research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of bis­­(2-phthal­imido­eth­yl)ammonium chloride dihydrate

crossmark logo

aDepartment of Chemistry, San Diego Miramar College, San Diego, CA 92126, USA, and bDepartment of Chemistry, University of California-San Diego, La Jolla, CA 92093, USA
*Correspondence e-mail: glsmith@sdccd.edu

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 31 March 2023; accepted 23 May 2023; online 26 May 2023)

The title compound {systematic name: bis­[2-(1,3-dioxoisoindol-2-yl)eth­yl]aza­nium chloride dihydrate}, C20H18N3O4+·Cl·2H2O, is a phthalimide-protected polyamine that was synthesized by a previous method. It was characterized by ESI–MS, 1H NMR, and FT–IR. Crystals were grown from a solution of H2O and 0.1 M HCl. The central nitro­gen atom is protonated and forms hydrogen bonds with the chloride ion and a water mol­ecule. The two phthalimide units make a dihedral angle of 22.07 (3)°. The crystal packing features a hydrogen-bond network, two-coordinated chloride, and off-set ππ stacking.

1. Chemical context

The title compound was synthesized by Frederick Mann in 1934 (Mann, 1934[Mann, F. G. (1934). J. Chem. Soc. pp. 461-466.]). It has been a key component for the synthesis of tripodal amines (Lundin et al., 2004[Lundin, N. J., Hamilton, I. G. & Blackman, A. G. (2004). Polyhedron, 23, 97-102.]; Blackman, 2005[Blackman, A. G. (2005). Polyhedron, 24, 1-39.]), Schiff base macrocycles (Keypour et al., 2008[Keypour, H., Azadbakht, R. & Khavasi, H. (2008). Polyhedron, 27, 648-654.]), MRI contrast agents of gadolinium(III) (Cheng et al., 2000[Cheng, T.-H., Wang, Y.-M., Lee, W.-T. & Liu, G.-C. (2000). Polyhedron, 19, 2027-2037.]), and as a tricyclic host for anions (Kang et al., 2010[Kang, S. O., Day, V. W. & Bowman-James, K. (2010). Inorg. Chem. 49, 8629-8636.]). Recently, it has also been used to functionalize graphene oxide (Ramesh & Jebasingh, 2019[Ramesh, P. & Jebasingh, B. (2019). Mater. Chem. Phys. 222, 45-54.]), build a nano-polymer dendrimer to uptake salicylic acid (Arshadi et al., 2019[Arshadi, M., Abdolmaleki, M. K., Eskandarloo, H. & Abbaspourrad, A. (2019). J. Colloid Interface Sci. 540, 501-514.]), and construct a fluorescent ligand (Saga et al., 2020[Saga, M., Sakane, G., Yamazaki, S. & Saito, K. (2020). Inorg. Chim. Acta, 502, Article 119368.]). The compound itself has formed a complex with manganese as a superoxide dismutase mimetic (Piacham et al., 2014[Piacham, T., Nantasenamat, C., Isarankura-Na-Ayudhya, C., Prachayasittikul, S. & Prachayasittikul, V. (2014). J. Chem. Pharm. Res. 6, 493-498.]). A variety of phthalimide compounds have been of inter­est because of the variety of supra­molecular inter­actions that can exist (Howell et al., 2003[Howell, R., Edwards, S., Gajadhar-Plummer, A., Kahwa, I., McPherson, G., Mague, J., White, A. & Williams, D. (2003). Molecules, 8, 565-592.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The compound is a protonated polyamine with two phthalimide groups protecting the terminal nitro­gens. It crystallizes in the monoclinic space group P21/c. The planes of the two phthalimide units (N1/C1–C8 and N3/C13–C20) make a dihedral angle of 22.07 (3)°. These units point in opposite directions to each other from the perspective of the central nitro­gen atom. The central tetra­hedral nitro­gen atom (NH2) forms hydrogen bonds with a water mol­ecule and the chloride ion.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability ellipsoids.

3. Supra­molecular features

The crystal structure features off-set ππ stacking between phthalimide groups running along the b-axis direction (Fig. 2[link]). The Cg (N1/C1–C8)⋯Cg (N3/C13–C20) centroid–centroid distance is 4.0143 (7) Å. A hydrogen-bond network (Table 1[link]) exists between the protonated amine (N2—H2A), a water mol­ecule (O1W), and a second water mol­ecule (O2W). Both water mol­ecules (O1W—H1WB, O2W—H2WA) also form hydrogen bonds with phthalimide oxygen atoms (O4, O2). The chloride ions form two hydrogen bonds with the protonated amine and a water mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1W 0.930 (17) 1.848 (17) 2.7729 (16) 172.7 (14)
O1W—H1WA⋯O2W 0.87 1.88 2.7462 (15) 171
O1W—H1WB⋯O4i 0.87 2.05 2.9054 (14) 168
O2W—H2WA⋯O2ii 0.87 2.03 2.8929 (15) 172
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z].
[Figure 2]
Figure 2
Mol­ecular packing of the title compound showing ππ inter­actions, hydrogen bonding, and chloride coordination.

4. Database survey

A search of the Cambridge Structural Database (version 5.41, update of July 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related compounds with a phthalimide unit gave 2881 hits. A search for the skeletal structure of N(CH2CH2NH2)2 resulted in 1707 hits, while the structure with protonated amines +HN(CH2CH2NH3+)2 resulted in 182 hits. One of these structures is the triprotonated di­ethyl­enetri­amine trichloride (ETACLA01; Ilioudis et al., 2000[Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787-798.]). This structure includes one chloride ion that is two-coordinate and two chlorides that are three-coordinate. A search for an amine with two phthalimide groups had 24 hits. The structure of a diphthalimidodi­ethyl­ammonium and hydrogen phthalate complex showed stabil­ization by offset ππ stacking, carbon­yl–carbonyl, and hydrogen-bonding inter­actions (REVZAT; Barrett et al., 1995[Barrett, D. M. Y., Kahwa, I. A., Mague, J. T. & McPherson, G. L. (1995). J. Org. Chem. 60, 5946-5953.]). Hydrogen bonding occurs within the complex unit and connects adjacent units. The offset ππ stacking between phthalimide units is characterized by C⋯C distances ranging from 3.297–3.592 Å. We have previously reported a phthalimide-protected polyamine that exhibits offset ππ stacking (Holmberg et al., 2021[Holmberg, R., Franz, V., Moser, K. M., Solano, R., Moore, C., Rheingold, A. L. & Smith, G. L. N. (2021). Acta Cryst. E77, 83-85.]).

5. Synthesis and crystallization

Following a previous protocol (Utz et al., 2008[Utz, D., Kisslinger, S., Hampel, F. & Schindler, S. (2008). J. Inorg. Biochem. 102, 1236-1245.]), 5.0 mL (48 mmol) of di­ethyl­enetri­amine were dissolved in 50 mL of methanol. To this, 15.0 g (101 mmol) of phthalic anhydride were slowly added, which turned the solution clear and yellow. The solution was kept at 333 K with minimal fluctuations and stirred for approximately 45 min. The solution became cloudy. It was removed from heat and stirred at room temperature for 7 days. A Büchner funnel and filter paper were saturated with MeOH, and the round-bottom flask was rinsed with MeOH prior to vacuum filtration. The precipitate was a pale-yellow solid. It was rinsed four times with 25 mL of MeOH and 4 × 25 mL of acetone to give 9.609 g of the product (55% yield). Characterization results align with previous work. ESI–MS: m/z = 364.1 (M + H+), 386.1 (M + Na+). 1H NMR (90 MHz, CDCl3) δ ppm 7.75 (m, 8H, aromatics), 3.75 (t, 4H, CH2—N), 3.0 (t, 4H, CH2—N), 1.60 (s, 1H, N—H). FTIR (cm−1) = 3326 ν(N—H), 1698 ν(C=O). Crystals suitable for X-ray crystallography were grown by evaporation, with the compound dissolved in a solution of H2O and 0.1 M HCl.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. N-bound H atoms were refined with Uiso(H) = 1.2Ueq(N). C-bound and water H atoms were positioned geometrically (C—H = 0.96–0.99 Å, O—H = 0.87 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C, O).

Table 2
Experimental details

Crystal data
Chemical formula C20H18N3O4+·Cl·2H2O
Mr 435.85
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.0401 (6), 15.4829 (7), 11.2543 (6)
β (°) 105.7191 (17)
V3) 2019.52 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.18 × 0.18 × 0.05
 
Data collection
Diffractometer Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.666, 0.744
No. of measured, independent and observed [I > 2σ(I)] reflections 59713, 4126, 3430
Rint 0.082
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.03
No. of reflections 4126
No. of parameters 284
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.23
Computer programs: APEX4 (Bruker, 2022[Bruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2019[Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX4 v2022.1-1 (Bruker, 2022); cell refinement: SAINT v8.40B (Bruker, 2019); data reduction: SAINT v8.40B (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Bis[2-(1,3-dioxoisoindol-2-yl)ethyl]azanium chloride dihydrate top
Crystal data top
C20H18N3O4+·Cl·2H2OF(000) = 912
Mr = 435.85Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.0401 (6) ÅCell parameters from 8573 reflections
b = 15.4829 (7) Åθ = 2.6–26.6°
c = 11.2543 (6) ŵ = 0.23 mm1
β = 105.7191 (17)°T = 100 K
V = 2019.52 (17) Å3Plate, colourless
Z = 40.18 × 0.18 × 0.05 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
4126 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS3430 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.082
Detector resolution: 7.407 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1919
Tmin = 0.666, Tmax = 0.744l = 1414
59713 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.0135P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.33 e Å3
4126 reflectionsΔρmin = 0.22 e Å3
284 parametersExtinction correction: SHELXL-2019/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0027 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30610 (3)0.21490 (2)0.23479 (3)0.01891 (10)
O10.45753 (9)0.41672 (7)0.37854 (9)0.0222 (2)
O20.18461 (8)0.47720 (6)0.01946 (9)0.0188 (2)
O30.66232 (8)0.16482 (7)0.41798 (9)0.0192 (2)
O40.77243 (9)0.14778 (7)0.06066 (9)0.0203 (2)
N10.34112 (10)0.44489 (7)0.18374 (11)0.0145 (3)
N20.49938 (11)0.29689 (7)0.14298 (11)0.0132 (2)
H2A0.5674 (14)0.3152 (10)0.1984 (15)0.016*
H2B0.4486 (14)0.2814 (10)0.1872 (15)0.016*
N30.68861 (10)0.15627 (7)0.22242 (11)0.0144 (3)
C10.36218 (13)0.42849 (9)0.31025 (13)0.0168 (3)
C20.24799 (13)0.43156 (9)0.33647 (13)0.0172 (3)
C30.21870 (14)0.41977 (10)0.44585 (14)0.0232 (3)
H30.2753270.4073030.5208280.028*
C40.10228 (15)0.42703 (10)0.44106 (15)0.0264 (4)
H40.0788680.4186930.5143530.032*
C50.01953 (14)0.44615 (10)0.33171 (16)0.0254 (4)
H50.0591060.4508410.3318660.030*
C60.04974 (13)0.45861 (9)0.22169 (15)0.0208 (3)
H60.0064550.4719570.1467510.025*
C70.16529 (13)0.45060 (9)0.22689 (13)0.0165 (3)
C80.22447 (12)0.45952 (9)0.12767 (13)0.0146 (3)
C90.43146 (12)0.45125 (9)0.12044 (13)0.0163 (3)
H9A0.5049350.4667330.1812250.020*
H9B0.4118280.4983620.0588140.020*
C100.44862 (12)0.36834 (9)0.05565 (13)0.0160 (3)
H10A0.3732030.3492420.0019020.019*
H10B0.5000220.3801530.0021990.019*
C110.51826 (12)0.21954 (9)0.07135 (13)0.0147 (3)
H11A0.5711030.2353770.0210830.018*
H11B0.4436880.2021890.0140860.018*
C120.56858 (12)0.14316 (9)0.15283 (13)0.0159 (3)
H12A0.5217790.1325570.2113930.019*
H12B0.5634600.0910810.1005820.019*
C130.72536 (12)0.16741 (9)0.35046 (13)0.0144 (3)
C140.85216 (12)0.18028 (9)0.38127 (13)0.0146 (3)
C150.93036 (12)0.19494 (9)0.49353 (13)0.0173 (3)
H150.9070430.1967960.5676570.021*
C161.04548 (13)0.20700 (9)0.49417 (14)0.0196 (3)
H161.1016250.2183560.5699220.024*
C171.07905 (12)0.20260 (9)0.38529 (14)0.0192 (3)
H171.1577460.2115440.3879460.023*
C180.99976 (12)0.18540 (9)0.27284 (14)0.0176 (3)
H181.0230440.1807740.1989020.021*
C190.88563 (12)0.17528 (9)0.27268 (13)0.0152 (3)
C200.78104 (12)0.15836 (9)0.16934 (13)0.0154 (3)
O1W0.70481 (9)0.36110 (7)0.29278 (9)0.0200 (2)
H1WA0.7153220.4134140.2697880.030*
H1WB0.7175630.3645490.3724980.030*
O2W0.72498 (11)0.52060 (7)0.19391 (11)0.0287 (3)
H2WA0.7584770.5239580.1345960.043*
H2WB0.7207820.5737780.2170620.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01688 (18)0.02079 (19)0.02101 (19)0.00147 (14)0.00846 (14)0.00137 (14)
O10.0220 (6)0.0210 (6)0.0211 (6)0.0023 (4)0.0014 (5)0.0030 (4)
O20.0189 (5)0.0207 (5)0.0168 (5)0.0013 (4)0.0049 (4)0.0020 (4)
O30.0178 (5)0.0221 (6)0.0205 (5)0.0004 (4)0.0099 (4)0.0007 (4)
O40.0240 (6)0.0228 (6)0.0151 (5)0.0011 (4)0.0071 (4)0.0004 (4)
N10.0146 (6)0.0143 (6)0.0160 (6)0.0023 (5)0.0062 (5)0.0014 (5)
N20.0133 (6)0.0129 (6)0.0139 (6)0.0002 (5)0.0048 (5)0.0006 (5)
N30.0139 (6)0.0141 (6)0.0157 (6)0.0007 (4)0.0050 (5)0.0005 (5)
C10.0221 (8)0.0103 (7)0.0180 (7)0.0016 (6)0.0053 (6)0.0001 (5)
C20.0220 (7)0.0110 (7)0.0197 (7)0.0016 (6)0.0079 (6)0.0008 (5)
C30.0337 (9)0.0183 (8)0.0201 (8)0.0053 (6)0.0116 (7)0.0020 (6)
C40.0382 (10)0.0219 (8)0.0270 (9)0.0029 (7)0.0222 (8)0.0011 (7)
C50.0251 (8)0.0205 (8)0.0372 (9)0.0003 (6)0.0198 (7)0.0021 (7)
C60.0194 (8)0.0180 (8)0.0266 (8)0.0017 (6)0.0092 (6)0.0016 (6)
C70.0202 (7)0.0115 (7)0.0198 (7)0.0007 (5)0.0087 (6)0.0006 (6)
C80.0169 (7)0.0102 (6)0.0170 (7)0.0006 (5)0.0052 (6)0.0016 (5)
C90.0147 (7)0.0146 (7)0.0218 (8)0.0007 (5)0.0085 (6)0.0024 (6)
C100.0179 (7)0.0151 (7)0.0160 (7)0.0033 (6)0.0063 (6)0.0043 (6)
C110.0154 (7)0.0136 (7)0.0154 (7)0.0012 (5)0.0046 (6)0.0014 (5)
C120.0141 (7)0.0141 (7)0.0190 (7)0.0003 (5)0.0036 (6)0.0003 (6)
C130.0179 (7)0.0095 (7)0.0168 (7)0.0021 (5)0.0063 (6)0.0004 (5)
C140.0154 (7)0.0108 (7)0.0187 (7)0.0024 (5)0.0062 (6)0.0009 (5)
C150.0196 (7)0.0162 (7)0.0169 (7)0.0031 (6)0.0063 (6)0.0001 (6)
C160.0177 (7)0.0179 (8)0.0216 (8)0.0026 (6)0.0023 (6)0.0003 (6)
C170.0136 (7)0.0177 (7)0.0270 (8)0.0022 (6)0.0067 (6)0.0027 (6)
C180.0185 (7)0.0171 (7)0.0199 (7)0.0030 (6)0.0100 (6)0.0031 (6)
C190.0180 (7)0.0115 (7)0.0167 (7)0.0021 (5)0.0058 (6)0.0018 (5)
C200.0193 (7)0.0102 (7)0.0185 (8)0.0021 (5)0.0080 (6)0.0017 (5)
O1W0.0225 (6)0.0178 (5)0.0183 (5)0.0029 (4)0.0029 (4)0.0011 (4)
O2W0.0453 (7)0.0196 (6)0.0285 (6)0.0027 (5)0.0225 (6)0.0041 (5)
Geometric parameters (Å, º) top
O1—C11.2099 (17)C9—H9A0.9900
O2—C81.2131 (17)C9—H9B0.9900
O3—C131.2115 (17)C9—C101.5179 (19)
O4—C201.2103 (17)C10—H10A0.9900
N1—C11.4001 (18)C10—H10B0.9900
N1—C81.3936 (18)C11—H11A0.9900
N1—C91.4561 (18)C11—H11B0.9900
N2—H2A0.930 (17)C11—C121.5184 (19)
N2—H2B0.919 (17)C12—H12A0.9900
N2—C101.4959 (17)C12—H12B0.9900
N2—C111.4950 (17)C13—C141.4845 (19)
N3—C121.4594 (18)C14—C151.375 (2)
N3—C131.3988 (18)C14—C191.389 (2)
N3—C201.3988 (18)C15—H150.9500
C1—C21.483 (2)C15—C161.397 (2)
C2—C31.381 (2)C16—H160.9500
C2—C71.391 (2)C16—C171.392 (2)
C3—H30.9500C17—H170.9500
C3—C41.393 (2)C17—C181.389 (2)
C4—H40.9500C18—H180.9500
C4—C51.389 (2)C18—C191.382 (2)
C5—H50.9500C19—C201.488 (2)
C5—C61.395 (2)O1W—H1WA0.8699
C6—H60.9500O1W—H1WB0.8699
C6—C71.382 (2)O2W—H2WA0.8700
C7—C81.485 (2)O2W—H2WB0.8692
C1—N1—C9123.81 (12)N2—C10—H10A108.9
C8—N1—C1111.88 (11)N2—C10—H10B108.9
C8—N1—C9124.21 (12)C9—C10—H10A108.9
H2A—N2—H2B108.2 (13)C9—C10—H10B108.9
C10—N2—H2A110.1 (10)H10A—C10—H10B107.7
C10—N2—H2B109.6 (10)N2—C11—H11A109.0
C11—N2—H2A111.8 (10)N2—C11—H11B109.0
C11—N2—H2B107.7 (10)N2—C11—C12113.10 (11)
C11—N2—C10109.44 (11)H11A—C11—H11B107.8
C13—N3—C12124.12 (11)C12—C11—H11A109.0
C13—N3—C20111.77 (11)C12—C11—H11B109.0
C20—N3—C12124.11 (12)N3—C12—C11113.01 (11)
O1—C1—N1123.53 (13)N3—C12—H12A109.0
O1—C1—C2130.53 (14)N3—C12—H12B109.0
N1—C1—C2105.92 (12)C11—C12—H12A109.0
C3—C2—C1130.34 (14)C11—C12—H12B109.0
C3—C2—C7121.60 (14)H12A—C12—H12B107.8
C7—C2—C1108.06 (12)O3—C13—N3124.40 (13)
C2—C3—H3121.6O3—C13—C14129.59 (13)
C2—C3—C4116.88 (15)N3—C13—C14105.99 (11)
C4—C3—H3121.6C15—C14—C13129.93 (13)
C3—C4—H4119.2C15—C14—C19121.88 (13)
C5—C4—C3121.61 (14)C19—C14—C13108.19 (12)
C5—C4—H4119.2C14—C15—H15121.4
C4—C5—H5119.4C14—C15—C16117.29 (13)
C4—C5—C6121.25 (15)C16—C15—H15121.4
C6—C5—H5119.4C15—C16—H16119.6
C5—C6—H6121.6C17—C16—C15120.89 (14)
C7—C6—C5116.84 (15)C17—C16—H16119.6
C7—C6—H6121.6C16—C17—H17119.3
C2—C7—C8108.21 (12)C18—C17—C16121.30 (13)
C6—C7—C2121.82 (14)C18—C17—H17119.3
C6—C7—C8129.97 (14)C17—C18—H18121.3
O2—C8—N1124.57 (13)C19—C18—C17117.42 (13)
O2—C8—C7129.49 (13)C19—C18—H18121.3
N1—C8—C7105.93 (12)C14—C19—C20108.16 (12)
N1—C9—H9A108.9C18—C19—C14121.18 (13)
N1—C9—H9B108.9C18—C19—C20130.65 (13)
N1—C9—C10113.25 (11)O4—C20—N3124.62 (13)
H9A—C9—H9B107.7O4—C20—C19129.53 (13)
C10—C9—H9A108.9N3—C20—C19105.85 (11)
C10—C9—H9B108.9H1WA—O1W—H1WB104.5
N2—C10—C9113.22 (11)H2WA—O2W—H2WB104.5
O1—C1—C2—C31.7 (3)C9—N1—C1—O11.2 (2)
O1—C1—C2—C7177.56 (15)C9—N1—C1—C2177.37 (12)
O3—C13—C14—C152.0 (2)C9—N1—C8—O21.8 (2)
O3—C13—C14—C19177.98 (14)C9—N1—C8—C7177.10 (12)
N1—C1—C2—C3179.83 (14)C10—N2—C11—C12179.36 (11)
N1—C1—C2—C70.86 (15)C11—N2—C10—C9177.34 (11)
N1—C9—C10—N269.13 (15)C12—N3—C13—O32.3 (2)
N2—C11—C12—N370.61 (15)C12—N3—C13—C14178.85 (12)
N3—C13—C14—C15179.24 (14)C12—N3—C20—O41.6 (2)
N3—C13—C14—C190.76 (15)C12—N3—C20—C19178.60 (12)
C1—N1—C8—O2178.13 (13)C13—N3—C12—C11110.75 (14)
C1—N1—C8—C70.76 (15)C13—N3—C20—O4177.76 (13)
C1—N1—C9—C1097.89 (15)C13—N3—C20—C191.99 (15)
C1—C2—C3—C4179.82 (14)C13—C14—C15—C16178.35 (13)
C1—C2—C7—C6179.45 (13)C13—C14—C19—C18179.61 (13)
C1—C2—C7—C80.42 (15)C13—C14—C19—C200.42 (15)
C2—C3—C4—C50.7 (2)C14—C15—C16—C171.2 (2)
C2—C7—C8—O2178.64 (14)C14—C19—C20—O4178.29 (14)
C2—C7—C8—N10.18 (15)C14—C19—C20—N31.45 (15)
C3—C2—C7—C60.1 (2)C15—C14—C19—C180.4 (2)
C3—C2—C7—C8179.80 (13)C15—C14—C19—C20179.58 (13)
C3—C4—C5—C60.2 (2)C15—C16—C17—C180.6 (2)
C4—C5—C6—C70.3 (2)C16—C17—C18—C191.8 (2)
C5—C6—C7—C20.4 (2)C17—C18—C19—C141.4 (2)
C5—C6—C7—C8179.78 (14)C17—C18—C19—C20178.68 (14)
C6—C7—C8—O21.2 (3)C18—C19—C20—O41.7 (3)
C6—C7—C8—N1179.96 (14)C18—C19—C20—N3178.59 (14)
C7—C2—C3—C40.6 (2)C19—C14—C15—C161.6 (2)
C8—N1—C1—O1177.56 (13)C20—N3—C12—C1169.92 (16)
C8—N1—C1—C21.01 (15)C20—N3—C13—O3177.07 (13)
C8—N1—C9—C1086.20 (16)C20—N3—C13—C141.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1W0.930 (17)1.848 (17)2.7729 (16)172.7 (14)
O1W—H1WA···O2W0.871.882.7462 (15)171
O1W—H1WB···O4i0.872.052.9054 (14)168
O2W—H2WA···O2ii0.872.032.8929 (15)172
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z.
 

Footnotes

Both authors contributed equally.

Acknowledgements

The authors acknowledge Dr Christal Sohl (San Diego State University) for support and Dr Greg Elliott (San Diego State University) for mass spectrometry.

Funding information

Funding for this research was provided by: San Diego Miramar College Department of Chemistry.

References

First citationArshadi, M., Abdolmaleki, M. K., Eskandarloo, H. & Abbaspourrad, A. (2019). J. Colloid Interface Sci. 540, 501–514.  CrossRef CAS PubMed Google Scholar
First citationBarrett, D. M. Y., Kahwa, I. A., Mague, J. T. & McPherson, G. L. (1995). J. Org. Chem. 60, 5946–5953.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlackman, A. G. (2005). Polyhedron, 24, 1–39.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, T.-H., Wang, Y.-M., Lee, W.-T. & Liu, G.-C. (2000). Polyhedron, 19, 2027–2037.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolmberg, R., Franz, V., Moser, K. M., Solano, R., Moore, C., Rheingold, A. L. & Smith, G. L. N. (2021). Acta Cryst. E77, 83–85.  CSD CrossRef IUCr Journals Google Scholar
First citationHowell, R., Edwards, S., Gajadhar-Plummer, A., Kahwa, I., McPherson, G., Mague, J., White, A. & Williams, D. (2003). Molecules, 8, 565–592.  CrossRef CAS Google Scholar
First citationIlioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787–798.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, S. O., Day, V. W. & Bowman-James, K. (2010). Inorg. Chem. 49, 8629–8636.  CSD CrossRef CAS PubMed Google Scholar
First citationKeypour, H., Azadbakht, R. & Khavasi, H. (2008). Polyhedron, 27, 648–654.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLundin, N. J., Hamilton, I. G. & Blackman, A. G. (2004). Polyhedron, 23, 97–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationMann, F. G. (1934). J. Chem. Soc. pp. 461–466.  CrossRef Google Scholar
First citationPiacham, T., Nantasenamat, C., Isarankura-Na-Ayudhya, C., Prachayasittikul, S. & Prachayasittikul, V. (2014). J. Chem. Pharm. Res. 6, 493–498.  Google Scholar
First citationRamesh, P. & Jebasingh, B. (2019). Mater. Chem. Phys. 222, 45–54.  CrossRef CAS Google Scholar
First citationSaga, M., Sakane, G., Yamazaki, S. & Saito, K. (2020). Inorg. Chim. Acta, 502, Article 119368.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUtz, D., Kisslinger, S., Hampel, F. & Schindler, S. (2008). J. Inorg. Biochem. 102, 1236–1245.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds