 (14)0.0600 (15)0.0034 (11)0.0048 (12)0.0073 (12)
C6A0.0469 (13)0.0576 (14)0.0552 (14)0.0041 (11)0.0058 (11)0.0041 (12)
C7A0.0636 (18)0.0708 (18)0.0676 (19)0.0046 (15)0.0145 (15)0.0064 (15)
C8A0.0473 (15)0.084 (2)0.084 (2)0.0032 (15)0.0178 (15)0.0042 (17)
C1B0.0555 (14)0.0531 (13)0.0541 (14)0.0088 (11)0.0184 (12)0.0046 (11)
C2B0.0550 (15)0.0725 (17)0.0527 (15)0.0006 (13)0.0126 (12)0.0028 (12)
C3B0.071 (2)0.089 (2)0.0609 (18)0.0056 (16)0.0252 (16)0.0073 (15)
C4B0.074 (2)0.101 (3)0.084 (2)0.0115 (19)0.042 (2)0.006 (2)
C5B0.0556 (18)0.119 (3)0.087 (2)0.0168 (18)0.0245 (17)0.027 (2)
C6B0.0580 (16)0.097 (2)0.0563 (17)0.0077 (16)0.0121 (14)0.0097 (16)
C7B0.083 (2)0.0529 (15)0.0729 (19)0.0070 (14)0.0255 (16)0.0060 (13)
Geometric parameters (Å, º) top
S1—C21.735 (3)C7A—H7AA0.9600
S1—C7B1.823 (4)C7A—H7AB0.9600
O1—C21.354 (3)C7A—H7AC0.9600
O1—C51.371 (3)C8A—H8AA0.9600
N3—C21.283 (4)C8A—H8AB0.9600
N3—N41.410 (4)C8A—H8AC0.9600
N4—C51.297 (4)C1B—C2B1.378 (4)
N1A—C4A1.364 (4)C1B—C6B1.387 (5)
N1A—C7A1.442 (4)C1B—C7B1.506 (5)
N1A—C8A1.455 (4)C2B—C3B1.381 (5)
C5—C1A1.444 (4)C2B—H2BA0.9300
C1A—C2A1.388 (4)C3B—C4B1.379 (6)
C1A—C6A1.403 (4)C3B—H3BA0.9300
C2A—C3A1.374 (4)C4B—C5B1.358 (7)
C2A—H2AA0.9300C4B—H4BA0.9300
C3A—C4A1.407 (4)C5B—C6B1.383 (6)
C3A—H3AA0.9300C5B—H5BA0.9300
C4A—C5A1.418 (4)C6B—H6BA0.9300
C5A—C6A1.369 (4)C7B—H7BA0.9700
C5A—H5AA0.9300C7B—H7BB0.9700
C6A—H6AA0.9300
C2—S1—C7B99.79 (16)N1A—C7A—H7AC109.5
C2—O1—C5102.5 (2)H7AA—C7A—H7AC109.5
C2—N3—N4105.6 (2)H7AB—C7A—H7AC109.5
C5—N4—N3106.6 (2)N1A—C8A—H8AA109.5
C4A—N1A—C7A120.5 (2)N1A—C8A—H8AB109.5
C4A—N1A—C8A120.8 (3)H8AA—C8A—H8AB109.5
C7A—N1A—C8A117.8 (3)N1A—C8A—H8AC109.5
N3—C2—O1113.6 (3)H8AA—C8A—H8AC109.5
N3—C2—S1129.6 (2)H8AB—C8A—H8AC109.5
O1—C2—S1116.7 (2)C2B—C1B—C6B118.3 (3)
N4—C5—O1111.6 (3)C2B—C1B—C7B121.3 (3)
N4—C5—C1A128.5 (3)C6B—C1B—C7B120.4 (3)
O1—C5—C1A119.8 (2)C1B—C2B—C3B121.3 (3)
C2A—C1A—C6A117.7 (3)C1B—C2B—H2BA119.3
C2A—C1A—C5120.0 (2)C3B—C2B—H2BA119.3
C6A—C1A—C5122.3 (2)C4B—C3B—C2B119.3 (3)
C3A—C2A—C1A121.3 (3)C4B—C3B—H3BA120.3
C3A—C2A—H2AA119.4C2B—C3B—H3BA120.3
C1A—C2A—H2AA119.4C5B—C4B—C3B120.2 (4)
C2A—C3A—C4A121.8 (3)C5B—C4B—H4BA119.9
C2A—C3A—H3AA119.1C3B—C4B—H4BA119.9
C4A—C3A—H3AA119.1C4B—C5B—C6B120.4 (4)
N1A—C4A—C3A122.1 (3)C4B—C5B—H5BA119.8
N1A—C4A—C5A121.5 (2)C6B—C5B—H5BA119.8
C3A—C4A—C5A116.4 (3)C5B—C6B—C1B120.4 (3)
C6A—C5A—C4A121.2 (3)C5B—C6B—H6BA119.8
C6A—C5A—H5AA119.4C1B—C6B—H6BA119.8
C4A—C5A—H5AA119.4C1B—C7B—S1113.7 (2)
C5A—C6A—C1A121.4 (3)C1B—C7B—H7BA108.8
C5A—C6A—H6AA119.3S1—C7B—H7BA108.8
C1A—C6A—H6AA119.3C1B—C7B—H7BB108.8
N1A—C7A—H7AA109.5S1—C7B—H7BB108.8
N1A—C7A—H7AB109.5H7BA—C7B—H7BB107.7
H7AA—C7A—H7AB109.5
C2—N3—N4—C50.8 (3)C7A—N1A—C4A—C5A178.0 (3)
N4—N3—C2—O10.6 (3)C8A—N1A—C4A—C5A13.0 (4)
N4—N3—C2—S1179.7 (2)C2A—C3A—C4A—N1A177.2 (3)
C5—O1—C2—N30.2 (3)C2A—C3A—C4A—C5A2.0 (4)
C5—O1—C2—S1179.95 (18)N1A—C4A—C5A—C6A176.4 (3)
C7B—S1—C2—N30.7 (3)C3A—C4A—C5A—C6A2.8 (4)
C7B—S1—C2—O1179.1 (2)C4A—C5A—C6A—C1A1.5 (4)
N3—N4—C5—O10.8 (3)C2A—C1A—C6A—C5A0.6 (4)
N3—N4—C5—C1A178.9 (2)C5—C1A—C6A—C5A179.0 (3)
C2—O1—C5—N40.4 (3)C6B—C1B—C2B—C3B0.5 (4)
C2—O1—C5—C1A179.3 (2)C7B—C1B—C2B—C3B177.8 (3)
N4—C5—C1A—C2A3.2 (4)C1B—C2B—C3B—C4B0.2 (5)
O1—C5—C1A—C2A176.4 (2)C2B—C3B—C4B—C5B0.6 (6)
N4—C5—C1A—C6A176.4 (3)C3B—C4B—C5B—C6B1.0 (6)
O1—C5—C1A—C6A4.0 (4)C4B—C5B—C6B—C1B0.7 (6)
C6A—C1A—C2A—C3A1.5 (4)C2B—C1B—C6B—C5B0.1 (5)
C5—C1A—C2A—C3A178.2 (2)C7B—C1B—C6B—C5B178.3 (3)
C1A—C2A—C3A—C4A0.1 (4)C2B—C1B—C7B—S161.9 (3)
C7A—N1A—C4A—C3A1.1 (4)C6B—C1B—C7B—S1119.8 (3)
C8A—N1A—C4A—C3A167.9 (3)C2—S1—C7B—C1B77.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7A—H7AC···Cg2i0.962.803.626 (4)145
C7B—H7BA···Cg3ii0.972.933.738 (4)141
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
2-[(2-Chloro-6-fluorobenzyl)sulfanyl]-5-[4-(dimethylamino)phenyl]-1,3,4-oxadiazole (II) top
Crystal data top
C17H15ClFN3OSF(000) = 752
Mr = 363.83Dx = 1.460 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 16.308 (3) ÅCell parameters from 4884 reflections
b = 7.9787 (16) Åθ = 2.8–70.7°
c = 13.072 (3) ŵ = 3.40 mm1
β = 103.33 (3)°T = 296 K
V = 1655.1 (6) Å3Prizmatic, colorless
Z = 40.30 × 0.25 × 0.15 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3181 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2771 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.021
ω scansθmax = 71.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1919
Tmin = 0.704, Tmax = 1.000k = 99
8579 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.3561P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3181 reflectionsΔρmax = 0.18 e Å3
219 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70024 (3)0.25638 (6)0.67262 (4)0.05766 (17)
F10.53784 (8)0.62390 (19)0.74016 (9)0.0710 (4)
Cl10.65329 (4)0.42921 (8)0.43372 (4)0.07189 (19)
N30.70438 (10)0.4438 (2)0.85013 (13)0.0575 (4)
N40.76430 (11)0.4635 (2)0.94693 (13)0.0591 (4)
N4A1.13318 (11)0.2937 (3)1.24513 (14)0.0645 (5)
O10.81509 (8)0.28552 (16)0.84836 (9)0.0484 (3)
C20.73729 (11)0.3394 (2)0.79712 (14)0.0469 (4)
C50.82736 (11)0.3695 (2)0.94229 (13)0.0459 (4)
C1A0.90528 (11)0.3437 (2)1.02033 (13)0.0458 (4)
C2A0.91795 (13)0.4247 (3)1.11650 (15)0.0569 (5)
H2AA0.8752540.4914311.1309920.068*
C3A0.99218 (13)0.4085 (3)1.19079 (15)0.0583 (5)
H3AA0.9988000.4645001.2545600.070*
C4A1.05833 (11)0.3090 (2)1.17239 (14)0.0490 (4)
C5A1.04385 (13)0.2249 (3)1.07595 (16)0.0583 (5)
H5AA1.0854230.1548831.0616910.070*
C6A0.96948 (13)0.2437 (3)1.00180 (15)0.0560 (5)
H6AA0.9622460.1878830.9378810.067*
C7A1.14655 (15)0.3781 (4)1.34498 (18)0.0783 (7)
H7AA1.1039650.3443441.3806390.118*
H7AB1.1434750.4971191.3338100.118*
H7AC1.2011170.3492761.3870360.118*
C8A1.20022 (14)0.1914 (3)1.2238 (2)0.0734 (6)
H8AA1.1805490.0783961.2098060.110*
H8AB1.2471100.1925861.2836860.110*
H8AC1.2176240.2349851.1637090.110*
C1B0.59678 (10)0.5336 (2)0.60183 (12)0.0413 (4)
C2B0.62301 (10)0.5823 (2)0.51172 (13)0.0447 (4)
C3B0.62432 (12)0.7473 (3)0.48082 (16)0.0555 (5)
H3BA0.6432660.7752740.4211540.067*
C4B0.59745 (14)0.8693 (3)0.53885 (19)0.0641 (6)
H4BA0.5987340.9809570.5188530.077*
C5B0.56857 (13)0.8285 (3)0.62650 (18)0.0618 (5)
H5BA0.5494200.9111100.6654830.074*
C6B0.56865 (11)0.6628 (3)0.65515 (14)0.0487 (4)
C7B0.59662 (12)0.3548 (2)0.63726 (16)0.0537 (5)
H7BA0.5611300.2899860.5814060.064*
H7BB0.5714880.3502510.6976110.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0609 (3)0.0489 (3)0.0553 (3)0.0077 (2)0.0030 (2)0.0039 (2)
F10.0611 (7)0.1044 (10)0.0511 (6)0.0122 (7)0.0199 (5)0.0031 (6)
Cl10.0721 (4)0.0899 (4)0.0532 (3)0.0172 (3)0.0134 (2)0.0173 (3)
N30.0510 (9)0.0600 (10)0.0562 (9)0.0113 (8)0.0010 (7)0.0001 (8)
N40.0550 (9)0.0651 (10)0.0532 (9)0.0145 (8)0.0046 (7)0.0054 (8)
N4A0.0483 (9)0.0850 (12)0.0551 (9)0.0034 (9)0.0013 (7)0.0009 (9)
O10.0478 (7)0.0486 (7)0.0460 (6)0.0071 (5)0.0050 (5)0.0008 (5)
C20.0466 (9)0.0408 (9)0.0500 (9)0.0025 (8)0.0043 (8)0.0053 (7)
C50.0481 (10)0.0438 (9)0.0455 (9)0.0032 (8)0.0102 (7)0.0005 (7)
C1A0.0454 (9)0.0463 (9)0.0447 (9)0.0038 (8)0.0088 (7)0.0015 (7)
C2A0.0552 (11)0.0628 (12)0.0518 (10)0.0154 (9)0.0107 (9)0.0077 (9)
C3A0.0636 (12)0.0639 (12)0.0449 (10)0.0076 (10)0.0072 (9)0.0093 (9)
C4A0.0459 (10)0.0549 (10)0.0454 (9)0.0020 (8)0.0093 (7)0.0066 (8)
C5A0.0504 (11)0.0717 (13)0.0524 (10)0.0171 (10)0.0110 (9)0.0048 (9)
C6A0.0560 (11)0.0650 (12)0.0455 (10)0.0124 (9)0.0087 (9)0.0080 (9)
C7A0.0620 (13)0.109 (2)0.0565 (12)0.0168 (14)0.0021 (10)0.0042 (13)
C8A0.0484 (11)0.0855 (16)0.0824 (15)0.0075 (11)0.0071 (10)0.0184 (13)
C1B0.0319 (8)0.0469 (9)0.0415 (8)0.0017 (7)0.0008 (6)0.0021 (7)
C2B0.0340 (8)0.0545 (10)0.0423 (8)0.0003 (7)0.0018 (7)0.0044 (7)
C3B0.0431 (10)0.0641 (12)0.0553 (11)0.0049 (9)0.0031 (8)0.0125 (9)
C4B0.0555 (12)0.0470 (11)0.0818 (15)0.0011 (9)0.0005 (10)0.0053 (10)
C5B0.0522 (11)0.0545 (11)0.0731 (13)0.0080 (9)0.0032 (10)0.0161 (10)
C6B0.0367 (8)0.0633 (11)0.0437 (9)0.0029 (8)0.0048 (7)0.0064 (8)
C7B0.0448 (10)0.0522 (10)0.0589 (11)0.0064 (8)0.0014 (8)0.0019 (8)
Geometric parameters (Å, º) top
S1—C21.7317 (19)C5A—H5AA0.9300
S1—C7B1.824 (2)C6A—H6AA0.9300
F1—C6B1.357 (2)C7A—H7AA0.9600
Cl1—C2B1.7346 (18)C7A—H7AB0.9600
N3—C21.278 (2)C7A—H7AC0.9600
N3—N41.418 (2)C8A—H8AA0.9600
N4—C51.286 (2)C8A—H8AB0.9600
N4A—C4A1.369 (2)C8A—H8AC0.9600
N4A—C7A1.440 (3)C1B—C6B1.381 (2)
N4A—C8A1.442 (3)C1B—C2B1.398 (2)
O1—C21.361 (2)C1B—C7B1.500 (2)
O1—C51.372 (2)C2B—C3B1.378 (3)
C5—C1A1.449 (2)C3B—C4B1.367 (3)
C1A—C6A1.382 (3)C3B—H3BA0.9300
C1A—C2A1.386 (3)C4B—C5B1.375 (3)
C2A—C3A1.372 (3)C4B—H4BA0.9300
C2A—H2AA0.9300C5B—C6B1.374 (3)
C3A—C4A1.404 (3)C5B—H5BA0.9300
C3A—H3AA0.9300C7B—H7BA0.9700
C4A—C5A1.399 (3)C7B—H7BB0.9700
C5A—C6A1.375 (3)
C2—S1—C7B100.11 (10)N4A—C7A—H7AC109.5
C2—N3—N4105.48 (15)H7AA—C7A—H7AC109.5
C5—N4—N3106.70 (15)H7AB—C7A—H7AC109.5
C4A—N4A—C7A120.80 (19)N4A—C8A—H8AA109.5
C4A—N4A—C8A120.70 (19)N4A—C8A—H8AB109.5
C7A—N4A—C8A118.50 (19)H8AA—C8A—H8AB109.5
C2—O1—C5102.31 (14)N4A—C8A—H8AC109.5
N3—C2—O1113.54 (16)H8AA—C8A—H8AC109.5
N3—C2—S1131.27 (14)H8AB—C8A—H8AC109.5
O1—C2—S1115.19 (13)C6B—C1B—C2B114.82 (16)
N4—C5—O1111.96 (16)C6B—C1B—C7B121.99 (17)
N4—C5—C1A129.11 (17)C2B—C1B—C7B123.18 (16)
O1—C5—C1A118.93 (15)C3B—C2B—C1B122.74 (17)
C6A—C1A—C2A117.89 (17)C3B—C2B—Cl1118.33 (15)
C6A—C1A—C5122.38 (16)C1B—C2B—Cl1118.91 (14)
C2A—C1A—C5119.70 (17)C4B—C3B—C2B119.26 (19)
C3A—C2A—C1A121.37 (18)C4B—C3B—H3BA120.4
C3A—C2A—H2AA119.3C2B—C3B—H3BA120.4
C1A—C2A—H2AA119.3C3B—C4B—C5B120.6 (2)
C2A—C3A—C4A121.29 (18)C3B—C4B—H4BA119.7
C2A—C3A—H3AA119.4C5B—C4B—H4BA119.7
C4A—C3A—H3AA119.4C6B—C5B—C4B118.43 (19)
N4A—C4A—C5A121.42 (18)C6B—C5B—H5BA120.8
N4A—C4A—C3A121.92 (18)C4B—C5B—H5BA120.8
C5A—C4A—C3A116.66 (17)F1—C6B—C5B117.80 (18)
C6A—C5A—C4A121.41 (18)F1—C6B—C1B118.12 (18)
C6A—C5A—H5AA119.3C5B—C6B—C1B124.07 (18)
C4A—C5A—H5AA119.3C1B—C7B—S1114.87 (13)
C5A—C6A—C1A121.35 (18)C1B—C7B—H7BA108.6
C5A—C6A—H6AA119.3S1—C7B—H7BA108.6
C1A—C6A—H6AA119.3C1B—C7B—H7BB108.6
N4A—C7A—H7AA109.5S1—C7B—H7BB108.6
N4A—C7A—H7AB109.5H7BA—C7B—H7BB107.5
H7AA—C7A—H7AB109.5
C2—N3—N4—C50.2 (2)C2A—C3A—C4A—C5A1.4 (3)
N4—N3—C2—O10.4 (2)N4A—C4A—C5A—C6A178.3 (2)
N4—N3—C2—S1179.84 (15)C3A—C4A—C5A—C6A2.1 (3)
C5—O1—C2—N30.4 (2)C4A—C5A—C6A—C1A1.3 (3)
C5—O1—C2—S1179.82 (12)C2A—C1A—C6A—C5A0.2 (3)
C7B—S1—C2—N31.9 (2)C5—C1A—C6A—C5A178.09 (19)
C7B—S1—C2—O1178.28 (13)C6B—C1B—C2B—C3B2.8 (2)
N3—N4—C5—O10.0 (2)C7B—C1B—C2B—C3B178.83 (17)
N3—N4—C5—C1A179.96 (18)C6B—C1B—C2B—Cl1175.93 (12)
C2—O1—C5—N40.2 (2)C7B—C1B—C2B—Cl12.5 (2)
C2—O1—C5—C1A179.82 (16)C1B—C2B—C3B—C4B1.3 (3)
N4—C5—C1A—C6A176.9 (2)Cl1—C2B—C3B—C4B177.37 (15)
O1—C5—C1A—C6A3.1 (3)C2B—C3B—C4B—C5B0.7 (3)
N4—C5—C1A—C2A1.4 (3)C3B—C4B—C5B—C6B1.0 (3)
O1—C5—C1A—C2A178.60 (17)C4B—C5B—C6B—F1178.26 (17)
C6A—C1A—C2A—C3A0.9 (3)C4B—C5B—C6B—C1B0.6 (3)
C5—C1A—C2A—C3A177.46 (19)C2B—C1B—C6B—F1176.46 (14)
C1A—C2A—C3A—C4A0.1 (3)C7B—C1B—C6B—F12.0 (2)
C7A—N4A—C4A—C5A178.7 (2)C2B—C1B—C6B—C5B2.4 (2)
C8A—N4A—C4A—C5A0.8 (3)C7B—C1B—C6B—C5B179.15 (17)
C7A—N4A—C4A—C3A0.9 (3)C6B—C1B—C7B—S1118.50 (17)
C8A—N4A—C4A—C3A179.6 (2)C2B—C1B—C7B—S163.2 (2)
C2A—C3A—C4A—N4A179.0 (2)C2—S1—C7B—C1B78.87 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the O1/C2/N3/N4/C5 and C1B–C6B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2B—Cl1···Cg1i1.74 (1)3.30 (1)4.939 (2)156 (1)
C8A—H8AB···Cg3ii0.962.943.857 (3)161
C7B—H7BA···Cg3iii0.972.853.674 (2)143
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We are especially grateful to Professor B. Tashkhodzhaev for help in discussing the results.

References

First citationChen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationErensoy, G., Ding, K., Zhan, C. G., Elmezayen, A., Yelekçi, K., Duracik, M., Özakpinar, Ö. B. & Küçükgüzel, İ. (2020). J. Res. Pharm. 24, 436–451.  CAS Google Scholar
First citationGlomb, T. & Świątek, P. (2021). Int. J. Mol. Sci. 22, 6979–6979.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamdani, S. S., Khan, B. A., Ahmed, M. N., Hameed, S., Akhter, K., Ayub, K. & Mahmood, T. (2020). J. Mol. Struct. 1200, 127085–127085.  CSD CrossRef Google Scholar
First citationJi, H. & Xu, X.-D. (2011). Acta Cryst. E67, o3490.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMamatha, S. V., Bhat, M., Sagar, B. K. & Meenakshi, S. K. (2019). J. Mol. Struct. 1196, 186–193.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPathak, S., Sharma, S., Pathak, V. & Prasad, M. (2020). J. Appl. Pharm. Res. 8, 50–61.  CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationŞahin, G., Palaska, E., Ekizoğlu, M. & Özalp, M. (2002). Farmaco, 57, 539–542.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782–o784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZareef, M., Iqbal, R., Arfan, M. & Parvez, M. (2008). Acta Cryst. E64, o736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Q. Z., Zhang, X. M., Xu, Y., Cheng, K., Jiao, Q. C. & Zhu, H. L. (2010). Bioorg. Med. Chem. 18, 7836–7841.  CSD CrossRef CAS PubMed Google Scholar
First citationZou, J., Zhao, C. L., Zhang, Q. L., Pan, L. T. & He, K. (2020). Z. Kristallogr. New Cryst. Struct. 235, 745–746.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds