research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, crystal structures, Hirshfeld surface analyses and energy frameworks of two 4-amino­anti­pyrine Schiff base compounds: (E)-4-{[4-(di­ethyl­amino)­benzyl­­idene]amino}-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one and (E)-4-[(4-fluoro­benzyl­­idene)amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

crossmark logo

aPG and Research Department of Physics, Srimad Andavan Arts Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli - 620 005, Tamilnadu, India, bDepartment of Physics, Annapoorana Engineering College, Salem – 636 308, Tamilnadu, India, cCrystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli - 620024, Tamilnadu, India, dInstitute of Physics ASCR, Na Slovance 2, 182 21 Praha 8, Czech Republic, and eInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
*Correspondence e-mail: viji.suba@gmail.com, helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 20 April 2023; accepted 8 May 2023; online 12 May 2023)

The title Schiff base compounds, C22H26N4O (I) and C18H16FN3O (II), were each synthesized by a single-step condensation reaction. The substituted benzyl­idene ring is inclined to the pyrazole ring mean planes by 22.92 (7)° in I and 12.70 (9)° in II. The phenyl ring of the 4-amino­anti­pyrine unit is inclined to the pyrazole ring mean plane by 54.87 (7)° in I and by 60.44 (8)° in II. In the crystal of I, the mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions to form layers lying parallel to (001). In the crystal of II, the mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π inter­actions, thereby forming layers lying parallel to (010). Hirshfeld surface analysis was employed to further qu­antify the inter­atomic inter­actions in the crystals of both compounds.

1. Chemical context

Anti­pyrine (also known as phenazone) derivatives display anti­oxidant (Bashkatova et al., 2005[Bashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. Anal. 37, 1143-1147.]), anti-putrefactive (Abd El Rehim et al., 2001[Abd El Rehim, S. S., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268-273.]) and optical (Collado et al., 2000[Collado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, A. C. (2000). Talanta, 52, 909-920.]) properties. Among pyrazole analogues, 4-amino-1,5-dimethyl-2-phenyl­pyrazole-3-one, known as 4-amino­anti­pyrine, possesses a free amino group. It has received attention because it exhibits various biological activities, such as anti­fungal, anti­bacterial, anti­malarial, anti­viral, anti-inflammatory and anti­pyretic properties (Nibila et al., 2020[Nibila, T. A., Shameera Ahamed, T. K., Soufeena, P. P., Muraleedharan, K., Peiyat, P. & Aravindakshan, K. K. (2020). Results Chem. 2, 100062. https://doi.org/10.1016/j.rechem.2020.100062]). 4-Amino­anti­pyrine derivatives are also considered to be model compounds in the biological and medical fields (Senthilkumar et al., 2016[Senthilkumar, K., Thirumoorthy, K., Dragonetti, C., Marinotto, D., Righetto, S., Colombo, A., Haukka, M. & Palanisami, N. (2016). Dalton Trans. 45, 11939-11943.]). Schiff bases of 4-amino­anti­pyrine and their complexes have a wide range of applications in medicinal, analytical and pharmacological areas (Oudar, 1977[Oudar, J. L. (1977). J. Chem. Phys. 67, 446-457.]; Zyss, 1979[Zyss, J. (1979). J. Chem. Phys. 70, 3341-3349.]), and they also possess chemotherapeutic properties (Raman et al., 2007[Raman, N., Dhaveethu Raja, J. & Sakthivel, A. (2007). J. Chem. Sci. 119, 303-310.]; Alam & Lee, 2016[Alam, M. S. & Lee, D.-U. (2016). EXCLI J. 15, 614-629.]). As part of our studies in this area, we now report the syntheses and structures of the title compounds, C22H26N4O (I) and C18H16FN3O (II).

[Scheme 1]

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 31 hits for 4-amino­anti­pyrine structures with a p-substituted benzyl­idene ring. Of particular inter­est are the 4-(di­methyl­amino)­benzyl­idene analogue (CSD refcode TAYLUB01; Asiri et al., 2010[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1751.]) of I (both compounds crystallize in the monoclinic space group C2/c) and the 4-(chloro­amino)­benzyl­idene (KELZIL; Sun et al., 2006[Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467-o469.]) and 4-(bromo­amino)­benzyl­idene (KEQXOU; Yan et al., 2006[Yan, G.-B., Zheng, Y.-F., Zhang, C.-N. & Yang, M.-H. (2006). Acta Cryst. E62, o5328-o5329.]) analogues of II (all three compounds crystallize in the ortho­rhom­bic space group Pbca). Their mol­ecular structures and Hirshfeld surface analyses are compared to those of the title compounds.

2. Structural commentary

The mol­ecular structures of I and II are illustrated in Figs. 1[link] and 2[link], respectively. Selected geometric parameters for I and II and their analogues are given in Table 1[link]. The various dihedral angles in the five compounds are given in Table 2[link]. The configuration about the N3=C12 bond is E, which favours the presence of an intra­molecular C12—H12⋯O1 hydrogen bond in both compounds (Tables 3[link] and 4[link], respectively), and in their analogues. The N3=C12 bond length is 1.291 (2) Å in I and 1.289 (2) Å in II. The pyrazole ring mean plane (A = N1/N2/C1–C3; r.m.s. deviations are 0.055 and 0.057 Å for I and II, respectively) is twisted on the N1—N2 bond in both compounds. The phenyl ring (B = C4–C9) and the substituted benzyl­idene ring (C = C13–C18) are inclined to the pyrazole ring mean plane A by 54.87 (7) and 22.92 (7)°, respectively, in I and by 60.44 (8) and 12.70 (9)°, respectively, in II. The latter two rings, B and C, are inclined to each other by 73.98 (6) in I and by 71.28 (8)° in II. The difference in the conformation of the two structures is illustrated in Fig. 3[link] showing the structural overlap (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) of mol­ecules I and II. It can be seen from Table 2[link] that the conformation of I is similar to that of the 4-(di­methyl­amino)­benzyl­idene analogue (TAYLUB01). However, this is not the case for compound II: while the conformation of the 4-(chloro­amino)­benzyl­idene (KELZIL) and 4-(bromo­amino)­benzyl­idene (KEQXOU) analogues of II are similar there is a significant difference compared to the conformation of compound II. For example, the A to B dihedral angle is 60.44 (8)° in II but is 51.6 (1) and 50.8 (2)°, in the respective analogues. The other dihedral angles are also significantly different, as seen in Table 2[link].

Table 1
Selected geometric parameters (Å, °) for I and TAYLUB01a, and for II and KELZILb and KEQXOUc

  I TAYLUB01a II KELZILb KEQXOUc
N3—C12 1.291 (2) 1.288 (2) 1.289 (2) 1.276 (2) 1.279 (5)
C2—N3—C12—C13 –177.11 (11) 173.20 (11) –175.43 (14) –176.68 (15) 177.5 (4)
           
C1—N1—N2 109.58 (9) 109.58 (10) 108.75 (12) 108.58 (13) 106.9 (3)
C1—N1—C4 121.78 (10) 122.30 (10) 120.50 (13) 122.40 (13) 122.4 (3)
N2—N1—C4 119.11 (9) 118.13 (10) 118.90 (13) 119.12 (14) 119.8 (3)
Sum 350.47 (9) 350.0 (1) 348.15 (13) 350.10 (13) 349.1 (3)
           
C3—N2—N1 106.23 (9) 106.50 (10) 107.40 (13) 107.34 (13) 107.7 (3)
C3—N2—C10 121.11 (10) 122.30 (11) 125.50 (14) 124.77 (14) 125.1 (3)
N1—N2—C10 114.20 (10) 114.68 (10) 118.09 (13) 117.05 (15) 115.9 (3)
Sum 341.54 (10) 343.48 (10) 350.99 (13) 349.16 (14) 348.7 (3)
Notes: (a) Asiri et al. (2010[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1751.]); (b) Sun et al. 2006[Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467-o469.]); (c) Yan et al. 2006[Yan, G.-B., Zheng, Y.-F., Zhang, C.-N. & Yang, M.-H. (2006). Acta Cryst. E62, o5328-o5329.]).

Table 2
A comparison of various dihedral angles (°) for I and TAYLUB01a, and for II and KELZILb and KEQXOUc

A = ring N1/N2/C1–C3, B = ring C4–C9, C = ring C13–C18 (atom numbering following this paper).

Dihedral angle I TAYLUB01a II KELZILb KEQXOUc
Planes A to B 54.87 (7) 55.01 (7) 60.44 (8) 51.6 (1) 50.8 (2)
Planes A to C 22.92 (7) 19.03 (7) 12.70 (9) 8.7 (1) 9.1 (2)
Planes B to C 73.98 (6) 73.98 (6) 71.28 (8) 59.0 (1) 59.1 (2)
Notes: (a) Asiri et al. (2010[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1751.]); (b) Sun et al. 2006[Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467-o469.]); (c) Yan et al. 2006[Yan, G.-B., Zheng, Y.-F., Zhang, C.-N. & Yang, M.-H. (2006). Acta Cryst. E62, o5328-o5329.]).

Table 3
Hydrogen-bond geometry (Å, °) for I[link]

CgB is the centroid of ring B (C4–C9).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1i 0.98 2.33 3.314 (2) 177
C12—H12⋯O1 0.95 2.32 3.028 (2) 131
C22—H22C⋯O1ii 0.98 2.54 3.466 (2) 157
C7—H7⋯CgBiii 0.95 2.79 3.674 (1) 155
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for II[link]

CgB is the centroid of ring B (C4–C9).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.98 2.55 3.505 (2) 165
C12—H12A⋯O1 0.95 2.36 3.043 (2) 128
C14—H14⋯O1ii 0.95 2.57 3.204 (2) 124
C17—H17⋯F1iii 0.95 2.50 3.291 (2) 141
C7—H7⋯CgBiv 0.95 2.90 3.608 (2) 132
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+2, -y, -z]; (iii) [x-{\script{1\over 2}}, y, -z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of I, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular structure of II, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
A view of the structural overlap of compounds I (blue) and II (red); r.m.s. deviation 0.044 Å (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The O, N and F atoms are shown as balls.

The N1 and N2 nitro­gen atoms of the pyrazole ring have pyramidal geometries (see Table 1[link]), with the sum of their bond angles being 350.5 (1) and 341.5 (1)°, respectively, in I, and 348.2 (1) and 351.0 (1)°, respectively, in II. The same pyramidal geometries of atoms N1 and N2 are also observed for the various analogues (Table 1[link]). The bond angles involving atoms N1 and N2 follow the same pattern.

3. Supra­molecular features

In the crystal of I, the mol­ecules are linked by C—H⋯O hydrogen bonds, forming slabs lying parallel to the ab plane. The slabs are consolidated by C—H⋯π inter­actions (Table 3[link] and Fig. 4[link]).

[Figure 4]
Figure 4
A view along the b axis of the crystal packing of I. The C—H⋯O hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions as blue arrows (see Table 3[link]). Only the H atoms involved in these inter­actions have been included.

In the crystal of II, the mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds forming undulating slabs lying parallel to the ac plane. Here too, the slabs are strengthened by C—H⋯π inter­actions (Table 4[link] and Fig. 5[link]).

[Figure 5]
Figure 5
A view along the b axis of the crystal packing of II. The The C—H⋯O and C—H⋯F hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions as blue arrows (see Table 4[link]). Only the H atoms involved in these inter­actions have been included.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analyses and the associated two-dimensional fingerprint plots were performed with CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) following the protocol of Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surfaces (HS) of I and TAYLUB01 are compared in Fig. 6[link], and those for II and KELZIL and KEQXOU are compared in Fig. 7[link]. The large red spots indicate that short contacts are significant in the crystal packing of all five crystal structures. The full two-dimensional fingerprint plots for I and TAYLUB01, and for II and KELZIL and KEQXOU are given in Figs. 8[link] and 9[link], respectively.

[Figure 6]
Figure 6
The Hirshfeld surfaces of compounds, (a) I and (b) TAYLUB01 mapped over dnorm in the colour ranges −0.2834 to 1.4293 and −0.2505 to 1.2511 au., respectively.
[Figure 7]
Figure 7
The Hirshfeld surfaces of compounds, (a) II, (b) KELZIL and (c) KEQXOU, mapped over dnorm in the colour ranges −0.2048 to 1.21, −0.2236 to 1.3135 and −0.2367 to 1.3139 au., respectively.
[Figure 8]
Figure 8
The full two-dimensional fingerprint plots for compounds, (a) I and (b) TAYLUB01, and those delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and O⋯H/H⋯O contacts.
[Figure 9]
Figure 9
The full two-dimensional fingerprint plots for compounds, (a) II, (b) KELZIL and (c) KEQXOU, and those delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N, O⋯H/H⋯O and halogen⋯H/H⋯halogen contacts.

The contributions of the various inter-atomic contacts to the Hirshfeld surfaces for all five compounds are given in Table 5[link]. In I and TAYLUB01 the H⋯H contacts have a major contribution (60.6 and 57.7%, respectively) as do the C⋯H/H⋯C contributions (26.7 and 27.3%, respectively). These are followed by the O⋯H/H⋯O and N⋯H/H⋯N contributions (Table 5[link]). Other inter-atomic contacts, such as C⋯C and C⋯N/N⋯C contribute less than 2%. For II, KELZIL and KEQXOU the H⋯H contacts contribute ca 43% for all three compounds, notably less than in I and TAYLUB01. The contributions of the C⋯H/H⋯C, N⋯H/H⋯N and O⋯H/H⋯O contacts are similar to those for compound I (Table 5[link]). The halogen⋯H/H⋯halogen contributions vary from 10.5% in II to 13.5% in KEQXOU. The C⋯C contributions are 2.7, 2.0 and 2.2%, respectively, while the N⋯C/C⋯N contributions are 1.7, 2.0 and 2.2%, respectively. Both are more significant than for compound I and its analogue. The O⋯C/C⋯O contacts contribute less that 1%.

Table 5
Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of I, TAYLUB01a, II, KELZILb and KEQXOUc

Contact I TAYLUB01a II KELZILb KEQXOUc
      X = F X = Cl X = Br
H⋯H 60.6 57.7 43.2 43.7 43.1
C⋯H/H⋯C 26.7 27.3 28.6 25.1 25.0
N⋯H/H⋯N 4.8 4.5 4.2 3.6 3.5
O⋯H/H⋯O 6.8 7.2 8.3 7.3 7.2
X⋯H/H⋯X 10.5 12.9 13.5
C⋯C 0.2 1.3 2.7 3.9 3.9
N⋯C/C⋯N 0.4 1.6 1.7 2.0 2.2
O⋯C/C⋯O 0 0 0.3 0.5 0.5
XX 0.4 0.9 1.0
Notes: (a) Asiri et al. (2010[Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1751.]); (b) Sun et al. 2006[Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467-o469.]); (c) Yan et al. 2006[Yan, G.-B., Zheng, Y.-F., Zhang, C.-N. & Yang, M.-H. (2006). Acta Cryst. E62, o5328-o5329.]).

5. Energy frameworks

A comparison of the energy frameworks calculated for I and II, showing the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 10[link]. The energies were obtained by using wave functions at the HF/3-2IG level of theory. The cylindrical radii are proportional to the relative strength of the corresponding energies (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]; Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). They have been adjusted to the same scale factor of 90 with a cut-off value of 6 kJ mol−1 within a radius of 6 Å of a central reference mol­ecule. It can be seen that for all five compounds the major contribution to the inter­molecular inter­actions is from dispersion (Edis), reflecting the absence of classical hydrogen bonds in the crystals. The colour-coded inter­action mappings within a radius of 6 Å of a central reference mol­ecule and the various contributions to the total energy (Etot) for compounds I and II are given in Figs. S1 and S2 of the supporting information.

[Figure 10]
Figure 10
The energy frameworks calculated for I viewed along the b-axis direction and II viewed along the a-axis direction showing the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot).

6. Database survey

A search of the CSD (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for benyzyl­idene-substituted 4-amino­anti­pyrine organic structures with R ≤ 0.05, no disorder, no ions, single-crystal analyses only gave more than 90 hits. In all compounds the configuration about the C=N bond is E. Various geometrical parameters of these compounds where analysed using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). For example, the C=N bond lengths vary from 1.256 to 1.297 Å with a mean value of 1.281 Å (mean s.u. 0.008 Å). For compounds I and II and their analogues this bond length varies from 1.276 (2) Å for KELZIL (Sun et al., 2006[Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467-o469.]) to 1.291 (2) Å for I (see Table 1[link]), well within these limits. The C—N—N bond angles within the pyrazole ring vary from ca 107.7 to 110.7° with a mean value of 109.3° (mean s.u. 0.5°). The same angles in the title compounds (i.e. C1—N1—N2 and C3—N2—N1) and their analogues vary from 106.9 (3)° in KEQXOU (Yan et al., 2006[Yan, G.-B., Zheng, Y.-F., Zhang, C.-N. & Yang, M.-H. (2006). Acta Cryst. E62, o5328-o5329.]) to 109.58 (9)° in I for the former and 106.23 (9) in I to 107.7 (3)° in KEQXOU for the latter. The nitro­gen atoms of the pyrazole ring have pyramidal geometries in all structures.

7. Synthesis, crystallization and spectroscopic analyses

Di­ethyl­amino­benzaldehyde (9.08 mmol, 1.744 g) and 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (9.08 mmol, 2.00 g) were added to 100 ml of methanol and the mixture was refluxed at 353 K for a period of 8 h. The solvent was then allowed to evaporate slowly at room temperature. Pale-yellow crystals of compound I were obtained after a period of three weeks. Melting point 492 K.

4-Fluoro­benzaldehyde (9.80 mmol, 1.221 g) and 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (9.80 mol, 2.00 g) were added to 100 ml of methanol and the mixture was refluxed at 353 K for a period of 8 h. The solvent was then allowed to evaporate slowly at room temperature. Colourless crystals of compound II were obtained after a period of three weeks. Melting point 509 K.

The 1H NMR spectra of compounds I and II were recorded using a Bruker AC 400 MHz spectrometer (Fig. S3 in the supporting information). The compounds were dissolved in CDCl3 using tetra­methyl­silane as an inter­nal standard and chemical shifts (δ) are stated in ppm. The imine proton resonated as a sharp singlet peak at 9.63 for I and at 9.73 for II, whereas the aromatic protons appeared as a multiplet at 6.69–7.74 for I and at 7.07–7.87 for II. The –NCH3 protons of the amino­anti­pyrine unit appeared as a singlet at 3.08 for I and 3.16 for II. The two ethyl [–N(CH2—CH3)2] group protons in the benzyl­idene moiety of compound I appeared as a multiplet at 1.09–1.32 and 3.42–3.45. The methyl protons (C—CH3) of the amino­anti­pyrine moiety appeared as a singlet at 2.49 for both I and II.

FT–IR spectra (KBr pellet) were recorded between 400 and 4000 cm−1 (Fig. S4 in the supporting information). The characteristic C=N stretching mode is observed at 1578 for I, and at 1577 cm−1 for II, confirming the formation of the Schiff base compounds. The weak band at 3037 (I) and 3035 cm−1 (II), is assigned to the aromatic C—H stretching vibration. The peaks observed at 1290–1010 (I) and 1294–1124 cm−1 (II) are due to the C—H in-plane bending vibration of the aromatic rings. The bands obtained at 753–976 (I) and 757–954 cm−1 (II) are assigned to C—H out-of-plane bending vibrations. The asymmetric and symmetric stretching vibrations of the methyl group in the 4-amino­anti­pyrine moiety are observed respectively in the ranges of 3010–2970 (I) and 2940–2900 cm−1 (II). The strong peaks at 1650 (I) and 1644 cm−1 (II) correspond to the carbonyl stretching vibrations.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95–1.0 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 6
Experimental details

  I II
Crystal data
Chemical formula C22H26N4O C18H16FN3O
Mr 362.47 309.34
Crystal system, space group Monoclinic, C2/c Orthorhombic, Pbca
Temperature (K) 120 95
a, b, c (Å) 17.1588 (7), 7.0910 (3), 32.1594 (10) 6.7886 (13), 16.6007 (3), 26.9563 (8)
α, β, γ (°) 90, 102.338 (3), 90 90, 90, 90
V3) 3822.6 (3) 3037.9 (6)
Z 8 8
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.63 0.10
Crystal size (mm) 0.32 × 0.26 × 0.08 0.08 × 0.05 × 0.03
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini ultra SuperNova, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.273, 1.000 0.074, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15635, 3401, 2946 16735, 3041, 2346
Rint 0.034 0.064
(sin θ/λ)max−1) 0.598 0.621
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.06 0.042, 0.101, 1.05
No. of reflections 3401 3041
No. of parameters 248 211
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.21 0.21, −0.21
Computer programs: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]); Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; JANA2006 (Petříček et al., 2014); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

(E)-4-{[4-(Diethylamino)benzylidene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (I) top
Crystal data top
C22H26N4OF(000) = 1552
Mr = 362.47Dx = 1.260 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.5418 Å
a = 17.1588 (7) ÅCell parameters from 6730 reflections
b = 7.0910 (3) Åθ = 4.2–67.0°
c = 32.1594 (10) ŵ = 0.63 mm1
β = 102.338 (3)°T = 120 K
V = 3822.6 (3) Å3Plate, yellow
Z = 80.32 × 0.26 × 0.08 mm
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
3401 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2946 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 5.3°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2010)
k = 88
Tmin = 0.273, Tmax = 1.000l = 3238
15635 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0498P)2 + 1.7059P]
where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95050 (6)0.16596 (12)0.13672 (3)0.0258 (2)
N10.91573 (6)0.42249 (14)0.17346 (3)0.0208 (2)
N20.95187 (6)0.59507 (14)0.18866 (3)0.0210 (2)
N31.09105 (6)0.43910 (15)0.12703 (3)0.0223 (2)
N41.37635 (7)0.11970 (15)0.04351 (4)0.0260 (3)
C10.96340 (7)0.32892 (17)0.14980 (4)0.0205 (3)
C21.02614 (7)0.46216 (17)0.14650 (4)0.0206 (3)
C31.01488 (7)0.61977 (17)0.16879 (4)0.0211 (3)
C40.87046 (7)0.32240 (16)0.19871 (4)0.0203 (3)
C50.89105 (7)0.32887 (17)0.24292 (4)0.0223 (3)
H50.9333860.4075540.2569540.027*
C60.84902 (8)0.21906 (18)0.26626 (4)0.0242 (3)
H60.8626820.2227360.2964760.029*
C70.78720 (8)0.10388 (17)0.24593 (4)0.0246 (3)
H70.7592730.0274920.2621630.030*
C80.76628 (8)0.10055 (18)0.20181 (4)0.0256 (3)
H80.7235410.0228730.1878200.031*
C90.80765 (8)0.21046 (18)0.17807 (4)0.0240 (3)
H90.7930600.2090890.1478600.029*
C100.89517 (9)0.74834 (18)0.19053 (5)0.0283 (3)
H10A0.8593340.7111700.2090860.042*
H10B0.8638420.7739050.1618570.042*
H10C0.9244930.8622230.2019030.042*
C111.06192 (8)0.79734 (18)0.17469 (4)0.0265 (3)
H11A1.0832550.8183940.2051110.040*
H11B1.0274460.9032180.1629660.040*
H11C1.1060940.7875450.1598780.040*
C121.10770 (8)0.27332 (18)0.11476 (4)0.0230 (3)
H121.0738610.1708370.1180390.028*
C131.17644 (8)0.23785 (18)0.09609 (4)0.0226 (3)
C141.19818 (8)0.05234 (19)0.08887 (4)0.0253 (3)
H141.1669530.0487000.0958620.030*
C151.26374 (8)0.01199 (18)0.07186 (4)0.0249 (3)
H151.2769510.1157380.0677130.030*
C161.31124 (8)0.15708 (18)0.06060 (4)0.0230 (3)
C171.28890 (8)0.34469 (18)0.06779 (4)0.0259 (3)
H171.3192820.4465700.0604320.031*
C181.22408 (8)0.38183 (18)0.08523 (4)0.0242 (3)
H181.2112420.5091770.0900420.029*
C191.40771 (8)0.07010 (18)0.04196 (4)0.0260 (3)
H19A1.3958120.1440340.0659670.031*
H19B1.4664320.0631140.0457490.031*
C201.37361 (9)0.1726 (2)0.00067 (4)0.0322 (3)
H20A1.3967350.2992570.0016400.048*
H20B1.3865110.1022880.0232250.048*
H20C1.3155500.1822930.0030840.048*
C211.41662 (8)0.26801 (19)0.02481 (4)0.0267 (3)
H21A1.3768320.3635520.0116890.032*
H21B1.4400130.2129630.0019530.032*
C221.48234 (9)0.3647 (2)0.05712 (5)0.0325 (3)
H22A1.5094470.4573070.0425420.049*
H22B1.5209110.2702510.0710420.049*
H22C1.4589500.4287310.0785440.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0313 (5)0.0211 (4)0.0271 (5)0.0023 (4)0.0110 (4)0.0045 (3)
N10.0240 (5)0.0178 (5)0.0219 (5)0.0019 (4)0.0078 (4)0.0020 (4)
N20.0244 (5)0.0162 (5)0.0238 (5)0.0004 (4)0.0079 (4)0.0014 (4)
N30.0229 (5)0.0243 (5)0.0202 (5)0.0009 (4)0.0058 (4)0.0007 (4)
N40.0271 (6)0.0242 (6)0.0295 (6)0.0001 (4)0.0123 (5)0.0021 (4)
C10.0241 (6)0.0201 (6)0.0175 (6)0.0028 (5)0.0050 (5)0.0013 (5)
C20.0228 (6)0.0205 (6)0.0185 (6)0.0011 (5)0.0045 (5)0.0019 (5)
C30.0229 (6)0.0203 (6)0.0201 (6)0.0018 (5)0.0045 (5)0.0036 (5)
C40.0214 (6)0.0172 (6)0.0238 (6)0.0030 (5)0.0080 (5)0.0003 (5)
C50.0208 (6)0.0218 (6)0.0244 (6)0.0002 (5)0.0051 (5)0.0028 (5)
C60.0273 (7)0.0241 (6)0.0224 (6)0.0014 (5)0.0082 (5)0.0002 (5)
C70.0247 (6)0.0209 (6)0.0305 (7)0.0004 (5)0.0109 (5)0.0013 (5)
C80.0227 (6)0.0217 (6)0.0321 (7)0.0019 (5)0.0053 (5)0.0031 (5)
C90.0250 (6)0.0239 (6)0.0225 (6)0.0002 (5)0.0035 (5)0.0019 (5)
C100.0312 (7)0.0209 (6)0.0351 (7)0.0043 (5)0.0121 (6)0.0016 (5)
C110.0304 (7)0.0205 (6)0.0295 (7)0.0026 (5)0.0084 (5)0.0001 (5)
C120.0249 (6)0.0242 (6)0.0201 (6)0.0013 (5)0.0050 (5)0.0007 (5)
C130.0239 (6)0.0260 (6)0.0179 (6)0.0006 (5)0.0044 (5)0.0012 (5)
C140.0285 (7)0.0248 (6)0.0240 (6)0.0032 (5)0.0083 (5)0.0009 (5)
C150.0296 (7)0.0211 (6)0.0249 (6)0.0004 (5)0.0078 (5)0.0027 (5)
C160.0241 (6)0.0261 (6)0.0191 (6)0.0006 (5)0.0049 (5)0.0014 (5)
C170.0277 (7)0.0234 (6)0.0284 (7)0.0024 (5)0.0099 (5)0.0010 (5)
C180.0274 (7)0.0218 (6)0.0238 (6)0.0014 (5)0.0063 (5)0.0016 (5)
C190.0258 (7)0.0272 (7)0.0261 (7)0.0032 (5)0.0078 (5)0.0001 (5)
C200.0372 (8)0.0301 (7)0.0305 (7)0.0013 (6)0.0098 (6)0.0054 (6)
C210.0296 (7)0.0267 (7)0.0268 (7)0.0008 (5)0.0126 (5)0.0017 (5)
C220.0327 (7)0.0328 (7)0.0346 (7)0.0048 (6)0.0133 (6)0.0063 (6)
Geometric parameters (Å, º) top
O1—C11.2335 (15)C11—H11A0.9800
N1—C11.3978 (16)C11—H11B0.9800
N1—N21.4112 (14)C11—H11C0.9800
N1—C41.4269 (16)C12—C131.4551 (18)
N2—C31.3796 (16)C12—H120.9500
N2—C101.4685 (16)C13—C181.3982 (18)
N3—C121.2913 (17)C13—C141.4002 (18)
N3—C21.3991 (16)C14—C151.3817 (19)
N4—C161.3720 (17)C14—H140.9500
N4—C191.4543 (17)C15—C161.4073 (18)
N4—C211.4569 (17)C15—H150.9500
C1—C21.4533 (18)C16—C171.4172 (18)
C2—C31.3635 (17)C17—C181.3737 (19)
C3—C111.4858 (18)C17—H170.9500
C4—C91.3881 (18)C18—H180.9500
C4—C51.3907 (18)C19—C201.5170 (19)
C5—C61.3860 (18)C19—H19A0.9900
C5—H50.9500C19—H19B0.9900
C6—C71.3868 (19)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C81.3875 (19)C20—H20C0.9800
C7—H70.9500C21—C221.523 (2)
C8—C91.3877 (19)C21—H21A0.9900
C8—H80.9500C21—H21B0.9900
C9—H90.9500C22—H22A0.9800
C10—H10A0.9800C22—H22B0.9800
C10—H10B0.9800C22—H22C0.9800
C10—H10C0.9800
C1—N1—N2109.58 (9)H11A—C11—H11C109.5
C1—N1—C4121.78 (10)H11B—C11—H11C109.5
N2—N1—C4119.11 (9)N3—C12—C13122.35 (12)
C3—N2—N1106.23 (9)N3—C12—H12118.8
C3—N2—C10121.11 (10)C13—C12—H12118.8
N1—N2—C10114.20 (10)C18—C13—C14116.99 (11)
C12—N3—C2119.50 (11)C18—C13—C12123.07 (11)
C16—N4—C19122.10 (11)C14—C13—C12119.93 (11)
C16—N4—C21121.63 (11)C15—C14—C13121.91 (12)
C19—N4—C21116.24 (10)C15—C14—H14119.0
O1—C1—N1123.17 (11)C13—C14—H14119.0
O1—C1—C2131.75 (11)C14—C15—C16121.06 (12)
N1—C1—C2105.07 (10)C14—C15—H15119.5
C3—C2—N3123.15 (11)C16—C15—H15119.5
C3—C2—C1107.70 (11)N4—C16—C15121.87 (11)
N3—C2—C1129.03 (11)N4—C16—C17121.24 (12)
C2—C3—N2110.64 (11)C15—C16—C17116.90 (12)
C2—C3—C11128.87 (12)C18—C17—C16121.17 (12)
N2—C3—C11120.44 (11)C18—C17—H17119.4
C9—C4—C5120.63 (11)C16—C17—H17119.4
C9—C4—N1118.27 (11)C17—C18—C13121.98 (12)
C5—C4—N1121.01 (11)C17—C18—H18119.0
C6—C5—C4119.15 (12)C13—C18—H18119.0
C6—C5—H5120.4N4—C19—C20113.39 (11)
C4—C5—H5120.4N4—C19—H19A108.9
C5—C6—C7120.64 (12)C20—C19—H19A108.9
C5—C6—H6119.7N4—C19—H19B108.9
C7—C6—H6119.7C20—C19—H19B108.9
C6—C7—C8119.79 (12)H19A—C19—H19B107.7
C6—C7—H7120.1C19—C20—H20A109.5
C8—C7—H7120.1C19—C20—H20B109.5
C7—C8—C9120.14 (12)H20A—C20—H20B109.5
C7—C8—H8119.9C19—C20—H20C109.5
C9—C8—H8119.9H20A—C20—H20C109.5
C8—C9—C4119.62 (12)H20B—C20—H20C109.5
C8—C9—H9120.2N4—C21—C22113.00 (11)
C4—C9—H9120.2N4—C21—H21A109.0
N2—C10—H10A109.5C22—C21—H21A109.0
N2—C10—H10B109.5N4—C21—H21B109.0
H10A—C10—H10B109.5C22—C21—H21B109.0
N2—C10—H10C109.5H21A—C21—H21B107.8
H10A—C10—H10C109.5C21—C22—H22A109.5
H10B—C10—H10C109.5C21—C22—H22B109.5
C3—C11—H11A109.5H22A—C22—H22B109.5
C3—C11—H11B109.5C21—C22—H22C109.5
H11A—C11—H11B109.5H22A—C22—H22C109.5
C3—C11—H11C109.5H22B—C22—H22C109.5
C1—N1—N2—C39.12 (13)C4—C5—C6—C70.04 (19)
C4—N1—N2—C3156.03 (10)C5—C6—C7—C81.04 (19)
C1—N1—N2—C10145.25 (10)C6—C7—C8—C90.74 (19)
C4—N1—N2—C1067.83 (14)C7—C8—C9—C40.54 (19)
N2—N1—C1—O1171.84 (11)C5—C4—C9—C81.55 (18)
C4—N1—C1—O125.96 (18)N1—C4—C9—C8175.24 (11)
N2—N1—C1—C26.89 (13)C2—N3—C12—C13177.11 (11)
C4—N1—C1—C2152.77 (11)N3—C12—C13—C187.96 (19)
C12—N3—C2—C3164.73 (12)N3—C12—C13—C14171.03 (12)
C12—N3—C2—C110.89 (19)C18—C13—C14—C150.13 (19)
O1—C1—C2—C3176.49 (13)C12—C13—C14—C15178.92 (12)
N1—C1—C2—C32.09 (13)C13—C14—C15—C160.7 (2)
O1—C1—C2—N30.3 (2)C19—N4—C16—C159.62 (19)
N1—C1—C2—N3178.24 (11)C21—N4—C16—C15168.66 (12)
N3—C2—C3—N2172.83 (11)C19—N4—C16—C17170.24 (12)
C1—C2—C3—N23.60 (14)C21—N4—C16—C1711.49 (19)
N3—C2—C3—C114.6 (2)C14—C15—C16—N4179.73 (12)
C1—C2—C3—C11178.95 (12)C14—C15—C16—C170.41 (18)
N1—N2—C3—C27.78 (13)N4—C16—C17—C18179.46 (12)
C10—N2—C3—C2140.20 (12)C15—C16—C17—C180.40 (18)
N1—N2—C3—C11174.52 (11)C16—C17—C18—C131.0 (2)
C10—N2—C3—C1142.11 (17)C14—C13—C18—C170.71 (19)
C1—N1—C4—C966.68 (16)C12—C13—C18—C17179.72 (12)
N2—N1—C4—C9150.54 (11)C16—N4—C19—C2092.75 (14)
C1—N1—C4—C5110.10 (13)C21—N4—C19—C2085.62 (14)
N2—N1—C4—C532.67 (16)C16—N4—C21—C2288.73 (15)
C9—C4—C5—C61.26 (18)C19—N4—C21—C2292.90 (14)
N1—C4—C5—C6175.45 (11)
Hydrogen-bond geometry (Å, º) top
CgB is the centroid of ring B (C4–C9).
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.982.333.314 (2)177
C12—H12···O10.952.323.028 (2)131
C22—H22C···O1ii0.982.543.466 (2)157
C7—H7···CgBiii0.952.793.674 (1)155
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z; (iii) x+3/2, y1/2, z+1/2.
(E)-4-[(4-Fluorobenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (II) top
Crystal data top
C18H16FN3ODx = 1.353 Mg m3
Mr = 309.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3075 reflections
a = 6.7886 (13) Åθ = 5.3–73.0°
b = 16.6007 (3) ŵ = 0.10 mm1
c = 26.9563 (8) ÅT = 95 K
V = 3037.9 (6) Å3Block, colourless
Z = 80.08 × 0.05 × 0.03 mm
F(000) = 1296
Data collection top
SuperNova, AtlasS2
diffractometer
3041 independent reflections
Radiation source: X-ray tube2346 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.064
Detector resolution: 5.2027 pixels mm-1θmax = 26.2°, θmin = 1.5°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 2020
Tmin = 0.074, Tmax = 1.000l = 2133
16735 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.3986P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3041 reflectionsΔρmax = 0.21 e Å3
211 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.87181 (18)0.01263 (7)0.22907 (4)0.0355 (3)
O10.72869 (16)0.08876 (7)0.07747 (4)0.0227 (3)
N10.45169 (19)0.15388 (8)0.10880 (5)0.0191 (3)
N20.28459 (19)0.19055 (8)0.08765 (5)0.0199 (3)
N30.48528 (19)0.10471 (8)0.02205 (5)0.0188 (3)
C10.5616 (2)0.11647 (10)0.07073 (6)0.0185 (3)
C20.4406 (2)0.12362 (9)0.02704 (6)0.0182 (3)
C30.2737 (2)0.16588 (9)0.03975 (6)0.0184 (3)
C40.5493 (2)0.19326 (10)0.14907 (6)0.0196 (3)
C50.5650 (2)0.27676 (11)0.15110 (6)0.0226 (4)
H50.5048450.3094140.1264380.027*
C60.6700 (2)0.31165 (12)0.18982 (7)0.0274 (4)
H60.6805390.3686250.1918320.033*
C70.7597 (2)0.26390 (13)0.22553 (7)0.0313 (4)
H70.8329650.2881350.2515730.038*
C80.7421 (3)0.18061 (13)0.22317 (7)0.0300 (4)
H80.8029710.1479330.2476990.036*
C90.6357 (2)0.14503 (11)0.18500 (6)0.0242 (4)
H90.6221610.0881180.1835180.029*
C100.1160 (2)0.20736 (11)0.11996 (6)0.0240 (4)
H10A0.1616220.2348230.1500230.036*
H10B0.0516840.1566230.1290770.036*
H10C0.0219080.2418810.1024030.036*
C110.0992 (2)0.18413 (11)0.00855 (7)0.0252 (4)
H11C0.1242580.1666970.0256050.038*
H11B0.0738980.2422510.0090180.038*
H11A0.0159130.1555030.0216280.038*
C120.6468 (2)0.06772 (10)0.03275 (6)0.0196 (3)
H12A0.7308370.0498740.0068100.024*
C130.7020 (2)0.05290 (9)0.08456 (6)0.0196 (3)
C140.8853 (3)0.01856 (10)0.09495 (6)0.0231 (4)
H140.9709610.0046170.0684260.028*
C150.9441 (3)0.00454 (11)0.14364 (6)0.0257 (4)
H151.0682840.0191120.1508370.031*
C160.8166 (3)0.02601 (11)0.18100 (6)0.0265 (4)
C170.6341 (3)0.06039 (11)0.17255 (6)0.0248 (4)
H170.5501250.0745610.1993570.030*
C180.5772 (2)0.07358 (10)0.12379 (6)0.0222 (3)
H180.4522670.0968830.1170040.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0454 (6)0.0410 (7)0.0201 (5)0.0028 (5)0.0106 (5)0.0031 (4)
O10.0174 (5)0.0287 (6)0.0220 (6)0.0060 (5)0.0013 (5)0.0022 (5)
N10.0162 (6)0.0213 (7)0.0197 (6)0.0024 (5)0.0019 (5)0.0016 (5)
N20.0145 (6)0.0222 (7)0.0231 (7)0.0029 (5)0.0011 (5)0.0002 (5)
N30.0198 (6)0.0180 (7)0.0187 (6)0.0020 (5)0.0014 (5)0.0002 (5)
C10.0189 (7)0.0171 (8)0.0196 (8)0.0015 (6)0.0023 (6)0.0002 (6)
C20.0187 (7)0.0154 (7)0.0206 (8)0.0021 (6)0.0001 (6)0.0019 (6)
C30.0181 (7)0.0161 (7)0.0211 (8)0.0032 (6)0.0003 (6)0.0011 (6)
C40.0135 (7)0.0261 (9)0.0192 (8)0.0000 (6)0.0020 (6)0.0015 (6)
C50.0187 (7)0.0266 (9)0.0223 (8)0.0009 (7)0.0020 (6)0.0011 (7)
C60.0201 (8)0.0320 (10)0.0302 (9)0.0052 (7)0.0045 (7)0.0079 (8)
C70.0190 (8)0.0497 (12)0.0251 (9)0.0032 (8)0.0009 (7)0.0106 (8)
C80.0217 (8)0.0458 (12)0.0227 (8)0.0046 (8)0.0025 (7)0.0005 (8)
C90.0187 (7)0.0310 (10)0.0229 (8)0.0023 (7)0.0027 (7)0.0008 (7)
C100.0180 (7)0.0254 (9)0.0287 (9)0.0011 (6)0.0039 (7)0.0043 (7)
C110.0220 (8)0.0251 (9)0.0284 (9)0.0035 (7)0.0046 (7)0.0002 (7)
C120.0205 (7)0.0175 (8)0.0208 (8)0.0013 (6)0.0019 (6)0.0006 (6)
C130.0227 (8)0.0151 (8)0.0210 (8)0.0023 (6)0.0011 (7)0.0005 (6)
C140.0256 (8)0.0197 (8)0.0240 (8)0.0012 (7)0.0004 (7)0.0020 (6)
C150.0269 (8)0.0218 (8)0.0284 (9)0.0030 (7)0.0062 (7)0.0005 (7)
C160.0366 (9)0.0229 (9)0.0199 (8)0.0027 (7)0.0083 (7)0.0028 (6)
C170.0285 (8)0.0257 (9)0.0202 (8)0.0013 (7)0.0014 (7)0.0002 (7)
C180.0227 (8)0.0201 (8)0.0238 (8)0.0001 (6)0.0015 (7)0.0001 (6)
Geometric parameters (Å, º) top
F1—C161.367 (2)C8—H80.9500
O1—C11.237 (2)C9—H90.9500
N1—N21.4080 (18)C10—H10A0.9800
N1—C11.413 (2)C10—H10B0.9800
N1—C41.430 (2)C10—H10C0.9800
N2—C31.356 (2)C11—H11C0.9800
N2—C101.465 (2)C11—H11B0.9800
N3—C121.289 (2)C11—H11A0.9800
N3—C21.394 (2)C12—C131.467 (2)
C1—C21.441 (2)C12—H12A0.9500
C2—C31.376 (2)C13—C141.397 (2)
C3—C111.484 (2)C13—C181.398 (2)
C4—C91.387 (2)C14—C151.392 (2)
C4—C51.391 (2)C14—H140.9500
C5—C61.390 (2)C15—C161.375 (3)
C5—H50.9500C15—H150.9500
C6—C71.388 (3)C16—C171.383 (3)
C6—H60.9500C17—C181.387 (2)
C7—C81.389 (3)C17—H170.9500
C7—H70.9500C18—H180.9500
C8—C91.389 (3)
N2—N1—C1108.75 (12)N2—C10—H10A109.5
C1—N1—C4120.50 (13)N2—C10—H10B109.5
N2—N1—C4118.90 (13)H10A—C10—H10B109.5
C3—N2—N1107.40 (13)N2—C10—H10C109.5
C3—N2—C10125.50 (14)H10A—C10—H10C109.5
N1—N2—C10118.09 (13)H10B—C10—H10C109.5
C12—N3—C2120.32 (14)C3—C11—H11C109.5
O1—C1—N1122.75 (15)C3—C11—H11B109.5
O1—C1—C2132.33 (15)H11C—C11—H11B109.5
N1—C1—C2104.85 (13)C3—C11—H11A109.5
C3—C2—N3122.05 (14)H11C—C11—H11A109.5
C3—C2—C1107.94 (14)H11B—C11—H11A109.5
N3—C2—C1129.30 (14)N3—C12—C13120.68 (15)
N2—C3—C2110.24 (14)N3—C12—H12A119.7
N2—C3—C11121.43 (14)C13—C12—H12A119.7
C2—C3—C11128.33 (15)C14—C13—C18119.24 (15)
C9—C4—C5121.03 (16)C14—C13—C12119.14 (15)
C9—C4—N1117.53 (15)C18—C13—C12121.62 (15)
C5—C4—N1121.38 (15)C15—C14—C13120.84 (16)
C6—C5—C4118.93 (16)C15—C14—H14119.6
C6—C5—H5120.5C13—C14—H14119.6
C4—C5—H5120.5C16—C15—C14117.85 (16)
C7—C6—C5120.50 (18)C16—C15—H15121.1
C7—C6—H6119.7C14—C15—H15121.1
C5—C6—H6119.7F1—C16—C15118.67 (16)
C6—C7—C8119.95 (17)F1—C16—C17117.94 (16)
C6—C7—H7120.0C15—C16—C17123.39 (16)
C8—C7—H7120.0C16—C17—C18118.07 (16)
C9—C8—C7120.12 (18)C16—C17—H17121.0
C9—C8—H8119.9C18—C17—H17121.0
C7—C8—H8119.9C17—C18—C13120.62 (16)
C4—C9—C8119.45 (18)C17—C18—H18119.7
C4—C9—H9120.3C13—C18—H18119.7
C8—C9—H9120.3
C1—N1—N2—C39.45 (17)N2—N1—C4—C536.0 (2)
C4—N1—N2—C3152.54 (14)C1—N1—C4—C5102.73 (18)
C1—N1—N2—C10158.44 (14)C9—C4—C5—C60.3 (2)
C4—N1—N2—C1058.47 (19)N1—C4—C5—C6176.80 (14)
N2—N1—C1—O1170.21 (15)C4—C5—C6—C70.7 (2)
C4—N1—C1—O127.8 (2)C5—C6—C7—C81.0 (3)
N2—N1—C1—C27.02 (17)C6—C7—C8—C90.3 (3)
C4—N1—C1—C2149.42 (14)C5—C4—C9—C81.0 (2)
C12—N3—C2—C3177.33 (15)N1—C4—C9—C8176.19 (14)
C12—N3—C2—C18.2 (3)C7—C8—C9—C40.7 (2)
O1—C1—C2—C3174.69 (18)C2—N3—C12—C13175.43 (14)
N1—C1—C2—C32.15 (17)N3—C12—C13—C14174.82 (15)
O1—C1—C2—N34.3 (3)N3—C12—C13—C184.0 (2)
N1—C1—C2—N3172.51 (15)C18—C13—C14—C150.3 (2)
N1—N2—C3—C28.11 (18)C12—C13—C14—C15179.17 (16)
C10—N2—C3—C2154.17 (15)C13—C14—C15—C160.4 (3)
N1—N2—C3—C11171.33 (14)C14—C15—C16—F1179.96 (16)
C10—N2—C3—C1125.3 (2)C14—C15—C16—C170.2 (3)
N3—C2—C3—N2167.49 (14)F1—C16—C17—C18179.62 (15)
C1—C2—C3—N23.71 (18)C15—C16—C17—C180.2 (3)
N3—C2—C3—C1113.1 (3)C16—C17—C18—C130.3 (3)
C1—C2—C3—C11175.67 (16)C14—C13—C18—C170.1 (2)
N2—N1—C4—C9146.82 (14)C12—C13—C18—C17178.78 (15)
C1—N1—C4—C974.49 (19)
Hydrogen-bond geometry (Å, º) top
CgB is the centroid of ring B (C4–C9).
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.982.553.505 (2)165
C12—H12A···O10.952.363.043 (2)128
C14—H14···O1ii0.952.573.204 (2)124
C17—H17···F1iii0.952.503.291 (2)141
C7—H7···CgBiv0.952.903.608 (2)132
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z; (iii) x1/2, y, z1/2; (iv) x+1/2, y, z+1/2.
Selected geometric parameters (Å, °) for I and TAYLUB01a, and for II and KELZILb and KEQXOUc top
ITAYLUB01aIIKELZILbKEQXOUc
N3—C121.291 (2)1.288 (2)1.289 (2)1.276 (2)1.279 (5)
C2—N3—C12—C13–177.11 (11)173.20 (11)–175.43 (14)–176.68 (15)177.5 (4)
C1—N1—N2109.58 (9)109.58 (10)108.75 (12)108.58 (13)106.9 (3)
C1—N1—C4121.78 (10)122.30 (10)120.50 (13)122.40 (13)122.4 (3)
N2—N1—C4119.11 (9)118.13 (10)118.90 (13)119.12 (14)119.8 (3)
Sum350.47 (9)350.0 (1)348.15 (13)350.10 (13)349.1 (3)
C3—N2—N1106.23 (9)106.50 (10)107.40 (13)107.34 (13)107.7 (3)
C3—N2—C10121.11 (10)122.30 (11)125.50 (14)124.77 (14)125.1 (3)
N1—N2—C10114.20 (10)114.68 (10)118.09 (13)117.05 (15)115.9 (3)
Sum341.54 (10)343.48 (10)350.99 (13)349.16 (14)348.7 (3)
Notes: (a) Asiri et al. (2010); (b) Sun et al. 2006); (c) Yan et al. 2006).
A comparison of various dihedral angles (°) for I and TAYLUB01a, and for II and KELZILb and KEQXOUc top
A = ring N1/N2/C1–C3, B = ring C4–C9, C = ring C13–C18 (atom numbering following this paper).
Dihedral angleITAYLUB01aIIKELZILbKEQXOUc
Planes A to B54.87 (7)55.01 (7)60.44 (8)51.6 (1)50.8 (2)
Planes A to C22.92 (7)19.03 (7)12.70 (9)8.7 (1)9.1 (2)
Planes B to C73.98 (6)73.98 (6)71.28 (8)59.0 (1)59.1 (2)
Notes: (a) Asiri et al. (2010); (b) Sun et al. 2006); (c) Yan et al. 2006).
Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of I, TAYLUB01a, II, KELZILb and KEQXOUc top
ContactITAYLUB01aIIKELZILbKEQXOUc
X = FX = ClX = Br
H···H60.657.743.243.743.1
C···H/H···C26.727.328.625.125.0
N···H/H···N4.84.54.23.63.5
O···H/H···O6.87.28.37.37.2
X···H/H···X10.512.913.5
C···C0.21.32.73.93.9
N···C/C···N0.41.61.72.02.2
O···C/C···O000.30.50.5
X···X0.40.91.0
Notes: (a) Asiri et al. (2010); (b) Sun et al. 2006); (c) Yan et al. 2006).
 

Acknowledgements

MGS and AS thank the Central Instrumentation Facility, Pondicherry University and STIC, Cochin, for the use of their facilities. MK and MD acknowledge using the CzechNanoLab Research Infrastructure supported by MEYS CR (No. LM2018110) for crystallographic analysis. HSE is grateful to the University of Neuchâtel for their support over the years.

References

First citationAbd El Rehim, S. S., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268–273.  Web of Science CrossRef CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlam, M. S. & Lee, D.-U. (2016). EXCLI J. 15, 614–629.  Web of Science PubMed Google Scholar
First citationAsiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010). Acta Cryst. E66, o1751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. Anal. 37, 1143–1147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCollado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, A. C. (2000). Talanta, 52, 909–920.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNibila, T. A., Shameera Ahamed, T. K., Soufeena, P. P., Muraleedharan, K., Peiyat, P. & Aravindakshan, K. K. (2020). Results Chem. 2, 100062. https://doi.org/10.1016/j.rechem.2020.100062  Google Scholar
First citationOudar, J. L. (1977). J. Chem. Phys. 67, 446–457.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRaman, N., Dhaveethu Raja, J. & Sakthivel, A. (2007). J. Chem. Sci. 119, 303–310.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSenthilkumar, K., Thirumoorthy, K., Dragonetti, C., Marinotto, D., Righetto, S., Colombo, A., Haukka, M. & Palanisami, N. (2016). Dalton Trans. 45, 11939–11943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. & Lü, X.-M. (2006). Acta Cryst. C62, o467–o469.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, G.-B., Zheng, Y.-F., Zhang, C.-N. & Yang, M.-H. (2006). Acta Cryst. E62, o5328–o5329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZyss, J. (1979). J. Chem. Phys. 70, 3341–3349.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds