research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 5-oxo-7-phenyl-2-(phenyl­amino)-1H-[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbo­nitrile di­methyl sulfoxide monosolvate

crossmark logo

aFaculty of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dFaculty of Physics, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 10 May 2023; accepted 20 May 2023; online 26 May 2023)

In the title compound, C20H12N6O·C2H6OS, the [1,2,4]triazolo[1,5-a]pyridine ring system is almost planar and makes dihedral angles of 16.33 (7) and 46.80 (7)°, respectively, with the phenyl­amino and phenyl rings. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds into chains along the b-axis direction through the dimethyl sulfoxide solvent mol­ecule, forming C(10)R21(6) motifs. These chains are connected via S—O⋯π inter­actions, ππ stacking inter­actions between the pyridine rings [centroid-to-centroid distance = 3.6662 (9) Å] and van der Waals inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (28.1%), C⋯H/H⋯C (27.2%), N⋯H/H⋯N (19.4%) and O⋯H/H⋯O (9.8%) inter­actions.

1. Chemical context

Diverse carbon–carbon and carbon–heteroatom bond-formation reactions are considered fundamental tools in organic synthesis. The reaction has also been amplified, extending these methods to different fields of chemistry, as well to the synthesis of natural products, in medicinal and pharmaceutical chemistry, material science, supra­molecular chemistry etc (Çelik et al., 2023[Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.]; Chalkha et al., 2023[Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.]; Tapera et al., 2022[Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833-14837.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). Triazolo[1,5-a]pyridines are accessible heterocyclic compounds and α-substituted pyridines are among the most widely used starting materials for their synthesis. The most common synthetic pathways to these compounds are well-reviewed in the literature (Jones & Abarca, 2010[Jones, G. & Abarca, B. (2010). Adv. Heterocycl. Chem. 100, 195-252.]; Soliman et al., 2014[Soliman, A. M., Mohamed, S. K., El-Remaily, M. A. A. & Abdel-Ghany, H. (2014). J. Heterocycl. Chem. 51, 1202-1209.]; Kotovshchikov et al., 2021[Kotovshchikov, Y. N., Voloshkin, V. A., Latyshev, G. V., Lukashev, N. V. & Beletskaya, I. P. (2021). Russ. J. Org. Chem. 57, 1212-1244.]). The triazolo[1,5-a]pyridine moiety is a widespread structural motif in various synthetic biologically active compounds, possessing cardiovascular, trypanocidal, nitric oxide synthase inhibitor and anti­microbial activity, and in non-hormonal compounds with anti­fertility activity and leishmanicidal activity (Jones & Abarca, 2010[Jones, G. & Abarca, B. (2010). Adv. Heterocycl. Chem. 100, 195-252.]; Mohamed et al., 2013[Mohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. (2013). J. Heterocycl. Chem. 50, 1425-1430.]; Poustforoosh et al., 2022[Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.]).

A literature survey shows that the title compound 3 was previously synthesized in a two-pot reaction protocol (Barsy et al., 2008[Barsy, M. A., El Rady, E. A. & El Latif, F. M. A. (2008). J. Heterocycl. Chem. 45, 773-778.]), wherein the imino­phospho­rane 1-amino-6-(tri­phenyl­phospho­ranyl­idene­amino)-2-oxo-4-phenyl-1,2-di­hydro­pyri­dine-3,5-dicarbo­nitrile 2 prepared from 1,6-di­amino­pyridine 1 reacted with phenyl­iso­cyanate method to prepare 3 (B pathway, Fig. 1[link]). Herein, we disclose a more straightforward one-pot synthesis method of 3 using the same starting compound 1 at room temperature (A pathway, Fig. 1[link]), but through a different pathway.

[Scheme 1]
[Figure 1]
Figure 1
The synthesis routes or the title compound 3.

Continuing our investigations of heterocyclic systems with biological activity and in the framework of our ongoing structural studies (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]; Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, 5-oxo-7-phenyl-2-(phenyl­amino)-1,5-di­hydro-[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbo­nitrile, which crystallized as a DMSO solvate.

2. Structural commentary

In the title compound, (Fig. 2[link]), the [1,2,4]triazolo[1,5-a]pyridine ring system (N1/N3/N4/C2/C5–C8/C8A) is almost planar [maximum deviation = 0.043 (2) Å for C5] and subtends dihedral angles of 16.33 (7) and 46.80 (7)°, respectively, with the phenyl­amino and phenyl rings (C9–C14 and C16–C21). The geometric properties of the title compound are normal and consistent with those of the related compounds listed in the Database survey (Section 4).

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds into chains along the b-axis direction through the dimethyl sulfoxide solvent mol­ecule, forming C(10)[R_{1}^{2}](6) motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]). These chains are connected via S—O⋯π inter­actions [S1—O2⋯Cg2i: O2⋯Cg2i = 3.1775 (14) Å; S1⋯Cg2i = 4.0054 (8) Å; S1—O2⋯Cg2i = 111.93 (6)°; symmetry code: (i) 1 − x, 1 − y, 1 − z; Cg2 is the centroid of the pyridine ring (N4/C5–C8/C8A)], ππ stacking inter­actions [Cg2⋯Cg2ii = 3.6662 (9) Å; slippage = 1.468 Å; symmetry code: (ii) −x, 1 − y, 1 − z] and van der Waals inter­actions (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 (2) 1.84 (2) 2.6249 (16) 146.9 (17)
N2—H2⋯O2 0.90 (2) 2.07 (2) 2.8680 (16) 147.7 (17)
C10—H10⋯N3 0.95 2.39 2.9956 (19) 121
C23—H23B⋯O1i 0.98 2.44 3.166 (2) 131
C24—H24B⋯N22 0.98 2.53 3.474 (2) 162
Symmetry code: (i) x+1, y+1, z.
[Figure 3]
Figure 3
A view along the c axis of the N—H⋯O and C—H⋯O bonds in the title compound.

CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to compute Hirshfeld surfaces of the title mol­ecule and two-dimensional fingerprints. The Hirshfeld surfaces were mapped over dnorm in the range −0.6769 (red) to +1.1190 (blue) a.u. The inter­actions given in Table 2[link] play a key role in the mol­ecular packing of the title compound. The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (28.1%, Fig. 4[link]b). Other major contributors are C⋯H/H⋯C (27.2%, Fig. 4[link]c), N⋯H/H⋯N (19.4%, Fig. 4[link]d) and N⋯H/H⋯N (9.8%, Fig. 4[link]e) inter­actions. Smaller contributions are made by N⋯C/C⋯N (6.7%), C⋯C (3.6%), O⋯C/C⋯O(1.7%), N⋯N (1.5%), S⋯H/H⋯S (1.0%), O⋯N/N⋯O (0.7%), S⋯C/C⋯S(0.2%) and O⋯S/S⋯O (0.1%) inter­actions.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O1⋯H23B 2.44 −1 + x, −1 + y, z
H17⋯O1 2.65 x, 1 − y, 1 − z
O1⋯H24A 2.63 1 − x, 1 − y, 1 − z
H1⋯O2 1.84 x, y, z
H14⋯C21 2.98 1 − x, 1 − y, 1 − z
H19⋯N15 2.73 x, 1 − y, 2 − z
H18⋯N22 2.82 1 − x, 2 − y, 2 − z
C22⋯H23B 3.08 1 − x, 2 − y, 1 − z
C9⋯H20 3.05 x, y, −1 + z
C11⋯C11 3.53 x, −y, −z
C12⋯H18 3.05 x, −1 + y, −1 + z
H19⋯H23A 2.54 x, y, 1 + z
H12⋯H24A 2.41 −1 + x, −1 + y, −1 + z
H12⋯S1 3.04 1 − x, 1 − y, −z
H23C⋯H23C 2.43 1 − x, 2 − y, 1 − z
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for title mol­ecule showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the central nine-membered ring system `1,5-di­hydro­[1,2,4]triazolo[1,5-a]pyridine' yielded three compounds related to the title compound, viz. CSD refcodes HODQEZ (Gumus et al., 2019[Gumus, M. K., Kansiz, S., Yuksektepe Ataol, C., Dege, N. & Fritsky, I. O. (2019). Acta Cryst. E75, 492-498.]), HODQID (Gumus et al., 2019[Gumus, M. K., Kansiz, S., Yuksektepe Ataol, C., Dege, N. & Fritsky, I. O. (2019). Acta Cryst. E75, 492-498.]) and RETCAX (Aydemir et al., 2018[Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367-370.]).

In the crystal of HODQEZ, pairs of N—H⋯N hydrogen bonds link the mol­ecules, forming inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯π and C—Br⋯π inter­actions, forming layers parallel to the bc plane. In the crystal of HODQID, mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. In the crystal of RETCAX, N—H⋯N hydrogen bonds link the mol­ecules into supra­molecular chains propagating along the c-axis direction.

5. Synthesis and crystallization

To a solution of 1,6-di­amino-2-oxo-4-phenyl-1,2-di­hydro­pyridine-3,5-dicarbo­nitrile (0.82 g, 5.1 mmol) in DMF (25 mL) was added 10 mL of an aqueous solution of potassium hydroxide (0.28 g, 5.1 mmol). The mixture was stirred at room temperature for 2 h. Then an equimolar amount of phenyl­iso­thio­cyanate (0.51 g, 5.2 mmol) was added to the vigorously stirred reaction mixture and left overnight. After completion of the reaction, monitored by TLC, the reaction mixture was acidified by adding conc. HCl (4 mL). The precipitated solids were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield 80%; m.p. 557–558 K). Single crystals were grown from a DMSO solution.

1H NMR (300 MHz, DMSO-d6, p.p.m.): 4.3 (s, 1H, NH); 6.9 (t, 1H, CHarom, 3JH—H = 7.5 MHz); 7.3 (t, 2H, CHarom, 3JH—H = 7.5 MHz); 7.5 (m, 5H, CHarom); 7.7 (d, 2H, CHarom, 3JH—H = 8.1 MHz); 9.6 (s, 1H, NH); 13C NMR (75 MHz, DMSO-d6, p.p.m.): 76.4 (Cquat), 83.9 (Cquat), 117.0 (CHarom), 117.5 (CN), 118.9 (CN), 120.7 (CHarom), 128.9 (CHarom), 129.0 (CHarom), 129.2 (CHarom), 129.9 (CHarom), 136.3 (Carom), 141.4 (Carom), 152.2 (Cquat), 154.9 (Cquat), 156.2 (Cquat), 161.1 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NH H atoms were located in a difference-Fourier map [N1—H1 = 0.88 (2) Å and N2—H2 = 0.90 (2) Å] and refined with Uiso(H) = 1.2Ueq(N). Carbon-bound H atoms were positioned geometrically [C—H = 0.95–0.98 Å;] and were included in the refinement in the riding-model approximation with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C20H12N6O·C2H6OS
Mr 430.48
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.87885 (12), 10.46018 (13), 11.48307 (12)
α, β, γ (°) 100.9305 (10), 105.3054 (11), 112.6790 (12)
V3) 997.81 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.73
Crystal size (mm) 0.22 × 0.16 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.660, 0.781
No. of measured, independent and observed [I > 2σ(I)] reflections 22299, 4314, 4124
Rint 0.037
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.08
No. of reflections 4314
No. of parameters 289
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.51
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

5-Oxo-7-phenyl-2-(phenylamino)-1H-[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitrile dimethyl sulfoxide monosolvate top
Crystal data top
C20H12N6O·C2H6OSZ = 2
Mr = 430.48F(000) = 448
Triclinic, P1Dx = 1.433 Mg m3
a = 9.87885 (12) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.46018 (13) ÅCell parameters from 15870 reflections
c = 11.48307 (12) Åθ = 4.8–79.3°
α = 100.9305 (10)°µ = 1.73 mm1
β = 105.3054 (11)°T = 100 K
γ = 112.6790 (12)°Prism, colourless
V = 997.81 (2) Å30.22 × 0.16 × 0.12 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4124 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.037
φ and ω scansθmax = 79.5°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 129
Tmin = 0.660, Tmax = 0.781k = 1213
22299 measured reflectionsl = 1414
4314 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.554P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4314 reflectionsΔρmax = 0.41 e Å3
289 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0029 (4)
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06967 (12)0.20611 (11)0.42668 (10)0.0214 (2)
N10.37412 (14)0.55891 (13)0.44627 (11)0.0171 (2)
H10.465 (2)0.635 (2)0.4612 (18)0.021*
C20.29261 (16)0.44403 (15)0.33251 (13)0.0163 (3)
N20.35694 (14)0.44663 (14)0.24222 (12)0.0189 (3)
H20.453 (2)0.523 (2)0.2678 (18)0.023*
N30.15858 (14)0.34368 (13)0.32865 (11)0.0178 (2)
N40.15615 (14)0.40235 (12)0.44782 (11)0.0159 (2)
C50.03861 (16)0.32893 (15)0.49174 (14)0.0177 (3)
C60.06152 (16)0.41513 (15)0.61676 (13)0.0176 (3)
C70.19229 (16)0.55162 (15)0.69078 (13)0.0174 (3)
C80.30798 (16)0.61215 (15)0.63984 (13)0.0172 (3)
C8A0.28510 (16)0.53211 (15)0.51784 (13)0.0167 (3)
C90.29501 (17)0.34391 (15)0.11906 (13)0.0179 (3)
C100.13802 (18)0.23723 (17)0.06025 (15)0.0227 (3)
H100.06590.23080.10230.027*
C110.08828 (19)0.13987 (18)0.06143 (15)0.0262 (3)
H110.01890.06700.10260.031*
C120.19282 (19)0.14769 (18)0.12345 (15)0.0265 (3)
H120.15810.07940.20560.032*
C130.34888 (19)0.25654 (18)0.06421 (15)0.0242 (3)
H130.42080.26340.10650.029*
C140.39982 (17)0.35488 (17)0.05611 (14)0.0211 (3)
H140.50620.42980.09580.025*
C150.06863 (17)0.35194 (15)0.65539 (13)0.0186 (3)
N150.18041 (15)0.29648 (14)0.67726 (13)0.0235 (3)
C160.21011 (16)0.63048 (16)0.82000 (13)0.0178 (3)
C170.25352 (17)0.78044 (16)0.85674 (14)0.0202 (3)
H170.26890.83190.79770.024*
C180.27428 (18)0.85436 (16)0.97909 (14)0.0223 (3)
H180.30410.95631.00370.027*
C190.25145 (17)0.77930 (17)1.06577 (14)0.0218 (3)
H190.26580.83011.14950.026*
C200.20758 (17)0.62989 (17)1.03002 (14)0.0215 (3)
H200.19130.57881.08920.026*
C210.18757 (17)0.55538 (16)0.90782 (14)0.0195 (3)
H210.15870.45370.88390.023*
C220.44758 (17)0.74971 (16)0.70142 (14)0.0191 (3)
N220.56198 (16)0.85887 (14)0.74045 (13)0.0251 (3)
S10.73840 (4)0.86862 (4)0.42677 (3)0.01894 (11)
O20.63433 (12)0.71002 (11)0.41226 (10)0.0215 (2)
C230.6060 (2)0.94489 (18)0.39068 (19)0.0328 (4)
H23A0.54470.90580.29850.049*
H23B0.66621.05180.41700.049*
H23C0.53400.91900.43660.049*
C240.83449 (19)0.96161 (17)0.59410 (15)0.0249 (3)
H24A0.90010.91870.63190.037*
H24B0.75510.95180.63260.037*
H24C0.90131.06570.61010.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0204 (5)0.0187 (5)0.0200 (5)0.0048 (4)0.0082 (4)0.0039 (4)
N10.0170 (6)0.0169 (5)0.0174 (6)0.0073 (5)0.0079 (4)0.0045 (4)
C20.0179 (6)0.0170 (6)0.0160 (6)0.0096 (5)0.0072 (5)0.0054 (5)
N20.0173 (6)0.0196 (6)0.0181 (6)0.0065 (5)0.0089 (5)0.0037 (5)
N30.0193 (6)0.0192 (6)0.0162 (6)0.0087 (5)0.0095 (5)0.0049 (5)
N40.0174 (6)0.0156 (5)0.0157 (5)0.0075 (5)0.0080 (4)0.0046 (4)
C50.0187 (6)0.0193 (6)0.0191 (7)0.0108 (5)0.0086 (5)0.0083 (5)
C60.0195 (7)0.0199 (7)0.0177 (7)0.0109 (6)0.0091 (5)0.0081 (5)
C70.0198 (7)0.0198 (7)0.0178 (7)0.0128 (6)0.0077 (5)0.0080 (5)
C80.0181 (6)0.0175 (6)0.0172 (7)0.0089 (5)0.0073 (5)0.0058 (5)
C8A0.0175 (6)0.0187 (6)0.0178 (7)0.0109 (5)0.0075 (5)0.0076 (5)
C90.0204 (7)0.0190 (6)0.0161 (6)0.0102 (5)0.0077 (5)0.0058 (5)
C100.0210 (7)0.0257 (7)0.0210 (7)0.0090 (6)0.0106 (6)0.0063 (6)
C110.0227 (7)0.0272 (8)0.0200 (7)0.0057 (6)0.0072 (6)0.0032 (6)
C120.0298 (8)0.0277 (8)0.0168 (7)0.0104 (7)0.0088 (6)0.0025 (6)
C130.0263 (8)0.0301 (8)0.0211 (7)0.0144 (6)0.0138 (6)0.0085 (6)
C140.0197 (7)0.0253 (7)0.0202 (7)0.0107 (6)0.0093 (6)0.0082 (6)
C150.0214 (7)0.0187 (6)0.0173 (7)0.0105 (6)0.0075 (5)0.0058 (5)
N150.0241 (6)0.0250 (6)0.0239 (6)0.0114 (5)0.0123 (5)0.0083 (5)
C160.0170 (6)0.0211 (7)0.0170 (7)0.0100 (5)0.0070 (5)0.0058 (5)
C170.0222 (7)0.0216 (7)0.0206 (7)0.0115 (6)0.0105 (6)0.0080 (6)
C180.0230 (7)0.0212 (7)0.0221 (7)0.0107 (6)0.0090 (6)0.0039 (6)
C190.0209 (7)0.0273 (7)0.0174 (7)0.0122 (6)0.0079 (6)0.0041 (6)
C200.0213 (7)0.0266 (7)0.0195 (7)0.0122 (6)0.0093 (6)0.0087 (6)
C210.0187 (6)0.0207 (7)0.0199 (7)0.0096 (5)0.0078 (5)0.0066 (6)
C220.0231 (7)0.0216 (7)0.0179 (6)0.0130 (6)0.0108 (6)0.0072 (5)
N220.0255 (7)0.0221 (6)0.0252 (7)0.0082 (5)0.0114 (5)0.0053 (5)
S10.01723 (18)0.01879 (19)0.01979 (19)0.00657 (14)0.00849 (13)0.00567 (13)
O20.0199 (5)0.0174 (5)0.0244 (5)0.0061 (4)0.0091 (4)0.0048 (4)
C230.0242 (8)0.0246 (8)0.0444 (10)0.0123 (7)0.0037 (7)0.0111 (7)
C240.0269 (8)0.0197 (7)0.0224 (7)0.0085 (6)0.0062 (6)0.0038 (6)
Geometric parameters (Å, º) top
O1—C51.2277 (18)C13—C141.384 (2)
N1—C8A1.3439 (18)C13—H130.9500
N1—C21.3792 (18)C14—H140.9500
N1—H10.88 (2)C15—N151.152 (2)
C2—N31.3178 (18)C16—C171.399 (2)
C2—N21.3508 (18)C16—C211.403 (2)
N2—C91.4102 (18)C17—C181.388 (2)
N2—H20.90 (2)C17—H170.9500
N3—N41.4000 (16)C18—C191.392 (2)
N4—C8A1.3504 (18)C18—H180.9500
N4—C51.4003 (18)C19—C201.393 (2)
C5—C61.4510 (19)C19—H190.9500
C6—C71.403 (2)C20—C211.391 (2)
C6—C151.4297 (19)C20—H200.9500
C7—C81.4088 (19)C21—H210.9500
C7—C161.4829 (19)C22—N221.151 (2)
C8—C8A1.3988 (19)S1—O21.5253 (10)
C8—C221.429 (2)S1—C241.7764 (16)
C9—C101.390 (2)S1—C231.7788 (16)
C9—C141.394 (2)C23—H23A0.9800
C10—C111.394 (2)C23—H23B0.9800
C10—H100.9500C23—H23C0.9800
C11—C121.388 (2)C24—H24A0.9800
C11—H110.9500C24—H24B0.9800
C12—C131.391 (2)C24—H24C0.9800
C12—H120.9500
C8A—N1—C2106.74 (12)C14—C13—H13119.9
C8A—N1—H1130.6 (12)C12—C13—H13119.9
C2—N1—H1122.6 (12)C13—C14—C9119.96 (14)
N3—C2—N2128.74 (13)C13—C14—H14120.0
N3—C2—N1112.99 (12)C9—C14—H14120.0
N2—C2—N1118.26 (13)N15—C15—C6175.03 (16)
C2—N2—C9128.42 (13)C17—C16—C21119.42 (13)
C2—N2—H2113.3 (12)C17—C16—C7120.65 (13)
C9—N2—H2118.3 (12)C21—C16—C7119.90 (13)
C2—N3—N4102.08 (11)C18—C17—C16120.31 (13)
C8A—N4—N3112.16 (11)C18—C17—H17119.8
C8A—N4—C5124.35 (12)C16—C17—H17119.8
N3—N4—C5123.34 (11)C17—C18—C19120.05 (14)
O1—C5—N4121.08 (13)C17—C18—H18120.0
O1—C5—C6126.58 (13)C19—C18—H18120.0
N4—C5—C6112.33 (12)C18—C19—C20120.12 (14)
C7—C6—C15122.14 (13)C18—C19—H19119.9
C7—C6—C5124.47 (13)C20—C19—H19119.9
C15—C6—C5113.26 (12)C21—C20—C19120.12 (14)
C6—C7—C8118.34 (13)C21—C20—H20119.9
C6—C7—C16121.23 (13)C19—C20—H20119.9
C8—C7—C16120.43 (13)C20—C21—C16119.98 (13)
C8A—C8—C7117.77 (13)C20—C21—H21120.0
C8A—C8—C22116.44 (12)C16—C21—H21120.0
C7—C8—C22125.79 (13)N22—C22—C8173.67 (15)
N1—C8A—N4106.01 (12)O2—S1—C24105.38 (7)
N1—C8A—C8131.52 (13)O2—S1—C23105.07 (7)
N4—C8A—C8122.47 (13)C24—S1—C2399.29 (8)
C10—C9—C14120.41 (13)S1—C23—H23A109.5
C10—C9—N2123.15 (13)S1—C23—H23B109.5
C14—C9—N2116.43 (13)H23A—C23—H23B109.5
C9—C10—C11118.88 (14)S1—C23—H23C109.5
C9—C10—H10120.6H23A—C23—H23C109.5
C11—C10—H10120.6H23B—C23—H23C109.5
C12—C11—C10121.06 (14)S1—C24—H24A109.5
C12—C11—H11119.5S1—C24—H24B109.5
C10—C11—H11119.5H24A—C24—H24B109.5
C11—C12—C13119.36 (14)S1—C24—H24C109.5
C11—C12—H12120.3H24A—C24—H24C109.5
C13—C12—H12120.3H24B—C24—H24C109.5
C14—C13—C12120.29 (14)
C8A—N1—C2—N31.59 (16)N3—N4—C8A—C8179.38 (12)
C8A—N1—C2—N2178.85 (12)C5—N4—C8A—C84.9 (2)
N3—C2—N2—C91.7 (2)C7—C8—C8A—N1178.46 (13)
N1—C2—N2—C9178.83 (13)C22—C8—C8A—N12.0 (2)
N2—C2—N3—N4179.43 (14)C7—C8—C8A—N41.4 (2)
N1—C2—N3—N41.07 (15)C22—C8—C8A—N4178.22 (13)
C2—N3—N4—C8A0.17 (14)C2—N2—C9—C1014.8 (2)
C2—N3—N4—C5175.92 (12)C2—N2—C9—C14166.01 (14)
C8A—N4—C5—O1174.55 (13)C14—C9—C10—C111.3 (2)
N3—N4—C5—O10.7 (2)N2—C9—C10—C11179.53 (14)
C8A—N4—C5—C66.19 (19)C9—C10—C11—C120.4 (2)
N3—N4—C5—C6178.59 (11)C10—C11—C12—C131.4 (3)
O1—C5—C6—C7176.10 (14)C11—C12—C13—C140.8 (2)
N4—C5—C6—C74.69 (19)C12—C13—C14—C90.8 (2)
O1—C5—C6—C157.8 (2)C10—C9—C14—C131.9 (2)
N4—C5—C6—C15171.43 (11)N2—C9—C14—C13178.89 (13)
C15—C6—C7—C8173.97 (12)C6—C7—C16—C17134.34 (14)
C5—C6—C7—C81.8 (2)C8—C7—C16—C1746.20 (19)
C15—C6—C7—C166.6 (2)C6—C7—C16—C2147.42 (19)
C5—C6—C7—C16177.65 (12)C8—C7—C16—C21132.04 (14)
C6—C7—C8—C8A0.09 (19)C21—C16—C17—C180.1 (2)
C16—C7—C8—C8A179.57 (12)C7—C16—C17—C18178.18 (13)
C6—C7—C8—C22179.62 (13)C16—C17—C18—C190.2 (2)
C16—C7—C8—C220.9 (2)C17—C18—C19—C200.1 (2)
C2—N1—C8A—N41.35 (14)C18—C19—C20—C210.5 (2)
C2—N1—C8A—C8178.81 (14)C19—C20—C21—C160.6 (2)
N3—N4—C8A—N10.77 (15)C17—C16—C21—C200.3 (2)
C5—N4—C8A—N1174.93 (12)C7—C16—C21—C20178.61 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.88 (2)1.84 (2)2.6249 (16)146.9 (17)
N2—H2···O20.90 (2)2.07 (2)2.8680 (16)147.7 (17)
C10—H10···N30.952.392.9956 (19)121
C23—H23B···O1i0.982.443.166 (2)131
C24—H24B···N220.982.533.474 (2)162
Symmetry code: (i) x+1, y+1, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O1···H23B2.44-1 + x, -1 + y, z
H17···O12.65-x, 1 - y, 1 - z
O1···H24A2.631 - x, 1 - y, 1 - z
H1···O21.84x, y, z
H14···C212.981 - x, 1 - y, 1 - z
H19···N152.73-x, 1 - y, 2 - z
H18···N222.821 - x, 2 - y, 2 - z
C22···H23B3.081 - x, 2 - y, 1 - z
C9···H203.05x, y, -1 + z
C11···C113.53-x, -y, -z
C12···H183.05x, -1 + y, -1 + z
H19···H23A2.54x, y, 1 + z
H12···H24A2.41-1 + x, -1 + y, -1 + z
H12···S13.041 - x, 1 - y, -z
H23C···H23C2.431 - x, 2 - y, 1 - z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and HMM; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and HMM; supervision, ANK and MA.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarsy, M. A., El Rady, E. A. & El Latif, F. M. A. (2008). J. Heterocycl. Chem. 45, 773–778.  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationÇelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.  Google Scholar
First citationChalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumus, M. K., Kansiz, S., Yuksektepe Ataol, C., Dege, N. & Fritsky, I. O. (2019). Acta Cryst. E75, 492–498.  CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJones, G. & Abarca, B. (2010). Adv. Heterocycl. Chem. 100, 195–252.  CrossRef CAS Google Scholar
First citationKotovshchikov, Y. N., Voloshkin, V. A., Latyshev, G. V., Lukashev, N. V. & Beletskaya, I. P. (2021). Russ. J. Org. Chem. 57, 1212–1244.  CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.  Google Scholar
First citationMohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. (2013). J. Heterocycl. Chem. 50, 1425–1430.  Web of Science CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPoustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoliman, A. M., Mohamed, S. K., El-Remaily, M. A. A. & Abdel-Ghany, H. (2014). J. Heterocycl. Chem. 51, 1202–1209.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.  Web of Science CSD CrossRef Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds