research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of (E)-benzo[d][1,3]dioxole-5-carbaldehyde oxime

crossmark logo

aP. G. & Research Department of Physics, Jamal Mohamed College (Autonomous), (affiliated to Bharathidasan University), Tiruchirappalli 620 020, Tamilnadu, India, bLaboratoire Chimie Organique Catalyse et Environnement, Faculté des Sciences, Kenitra, Morocco, cLaboratory of Chemistry and Environment, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ePrincipal (Retired), Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 17 April 2023; accepted 10 May 2023; online 16 May 2023)

The asymmetric unit of the title mol­ecule, C8H7NO3, consists of two mol­ecules differing slightly in conformation and in their inter­molecular inter­actions in the solid. The dihedral angle between the benzene and dioxolane rings is 0.20 (7)° in one mol­ecule and 0.31 (7)° in the other. In the crystal, the two mol­ecules are linked into dimers through pairwise O—H⋯N hydrogen bonds, with these units being formed into stacks by two different sets of aromatic π-stacking inter­actions. The stacks are connected by C—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are H⋯O/O⋯H (36.7%), H⋯H (32.2%) and C⋯H/H⋯C (12.7%).

1. Chemical context

Oxime compounds containing an R2C=N—OH functional group have been studied for many years because of their important role as acetyl­cholinesterase reactivators and their utility as therapeutic agents for various diseases (Musilek et al., 2011[Musilek, K., Dolezal, M., Gunn-Moore, F. & Kuca, K. (2011). Med. Res. Rev. 31, 548-575.]; Canario et al., 2018[Canario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660-686.]). Various oximes have been identified in plants as biosynthetic inter­mediates and can facilitate a range of processes associated with plant growth and development (Sørensen et al., 2018[Sørensen, M., Neilson, E. H. J. & Møller, B. L. (2018). Mol. Plant. 11, 95-117.]). Oximes also have a wide range of biological activities, such as human immunodeficiency virus (HIV) agents that can inhibit HIV protease (Komai et al., 1997[Komai, T., Yagi, R., Suzuki-Sunagawa, H., Ishikawa, Y., Kasuya, A., Miyamoto, S., Handa, H. & Nishigaki, T. (1997). Biochem. Biophys. Res. Commun. 230, 557-561.]) and can act as anti-inflammatories (Li et al., 2018[Li, Q., Zhang, J., Chen, L. Z., Wang, J. Q., Zhou, H. P., Tang, W. J., Xue, W. & Liu, X. H. (2018). J. Enzyme Inhib. Med. Chem. 33, 130-138.]; Kwon et al., 2014[Kwon, Y. J., Yoon, C. H., Lee, S. W., Park, Y. B., Lee, S. K. & Park, M. C. (2014). Joint Bone Spine, 81, 240-246.]). The introduction of an oxime group into an appropriate chemical backbone is a reasonable approach for the preparation of cytotoxic agents and many oxime derivatives have been reported to have therapeutic activity for cancer (Canario et al., 2018[Canario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660-686.]; Shen et al., 2015[Shen, S., Xu, N., Klamer, G., Ko, K. H., Khoo, M., Ma, D., Moore, J., O'Brien, T. A. & Dolnikov, A. (2015). Stem Cells Dev. 24, 724-736.]) and neurodegenerative disorders (Avrahami et al., 2013[Avrahami, L., Farfara, D., Shaham-Kol, M., Vassar, R., Frenkel, D. & Eldar-Finkelman, H. (2013). J. Biol. Chem. 288, 1295-1306.]; Yuskaitis et al., 2009[Yuskaitis, C. J. & Jope, R. S. (2009). Cell. Signal. 21, 264-273.]).

[Scheme 1]

As part of our studies in this area, we now describe the synthesis, structure and Hirshfeld surface analysis of the title compound (I)[link].

2. Structural commentary

The asymmetric unit (Fig. 1[link]) consists of two independent mol­ecules differing slightly in the orientation of some hydrogen atoms. The benzodioxolane portion of the mol­ecule containing O1 is planar to within 0.0171 (12) Å (r.m.s. deviation of the fitted atoms = 0.0091 Å) with C7 deviating by 0.0171 (12) Å from one side of the mean plane and O1 by 0.0170 (10) Å from the other, indicating a slight twist in the dioxolane ring. The corresponding portion of the second mol­ecule containing O4 is planar to within 0.0041 (11) Å (r.m.s. deviation of the fitted atoms = 0.0030 Å), indicating a conformational difference, albeit small, between the two mol­ecules. The overlay fit of inverted mol­ecule 2 on mol­ecule 1 is shown in Fig. 2[link] with the weighted r.m.s. fit of the 12 non-H atoms being 0.036 Å and showing the major differences to be in the hydrogen-atom positions. The C6—C1—C8—N1 and C1—C8—N1—O3 torsion angles are, respectively, 3.9 (2) and −179.96 (11)°, indicating the side chain to be nearly coplanar with the benzodioxolane unit. The corresponding torsion angles in the second mol­ecule are virtually the same as above. The two mol­ecules are connected into dimers through O3—H3A⋯N2 and O6—H6A⋯N1 hydrogen bonds (Table 1[link] and Fig. 1[link]), generating R22(6) loops.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2 0.87 1.93 2.7549 (16) 158
C7—H7B⋯O4i 0.99 2.58 3.239 (2) 124
C8—H8⋯O6ii 0.95 2.43 3.3754 (18) 173
O6—H6A⋯N1 0.87 1.97 2.7989 (17) 158
C15—H15A⋯O1iii 0.99 2.54 3.1775 (19) 122
C16—H16⋯O3iv 0.95 2.59 3.5173 (18) 167
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z.
[Figure 1]
Figure 1
The asymmetric unit with 50% probability ellipsoids. The O—H⋯N hydrogen bonds are depicted by dashed lines.
[Figure 2]
Figure 2
A least-squares overlay of the two independent mol­ecules [inverted O4 mol­ecule (red) on O1 mol­ecule (black)].

3. Supra­molecular features

In the crystal, the dimers are connected into stacks extending along the [101] direction through slipped π-stacking inter­actions between the six-membered (Cg2: C1–C6 and Cg5: C9–C14) rings. For the C1–C6 rings, the centroid–centroid distance is 3.6024 (11) Å with a slippage of 1.185 Å between mol­ecules at x, y, z and −x, −y + 1, −z. These paired mol­ecules make weak, slipped π-stacking inter­actions with corresponding pairs at −x + 1, −y + 1, −z + 1 with a centroid–centroid distance of 3.8479 (11) Å and a slippage of 1.947 Å. The C9–C14 ring has slipped π-stacking inter­actions with its counterparts in mol­ecules at x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}] and at x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}] with centroid–centroid distances of 3.8380 (11) Å and dihedral angles of 2.41 (6)° for both. The slippages for these inter­actions (Fig. 3[link]) are 1.572 and 1.662 Å, respectively. These differences in the π-stacking inter­actions also support the independence of the two mol­ecules in the asymmetric unit. The stacks are associated through C7—H7B⋯O4, C8—H8⋯O6, C15—H15A⋯O1 and C16—H16⋯O3 hydrogen bonds (Table 1[link] and Fig. 4[link]).

[Figure 3]
Figure 3
View of the packing seen along the a-axis direction with O—H⋯N and C—H⋯O hydrogen bonds and π-stacking inter­actions depicted, respectively, by light blue, black and orange dashed lines.
[Figure 4]
Figure 4
View of the packing seen along the [101] direction. Inter­molecular inter­actions are depicted as in Fig. 3[link].

4. Database survey

A search using CCDC ConQuest of the Cambridge Structural Database (CSD, Version 5.44, updated to April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the title mol­ecule with all hydrogen atoms deleted gave 26 hits. Most of these contain the search fragment as part of a larger, often polycyclic mol­ecule, but three are considered similar to (I)[link]. These are N-[1-(2,2-dimethyl-2H-1,3-benzodioxol-5-yl)-2-(1H-imidazol-1-yl)ethyl­idene]hydroxyl­amine (CSD refcode: GAVWUZ; Ren et al., 2022[Ren, B., Guo, C., Liu, R., Bian, Z., Liu, R., Huang, L. & Tang, J. (2022). Eur. J. Med. Chem. 228, 114031.]), in which the benzo[d][1,3]dioxole unit is similar to that in (I)[link], 1-(1,3-benzodioxol-5-yl)-N-hy­droxy-3-(1H-imidazol-1-yl)propan-1-imine iso­propanol solvate (QEKMAX; Al-Wabli et al., 2017[Al-Wabli, R., Al-Ghamdi, A., Ghabbour, H., Al-Agamy, M., Monicka, J., Joe, I. & Attia, M. (2017). Molecules, 22, 373. https://doi.org/10.3390/molecules22030373]), in which the benzo[d][1,3]dioxole-5-carbaldehyde­oxime takes a (Z) form and (Z)-3,4-methyl­ene­dioxy­benzaldehyde oximium 4-toluene­sulfonate (VADDIN; Jerslev et al., 1988[Jerslev, B., Larsen, S. & Hansen, F. (1988). Acta Chem. Scand. 42b, 646-649.]), in which the benzo[d][1,3]dioxole unit is similar to that in (I)[link].

5. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed with Crystal Explorer (Version 21.5; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 5[link] shows views of the dnorm surfaces for the two mol­ecules in the asymmetric unit plotted over the limits from −0.63 to 1.18 a.u for mol­ecule 1 and −0.63 to 1.07 a.u for mol­ecule 2. The O—H⋯N hydrogen bonds, which generate the dimers are indicated by the bright-red spots in Fig. 5[link](a) and 5(b), respectively. Fig. 6[link] presents the two-dimensional fingerprint plots involving all inter­molecular inter­actions [Fig. 6[link](a)] and delineated into C⋯H/H⋯C [Fig. 6[link](c)], and H⋯O/O⋯H [Fig. 6[link](h)] inter­actions. For completeness, the H⋯H inter­actions constitute 32.2% of the surface [Fig. 6[link](b)]. The other inter­actions contribute small amounts, viz., C⋯N/N⋯C (1.0%), C⋯O/O⋯C (2.4%), C⋯C (9.5%), H⋯N/N⋯H (4.1%), N⋯O/O⋯N (1.1%), N⋯N (0.0%) and O⋯O (0.4%).

[Figure 5]
Figure 5
The Hirshfeld surface plots for (I)[link]: (a) dnorm for the O1-containing mol­ecule; (b) dnorm for the O4-containing mol­ecule.
[Figure 6]
Figure 6
Fingerprint plots for (I)[link] (both mol­ecules): (a) all inter­actions; (b) H⋯H; (c) C⋯H/H⋯C and (h) H⋯O/O⋯H.

6. Synthesis and crystallization

A solution of 5.0 g of sodium hydroxide dissolved in 20 ml of water was mixed with 8.0 g of hydroxyl­amine hydro­chloride dissolved in 15 ml of water, then 8.0 g of benzo[d][1,3]dioxole-5-carbaldehyde dissolved in 50 ml of ethanol was added to the mixture. After 5 h of stirring at 273 K, the product was allowed to precipitate and then filtered with a yield of 90%. Single crystals were recrystallized from ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Table 2
Experimental details

Crystal data
Chemical formula C8H7NO3
Mr 165.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 6.8724 (14), 33.502 (7), 7.3449 (15)
β (°) 117.238 (3)
V3) 1503.6 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.36 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.82, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 28032, 3858, 2836
Rint 0.048
(sin θ/λ)max−1) 0.675
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.05
No. of reflections 3858
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012), PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

(E)-Benzo[d][1,3]dioxole-5-carbaldehyde oxime top
Crystal data top
C8H7NO3F(000) = 688
Mr = 165.15Dx = 1.459 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.8724 (14) ÅCell parameters from 6661 reflections
b = 33.502 (7) Åθ = 2.4–28.1°
c = 7.3449 (15) ŵ = 0.11 mm1
β = 117.238 (3)°T = 150 K
V = 1503.6 (5) Å3Plate, colourless
Z = 80.36 × 0.17 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3858 independent reflections
Radiation source: fine-focus sealed tube2836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 2.4°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 4543
Tmin = 0.82, Tmax = 0.99l = 99
28032 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.2227P]
where P = (Fo2 + 2Fc2)/3
3858 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21075 (18)0.58110 (3)0.12890 (17)0.0385 (3)
O20.50131 (18)0.54433 (3)0.13879 (17)0.0377 (3)
O30.40957 (17)0.36128 (3)0.45505 (17)0.0377 (3)
H3A0.5168080.3493510.4451540.057*
N10.43129 (18)0.40031 (3)0.39281 (18)0.0287 (3)
C10.2551 (2)0.46413 (4)0.30915 (19)0.0254 (3)
C20.0814 (2)0.48668 (4)0.3030 (2)0.0290 (3)
H20.0203880.4743210.3392020.035*
C30.0524 (2)0.52685 (4)0.2452 (2)0.0316 (3)
H30.0658280.5420930.2415890.038*
C40.2043 (2)0.54306 (4)0.1939 (2)0.0280 (3)
C50.3775 (2)0.52084 (4)0.1994 (2)0.0262 (3)
C60.4081 (2)0.48172 (4)0.25517 (19)0.0252 (3)
H60.5271360.4669060.2576690.030*
C70.4031 (3)0.58311 (4)0.0990 (3)0.0379 (4)
H7A0.3631590.5912870.0433390.045*
H7B0.5071990.6029390.1934160.045*
C80.2711 (2)0.42252 (4)0.3722 (2)0.0285 (3)
H80.1592510.4115650.3989250.034*
O40.79029 (19)0.15551 (3)0.4126 (2)0.0489 (3)
O50.54405 (19)0.19665 (3)0.4559 (2)0.0488 (3)
O60.84324 (18)0.38394 (3)0.42029 (17)0.0392 (3)
H6A0.7250590.3954430.4098640.059*
N20.78297 (19)0.34360 (4)0.42083 (18)0.0299 (3)
C90.8894 (2)0.27623 (4)0.4103 (2)0.0266 (3)
C101.0360 (2)0.25112 (4)0.3838 (2)0.0319 (3)
H101.1528100.2625830.3663880.038*
C111.0166 (2)0.20967 (5)0.3820 (2)0.0354 (3)
H111.1167640.1926740.3634500.043*
C120.8452 (2)0.19468 (4)0.4082 (2)0.0320 (3)
C130.6986 (2)0.21941 (4)0.4347 (2)0.0302 (3)
C140.7148 (2)0.25990 (4)0.4373 (2)0.0292 (3)
H140.6132890.2764370.4564180.035*
C150.5989 (3)0.15609 (4)0.4420 (2)0.0369 (3)
H15A0.4762740.1427900.3255210.044*
H15B0.6267350.1416160.5691040.044*
C160.9197 (2)0.31931 (4)0.4083 (2)0.0299 (3)
H161.0430470.3294660.3974840.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0392 (6)0.0285 (6)0.0509 (7)0.0074 (4)0.0234 (5)0.0055 (5)
O20.0400 (6)0.0297 (6)0.0560 (7)0.0021 (4)0.0328 (5)0.0076 (5)
O30.0355 (6)0.0243 (5)0.0599 (7)0.0013 (4)0.0277 (5)0.0051 (5)
N10.0266 (6)0.0231 (6)0.0357 (6)0.0034 (4)0.0137 (5)0.0002 (5)
C10.0204 (6)0.0296 (7)0.0245 (6)0.0017 (5)0.0088 (5)0.0042 (5)
C20.0205 (7)0.0358 (8)0.0324 (7)0.0030 (5)0.0137 (6)0.0045 (6)
C30.0223 (7)0.0361 (8)0.0373 (8)0.0048 (6)0.0144 (6)0.0047 (6)
C40.0270 (7)0.0264 (7)0.0282 (7)0.0034 (5)0.0105 (6)0.0011 (5)
C50.0240 (7)0.0308 (7)0.0257 (6)0.0017 (5)0.0131 (5)0.0023 (5)
C60.0212 (6)0.0281 (7)0.0275 (7)0.0020 (5)0.0121 (5)0.0020 (5)
C70.0463 (9)0.0327 (8)0.0414 (9)0.0046 (7)0.0259 (7)0.0068 (6)
C80.0229 (7)0.0298 (7)0.0343 (7)0.0043 (5)0.0143 (6)0.0035 (6)
O40.0423 (7)0.0275 (6)0.0825 (9)0.0000 (5)0.0335 (7)0.0056 (5)
O50.0397 (6)0.0279 (6)0.0940 (10)0.0066 (5)0.0439 (7)0.0038 (6)
O60.0347 (6)0.0276 (6)0.0612 (7)0.0021 (4)0.0269 (5)0.0071 (5)
N20.0272 (6)0.0265 (6)0.0360 (6)0.0026 (5)0.0145 (5)0.0037 (5)
C90.0208 (6)0.0313 (7)0.0277 (7)0.0005 (5)0.0110 (5)0.0000 (5)
C100.0214 (7)0.0408 (9)0.0354 (8)0.0005 (6)0.0147 (6)0.0002 (6)
C110.0240 (7)0.0399 (9)0.0435 (8)0.0058 (6)0.0165 (6)0.0040 (6)
C120.0265 (7)0.0287 (8)0.0377 (8)0.0025 (5)0.0119 (6)0.0026 (6)
C130.0211 (7)0.0319 (8)0.0380 (8)0.0029 (5)0.0139 (6)0.0017 (6)
C140.0227 (7)0.0296 (7)0.0371 (8)0.0011 (5)0.0154 (6)0.0017 (6)
C150.0358 (8)0.0286 (8)0.0441 (9)0.0017 (6)0.0164 (7)0.0016 (6)
C160.0237 (7)0.0357 (8)0.0331 (7)0.0029 (6)0.0153 (6)0.0023 (6)
Geometric parameters (Å, º) top
O1—C41.3685 (17)O4—C121.3699 (18)
O1—C71.4377 (19)O4—C151.427 (2)
O2—C51.3742 (16)O5—C131.3730 (17)
O2—C71.4311 (17)O5—C151.4264 (18)
O3—N11.4154 (15)O6—N21.4140 (15)
O3—H3A0.8702O6—H6A0.8701
N1—C81.2790 (18)N2—C161.2776 (18)
C1—C21.3957 (18)C9—C101.3931 (19)
C1—C61.4110 (18)C9—C141.4129 (18)
C1—C81.4570 (19)C9—C161.4595 (19)
C2—C31.398 (2)C10—C111.394 (2)
C2—H20.9500C10—H100.9500
C3—C41.373 (2)C11—C121.373 (2)
C3—H30.9500C11—H110.9500
C4—C51.3890 (19)C12—C131.3849 (19)
C5—C61.3603 (19)C13—C141.3606 (19)
C6—H60.9500C14—H140.9500
C7—H7A0.9900C15—H15A0.9900
C7—H7B0.9900C15—H15B0.9900
C8—H80.9500C16—H160.9500
C4—O1—C7106.02 (11)C12—O4—C15105.87 (11)
C5—O2—C7106.39 (11)C13—O5—C15106.11 (11)
N1—O3—H3A100.3N2—O6—H6A99.2
C8—N1—O3111.31 (11)C16—N2—O6112.48 (11)
C2—C1—C6120.04 (13)C10—C9—C14120.06 (13)
C2—C1—C8117.85 (12)C10—C9—C16118.69 (12)
C6—C1—C8122.10 (12)C14—C9—C16121.24 (12)
C1—C2—C3122.15 (13)C9—C10—C11122.04 (13)
C1—C2—H2118.9C9—C10—H10119.0
C3—C2—H2118.9C11—C10—H10119.0
C4—C3—C2116.33 (12)C12—C11—C10116.57 (13)
C4—C3—H3121.8C12—C11—H11121.7
C2—C3—H3121.8C10—C11—H11121.7
O1—C4—C3127.89 (13)O4—C12—C11128.09 (13)
O1—C4—C5110.19 (12)O4—C12—C13110.11 (13)
C3—C4—C5121.91 (13)C11—C12—C13121.80 (14)
C6—C5—O2128.03 (12)C14—C13—O5127.91 (12)
C6—C5—C4122.51 (12)C14—C13—C12122.58 (13)
O2—C5—C4109.45 (12)O5—C13—C12109.51 (13)
C5—C6—C1117.05 (12)C13—C14—C9116.94 (12)
C5—C6—H6121.5C13—C14—H14121.5
C1—C6—H6121.5C9—C14—H14121.5
O2—C7—O1107.86 (11)O5—C15—O4108.40 (12)
O2—C7—H7A110.1O5—C15—H15A110.0
O1—C7—H7A110.1O4—C15—H15A110.0
O2—C7—H7B110.1O5—C15—H15B110.0
O1—C7—H7B110.1O4—C15—H15B110.0
H7A—C7—H7B108.4H15A—C15—H15B108.4
N1—C8—C1122.00 (12)N2—C16—C9121.07 (12)
N1—C8—H8119.0N2—C16—H16119.5
C1—C8—H8119.0C9—C16—H16119.5
C6—C1—C2—C30.3 (2)C14—C9—C10—C110.2 (2)
C8—C1—C2—C3179.76 (13)C16—C9—C10—C11179.38 (13)
C1—C2—C3—C40.2 (2)C9—C10—C11—C120.2 (2)
C7—O1—C4—C3179.08 (14)C15—O4—C12—C11179.48 (15)
C7—O1—C4—C52.05 (15)C15—O4—C12—C130.38 (16)
C2—C3—C4—O1178.64 (13)C10—C11—C12—O4179.98 (14)
C2—C3—C4—C50.1 (2)C10—C11—C12—C130.2 (2)
C7—O2—C5—C6179.40 (14)C15—O5—C13—C14179.94 (14)
C7—O2—C5—C41.47 (15)C15—O5—C13—C120.07 (17)
O1—C4—C5—C6178.80 (12)O4—C12—C13—C14179.83 (13)
C3—C4—C5—C60.1 (2)C11—C12—C13—C140.3 (2)
O1—C4—C5—O20.38 (16)O4—C12—C13—O50.29 (17)
C3—C4—C5—O2179.33 (12)C11—C12—C13—O5179.58 (14)
O2—C5—C6—C1179.25 (13)O5—C13—C14—C9179.49 (14)
C4—C5—C6—C10.2 (2)C12—C13—C14—C90.4 (2)
C2—C1—C6—C50.29 (19)C10—C9—C14—C130.3 (2)
C8—C1—C6—C5179.76 (12)C16—C9—C14—C13179.28 (13)
C5—O2—C7—O12.71 (15)C13—O5—C15—O40.16 (17)
C4—O1—C7—O22.92 (15)C12—O4—C15—O50.33 (16)
O3—N1—C8—C1179.96 (11)O6—N2—C16—C9178.85 (11)
C2—C1—C8—N1176.17 (13)C10—C9—C16—N2176.16 (13)
C6—C1—C8—N13.9 (2)C14—C9—C16—N23.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.871.932.7549 (16)158
C7—H7B···O4i0.992.583.239 (2)124
C8—H8···O6ii0.952.433.3754 (18)173
O6—H6A···N10.871.972.7989 (17)158
C15—H15A···O1iii0.992.543.1775 (19)122
C16—H16···O3iv0.952.593.5173 (18)167
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAl-Wabli, R., Al-Ghamdi, A., Ghabbour, H., Al-Agamy, M., Monicka, J., Joe, I. & Attia, M. (2017). Molecules, 22, 373. https://doi.org/10.3390/molecules22030373  Google Scholar
First citationAvrahami, L., Farfara, D., Shaham-Kol, M., Vassar, R., Frenkel, D. & Eldar-Finkelman, H. (2013). J. Biol. Chem. 288, 1295–1306.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660–686.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJerslev, B., Larsen, S. & Hansen, F. (1988). Acta Chem. Scand. 42b, 646–649.  CSD CrossRef Web of Science Google Scholar
First citationKomai, T., Yagi, R., Suzuki-Sunagawa, H., Ishikawa, Y., Kasuya, A., Miyamoto, S., Handa, H. & Nishigaki, T. (1997). Biochem. Biophys. Res. Commun. 230, 557–561.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKwon, Y. J., Yoon, C. H., Lee, S. W., Park, Y. B., Lee, S. K. & Park, M. C. (2014). Joint Bone Spine, 81, 240–246.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, Q., Zhang, J., Chen, L. Z., Wang, J. Q., Zhou, H. P., Tang, W. J., Xue, W. & Liu, X. H. (2018). J. Enzyme Inhib. Med. Chem. 33, 130–138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMusilek, K., Dolezal, M., Gunn-Moore, F. & Kuca, K. (2011). Med. Res. Rev. 31, 548–575.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRen, B., Guo, C., Liu, R., Bian, Z., Liu, R., Huang, L. & Tang, J. (2022). Eur. J. Med. Chem. 228, 114031.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, S., Xu, N., Klamer, G., Ko, K. H., Khoo, M., Ma, D., Moore, J., O'Brien, T. A. & Dolnikov, A. (2015). Stem Cells Dev. 24, 724–736.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSørensen, M., Neilson, E. H. J. & Møller, B. L. (2018). Mol. Plant. 11, 95–117.  Web of Science PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuskaitis, C. J. & Jope, R. S. (2009). Cell. Signal. 21, 264–273.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds