research communications
H-[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitrile dimethyl sulfoxide monosolvate
and Hirshfeld surface analysis of 5-oxo-7-phenyl-2-(phenylamino)-1aFaculty of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dFaculty of Physics, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C20H12N6O·C2H6OS, the [1,2,4]triazolo[1,5-a]pyridine ring system is almost planar and makes dihedral angles of 16.33 (7) and 46.80 (7)°, respectively, with the phenylamino and phenyl rings. In the crystal, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds into chains along the b-axis direction through the dimethyl sulfoxide solvent molecule, forming C(10)R21(6) motifs. These chains are connected via S—O⋯π interactions, π–π stacking interactions between the pyridine rings [centroid-to-centroid distance = 3.6662 (9) Å] and van der Waals interactions. A Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯H (28.1%), C⋯H/H⋯C (27.2%), N⋯H/H⋯N (19.4%) and O⋯H/H⋯O (9.8%) interactions.
Keywords: crystal structure; [1,2,4]triazolo[1,5-a]pyridine; hydrogen bond; Hirshfeld surface analysis.
CCDC reference: 2264500
1. Chemical context
Diverse carbon–carbon and carbon–heteroatom bond-formation reactions are considered fundamental tools in organic synthesis. The reaction has also been amplified, extending these methods to different fields of chemistry, as well to the synthesis of natural products, in medicinal and pharmaceutical chemistry, material science, supramolecular chemistry etc (Çelik et al., 2023; Chalkha et al., 2023; Tapera et al., 2022; Gurbanov et al., 2020; Zubkov et al., 2018). Triazolo[1,5-a]pyridines are accessible and α-substituted pyridines are among the most widely used starting materials for their synthesis. The most common synthetic pathways to these compounds are well-reviewed in the literature (Jones & Abarca, 2010; Soliman et al., 2014; Kotovshchikov et al., 2021). The triazolo[1,5-a]pyridine moiety is a widespread structural motif in various synthetic biologically active compounds, possessing cardiovascular, trypanocidal, nitric oxide synthase inhibitor and antimicrobial activity, and in non-hormonal compounds with antifertility activity and leishmanicidal activity (Jones & Abarca, 2010; Mohamed et al., 2013; Poustforoosh et al., 2022).
A literature survey shows that the title compound 3 was previously synthesized in a two-pot reaction protocol (Barsy et al., 2008), wherein the iminophosphorane 1-amino-6-(triphenylphosphoranylideneamino)-2-oxo-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile 2 prepared from 1,6-diaminopyridine 1 reacted with phenylisocyanate method to prepare 3 (B pathway, Fig. 1). Herein, we disclose a more straightforward one-pot synthesis method of 3 using the same starting compound 1 at room temperature (A pathway, Fig. 1), but through a different pathway.
Continuing our investigations of heterocyclic systems with biological activity and in the framework of our ongoing structural studies (Maharramov et al., 2021, 2022; Naghiyev et al., 2020, 2021, 2022), we report the and Hirshfeld surface analysis of the title compound, 5-oxo-7-phenyl-2-(phenylamino)-1,5-dihydro-[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitrile, which crystallized as a DMSO solvate.
2. Structural commentary
In the title compound, (Fig. 2), the [1,2,4]triazolo[1,5-a]pyridine ring system (N1/N3/N4/C2/C5–C8/C8A) is almost planar [maximum deviation = 0.043 (2) Å for C5] and subtends dihedral angles of 16.33 (7) and 46.80 (7)°, respectively, with the phenylamino and phenyl rings (C9–C14 and C16–C21). The geometric properties of the title compound are normal and consistent with those of the related compounds listed in the Database survey (Section 4).
3. Supramolecular features
In the crystal, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds into chains along the b-axis direction through the dimethyl sulfoxide solvent molecule, forming C(10)(6) motifs (Bernstein et al., 1995; Table 1). These chains are connected via S—O⋯π interactions [S1—O2⋯Cg2i: O2⋯Cg2i = 3.1775 (14) Å; S1⋯Cg2i = 4.0054 (8) Å; S1—O2⋯Cg2i = 111.93 (6)°; symmetry code: (i) 1 − x, 1 − y, 1 − z; Cg2 is the centroid of the pyridine ring (N4/C5–C8/C8A)], π–π stacking interactions [Cg2⋯Cg2ii = 3.6662 (9) Å; slippage = 1.468 Å; symmetry code: (ii) −x, 1 − y, 1 − z] and van der Waals interactions (Fig. 3).
CrystalExplorer17.5 (Spackman et al., 2021) was used to compute Hirshfeld surfaces of the title molecule and two-dimensional fingerprints. The Hirshfeld surfaces were mapped over dnorm in the range −0.6769 (red) to +1.1190 (blue) a.u. The interactions given in Table 2 play a key role in the molecular packing of the title compound. The most important interatomic contact is H⋯H as it makes the highest contribution to the crystal packing (28.1%, Fig. 4b). Other major contributors are C⋯H/H⋯C (27.2%, Fig. 4c), N⋯H/H⋯N (19.4%, Fig. 4d) and N⋯H/H⋯N (9.8%, Fig. 4e) interactions. Smaller contributions are made by N⋯C/C⋯N (6.7%), C⋯C (3.6%), O⋯C/C⋯O(1.7%), N⋯N (1.5%), S⋯H/H⋯S (1.0%), O⋯N/N⋯O (0.7%), S⋯C/C⋯S(0.2%) and O⋯S/S⋯O (0.1%) interactions.
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the central nine-membered ring system `1,5-dihydro[1,2,4]triazolo[1,5-a]pyridine' yielded three compounds related to the title compound, viz. CSD refcodes HODQEZ (Gumus et al., 2019), HODQID (Gumus et al., 2019) and RETCAX (Aydemir et al., 2018).
In the crystal of HODQEZ, pairs of N—H⋯N hydrogen bonds link the molecules, forming inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯π and C—Br⋯π interactions, forming layers parallel to the bc plane. In the crystal of HODQID, molecules are linked by N—H⋯N and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. In the crystal of RETCAX, N—H⋯N hydrogen bonds link the molecules into supramolecular chains propagating along the c-axis direction.
5. Synthesis and crystallization
To a solution of 1,6-diamino-2-oxo-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile (0.82 g, 5.1 mmol) in DMF (25 mL) was added 10 mL of an aqueous solution of potassium hydroxide (0.28 g, 5.1 mmol). The mixture was stirred at room temperature for 2 h. Then an equimolar amount of phenylisothiocyanate (0.51 g, 5.2 mmol) was added to the vigorously stirred reaction mixture and left overnight. After completion of the reaction, monitored by TLC, the reaction mixture was acidified by adding conc. HCl (4 mL). The precipitated solids were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield 80%; m.p. 557–558 K). Single crystals were grown from a DMSO solution.
1H NMR (300 MHz, DMSO-d6, p.p.m.): 4.3 (s, 1H, NH); 6.9 (t, 1H, CHarom, 3JH—H = 7.5 MHz); 7.3 (t, 2H, CHarom, 3JH—H = 7.5 MHz); 7.5 (m, 5H, CHarom); 7.7 (d, 2H, CHarom, 3JH—H = 8.1 MHz); 9.6 (s, 1H, NH); 13C NMR (75 MHz, DMSO-d6, p.p.m.): 76.4 (Cquat), 83.9 (Cquat), 117.0 (CHarom), 117.5 (CN), 118.9 (CN), 120.7 (CHarom), 128.9 (CHarom), 129.0 (CHarom), 129.2 (CHarom), 129.9 (CHarom), 136.3 (Carom), 141.4 (Carom), 152.2 (Cquat), 154.9 (Cquat), 156.2 (Cquat), 161.1 (C=O).
6. Refinement
Crystal data, data collection and structure . The NH H atoms were located in a difference-Fourier map [N1—H1 = 0.88 (2) Å and N2—H2 = 0.90 (2) Å] and refined with Uiso(H) = 1.2Ueq(N). Carbon-bound H atoms were positioned geometrically [C—H = 0.95–0.98 Å;] and were included in the in the riding-model approximation with Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2264500
https://doi.org/10.1107/S2056989023004383/tx2068sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023004383/tx2068Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023004383/tx2068Isup3.cml
Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); cell
CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C20H12N6O·C2H6OS | Z = 2 |
Mr = 430.48 | F(000) = 448 |
Triclinic, P1 | Dx = 1.433 Mg m−3 |
a = 9.87885 (12) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 10.46018 (13) Å | Cell parameters from 15870 reflections |
c = 11.48307 (12) Å | θ = 4.8–79.3° |
α = 100.9305 (10)° | µ = 1.73 mm−1 |
β = 105.3054 (11)° | T = 100 K |
γ = 112.6790 (12)° | Prism, colourless |
V = 997.81 (2) Å3 | 0.22 × 0.16 × 0.12 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 4124 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.037 |
φ and ω scans | θmax = 79.5°, θmin = 4.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −12→9 |
Tmin = 0.660, Tmax = 0.781 | k = −12→13 |
22299 measured reflections | l = −14→14 |
4314 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0554P)2 + 0.554P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
4314 reflections | Δρmax = 0.41 e Å−3 |
289 parameters | Δρmin = −0.51 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.0029 (4) |
Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.06967 (12) | 0.20611 (11) | 0.42668 (10) | 0.0214 (2) | |
N1 | 0.37412 (14) | 0.55891 (13) | 0.44627 (11) | 0.0171 (2) | |
H1 | 0.465 (2) | 0.635 (2) | 0.4612 (18) | 0.021* | |
C2 | 0.29261 (16) | 0.44403 (15) | 0.33251 (13) | 0.0163 (3) | |
N2 | 0.35694 (14) | 0.44663 (14) | 0.24222 (12) | 0.0189 (3) | |
H2 | 0.453 (2) | 0.523 (2) | 0.2678 (18) | 0.023* | |
N3 | 0.15858 (14) | 0.34368 (13) | 0.32865 (11) | 0.0178 (2) | |
N4 | 0.15615 (14) | 0.40235 (12) | 0.44782 (11) | 0.0159 (2) | |
C5 | 0.03861 (16) | 0.32893 (15) | 0.49174 (14) | 0.0177 (3) | |
C6 | 0.06152 (16) | 0.41513 (15) | 0.61676 (13) | 0.0176 (3) | |
C7 | 0.19229 (16) | 0.55162 (15) | 0.69078 (13) | 0.0174 (3) | |
C8 | 0.30798 (16) | 0.61215 (15) | 0.63984 (13) | 0.0172 (3) | |
C8A | 0.28510 (16) | 0.53211 (15) | 0.51784 (13) | 0.0167 (3) | |
C9 | 0.29501 (17) | 0.34391 (15) | 0.11906 (13) | 0.0179 (3) | |
C10 | 0.13802 (18) | 0.23723 (17) | 0.06025 (15) | 0.0227 (3) | |
H10 | 0.0659 | 0.2308 | 0.1023 | 0.027* | |
C11 | 0.08828 (19) | 0.13987 (18) | −0.06143 (15) | 0.0262 (3) | |
H11 | −0.0189 | 0.0670 | −0.1026 | 0.031* | |
C12 | 0.19282 (19) | 0.14769 (18) | −0.12345 (15) | 0.0265 (3) | |
H12 | 0.1581 | 0.0794 | −0.2056 | 0.032* | |
C13 | 0.34888 (19) | 0.25654 (18) | −0.06421 (15) | 0.0242 (3) | |
H13 | 0.4208 | 0.2634 | −0.1065 | 0.029* | |
C14 | 0.39982 (17) | 0.35488 (17) | 0.05611 (14) | 0.0211 (3) | |
H14 | 0.5062 | 0.4298 | 0.0958 | 0.025* | |
C15 | −0.06863 (17) | 0.35194 (15) | 0.65539 (13) | 0.0186 (3) | |
N15 | −0.18041 (15) | 0.29648 (14) | 0.67726 (13) | 0.0235 (3) | |
C16 | 0.21011 (16) | 0.63048 (16) | 0.82000 (13) | 0.0178 (3) | |
C17 | 0.25352 (17) | 0.78044 (16) | 0.85674 (14) | 0.0202 (3) | |
H17 | 0.2689 | 0.8319 | 0.7977 | 0.024* | |
C18 | 0.27428 (18) | 0.85436 (16) | 0.97909 (14) | 0.0223 (3) | |
H18 | 0.3041 | 0.9563 | 1.0037 | 0.027* | |
C19 | 0.25145 (17) | 0.77930 (17) | 1.06577 (14) | 0.0218 (3) | |
H19 | 0.2658 | 0.8301 | 1.1495 | 0.026* | |
C20 | 0.20758 (17) | 0.62989 (17) | 1.03002 (14) | 0.0215 (3) | |
H20 | 0.1913 | 0.5788 | 1.0892 | 0.026* | |
C21 | 0.18757 (17) | 0.55538 (16) | 0.90782 (14) | 0.0195 (3) | |
H21 | 0.1587 | 0.4537 | 0.8839 | 0.023* | |
C22 | 0.44758 (17) | 0.74971 (16) | 0.70142 (14) | 0.0191 (3) | |
N22 | 0.56198 (16) | 0.85887 (14) | 0.74045 (13) | 0.0251 (3) | |
S1 | 0.73840 (4) | 0.86862 (4) | 0.42677 (3) | 0.01894 (11) | |
O2 | 0.63433 (12) | 0.71002 (11) | 0.41226 (10) | 0.0215 (2) | |
C23 | 0.6060 (2) | 0.94489 (18) | 0.39068 (19) | 0.0328 (4) | |
H23A | 0.5447 | 0.9058 | 0.2985 | 0.049* | |
H23B | 0.6662 | 1.0518 | 0.4170 | 0.049* | |
H23C | 0.5340 | 0.9190 | 0.4366 | 0.049* | |
C24 | 0.83449 (19) | 0.96161 (17) | 0.59410 (15) | 0.0249 (3) | |
H24A | 0.9001 | 0.9187 | 0.6319 | 0.037* | |
H24B | 0.7551 | 0.9518 | 0.6326 | 0.037* | |
H24C | 0.9013 | 1.0657 | 0.6101 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0204 (5) | 0.0187 (5) | 0.0200 (5) | 0.0048 (4) | 0.0082 (4) | 0.0039 (4) |
N1 | 0.0170 (6) | 0.0169 (5) | 0.0174 (6) | 0.0073 (5) | 0.0079 (4) | 0.0045 (4) |
C2 | 0.0179 (6) | 0.0170 (6) | 0.0160 (6) | 0.0096 (5) | 0.0072 (5) | 0.0054 (5) |
N2 | 0.0173 (6) | 0.0196 (6) | 0.0181 (6) | 0.0065 (5) | 0.0089 (5) | 0.0037 (5) |
N3 | 0.0193 (6) | 0.0192 (6) | 0.0162 (6) | 0.0087 (5) | 0.0095 (5) | 0.0049 (5) |
N4 | 0.0174 (6) | 0.0156 (5) | 0.0157 (5) | 0.0075 (5) | 0.0080 (4) | 0.0046 (4) |
C5 | 0.0187 (6) | 0.0193 (6) | 0.0191 (7) | 0.0108 (5) | 0.0086 (5) | 0.0083 (5) |
C6 | 0.0195 (7) | 0.0199 (7) | 0.0177 (7) | 0.0109 (6) | 0.0091 (5) | 0.0081 (5) |
C7 | 0.0198 (7) | 0.0198 (7) | 0.0178 (7) | 0.0128 (6) | 0.0077 (5) | 0.0080 (5) |
C8 | 0.0181 (6) | 0.0175 (6) | 0.0172 (7) | 0.0089 (5) | 0.0073 (5) | 0.0058 (5) |
C8A | 0.0175 (6) | 0.0187 (6) | 0.0178 (7) | 0.0109 (5) | 0.0075 (5) | 0.0076 (5) |
C9 | 0.0204 (7) | 0.0190 (6) | 0.0161 (6) | 0.0102 (5) | 0.0077 (5) | 0.0058 (5) |
C10 | 0.0210 (7) | 0.0257 (7) | 0.0210 (7) | 0.0090 (6) | 0.0106 (6) | 0.0063 (6) |
C11 | 0.0227 (7) | 0.0272 (8) | 0.0200 (7) | 0.0057 (6) | 0.0072 (6) | 0.0032 (6) |
C12 | 0.0298 (8) | 0.0277 (8) | 0.0168 (7) | 0.0104 (7) | 0.0088 (6) | 0.0025 (6) |
C13 | 0.0263 (8) | 0.0301 (8) | 0.0211 (7) | 0.0144 (6) | 0.0138 (6) | 0.0085 (6) |
C14 | 0.0197 (7) | 0.0253 (7) | 0.0202 (7) | 0.0107 (6) | 0.0093 (6) | 0.0082 (6) |
C15 | 0.0214 (7) | 0.0187 (6) | 0.0173 (7) | 0.0105 (6) | 0.0075 (5) | 0.0058 (5) |
N15 | 0.0241 (6) | 0.0250 (6) | 0.0239 (6) | 0.0114 (5) | 0.0123 (5) | 0.0083 (5) |
C16 | 0.0170 (6) | 0.0211 (7) | 0.0170 (7) | 0.0100 (5) | 0.0070 (5) | 0.0058 (5) |
C17 | 0.0222 (7) | 0.0216 (7) | 0.0206 (7) | 0.0115 (6) | 0.0105 (6) | 0.0080 (6) |
C18 | 0.0230 (7) | 0.0212 (7) | 0.0221 (7) | 0.0107 (6) | 0.0090 (6) | 0.0039 (6) |
C19 | 0.0209 (7) | 0.0273 (7) | 0.0174 (7) | 0.0122 (6) | 0.0079 (6) | 0.0041 (6) |
C20 | 0.0213 (7) | 0.0266 (7) | 0.0195 (7) | 0.0122 (6) | 0.0093 (6) | 0.0087 (6) |
C21 | 0.0187 (6) | 0.0207 (7) | 0.0199 (7) | 0.0096 (5) | 0.0078 (5) | 0.0066 (6) |
C22 | 0.0231 (7) | 0.0216 (7) | 0.0179 (6) | 0.0130 (6) | 0.0108 (6) | 0.0072 (5) |
N22 | 0.0255 (7) | 0.0221 (6) | 0.0252 (7) | 0.0082 (5) | 0.0114 (5) | 0.0053 (5) |
S1 | 0.01723 (18) | 0.01879 (19) | 0.01979 (19) | 0.00657 (14) | 0.00849 (13) | 0.00567 (13) |
O2 | 0.0199 (5) | 0.0174 (5) | 0.0244 (5) | 0.0061 (4) | 0.0091 (4) | 0.0048 (4) |
C23 | 0.0242 (8) | 0.0246 (8) | 0.0444 (10) | 0.0123 (7) | 0.0037 (7) | 0.0111 (7) |
C24 | 0.0269 (8) | 0.0197 (7) | 0.0224 (7) | 0.0085 (6) | 0.0062 (6) | 0.0038 (6) |
O1—C5 | 1.2277 (18) | C13—C14 | 1.384 (2) |
N1—C8A | 1.3439 (18) | C13—H13 | 0.9500 |
N1—C2 | 1.3792 (18) | C14—H14 | 0.9500 |
N1—H1 | 0.88 (2) | C15—N15 | 1.152 (2) |
C2—N3 | 1.3178 (18) | C16—C17 | 1.399 (2) |
C2—N2 | 1.3508 (18) | C16—C21 | 1.403 (2) |
N2—C9 | 1.4102 (18) | C17—C18 | 1.388 (2) |
N2—H2 | 0.90 (2) | C17—H17 | 0.9500 |
N3—N4 | 1.4000 (16) | C18—C19 | 1.392 (2) |
N4—C8A | 1.3504 (18) | C18—H18 | 0.9500 |
N4—C5 | 1.4003 (18) | C19—C20 | 1.393 (2) |
C5—C6 | 1.4510 (19) | C19—H19 | 0.9500 |
C6—C7 | 1.403 (2) | C20—C21 | 1.391 (2) |
C6—C15 | 1.4297 (19) | C20—H20 | 0.9500 |
C7—C8 | 1.4088 (19) | C21—H21 | 0.9500 |
C7—C16 | 1.4829 (19) | C22—N22 | 1.151 (2) |
C8—C8A | 1.3988 (19) | S1—O2 | 1.5253 (10) |
C8—C22 | 1.429 (2) | S1—C24 | 1.7764 (16) |
C9—C10 | 1.390 (2) | S1—C23 | 1.7788 (16) |
C9—C14 | 1.394 (2) | C23—H23A | 0.9800 |
C10—C11 | 1.394 (2) | C23—H23B | 0.9800 |
C10—H10 | 0.9500 | C23—H23C | 0.9800 |
C11—C12 | 1.388 (2) | C24—H24A | 0.9800 |
C11—H11 | 0.9500 | C24—H24B | 0.9800 |
C12—C13 | 1.391 (2) | C24—H24C | 0.9800 |
C12—H12 | 0.9500 | ||
C8A—N1—C2 | 106.74 (12) | C14—C13—H13 | 119.9 |
C8A—N1—H1 | 130.6 (12) | C12—C13—H13 | 119.9 |
C2—N1—H1 | 122.6 (12) | C13—C14—C9 | 119.96 (14) |
N3—C2—N2 | 128.74 (13) | C13—C14—H14 | 120.0 |
N3—C2—N1 | 112.99 (12) | C9—C14—H14 | 120.0 |
N2—C2—N1 | 118.26 (13) | N15—C15—C6 | 175.03 (16) |
C2—N2—C9 | 128.42 (13) | C17—C16—C21 | 119.42 (13) |
C2—N2—H2 | 113.3 (12) | C17—C16—C7 | 120.65 (13) |
C9—N2—H2 | 118.3 (12) | C21—C16—C7 | 119.90 (13) |
C2—N3—N4 | 102.08 (11) | C18—C17—C16 | 120.31 (13) |
C8A—N4—N3 | 112.16 (11) | C18—C17—H17 | 119.8 |
C8A—N4—C5 | 124.35 (12) | C16—C17—H17 | 119.8 |
N3—N4—C5 | 123.34 (11) | C17—C18—C19 | 120.05 (14) |
O1—C5—N4 | 121.08 (13) | C17—C18—H18 | 120.0 |
O1—C5—C6 | 126.58 (13) | C19—C18—H18 | 120.0 |
N4—C5—C6 | 112.33 (12) | C18—C19—C20 | 120.12 (14) |
C7—C6—C15 | 122.14 (13) | C18—C19—H19 | 119.9 |
C7—C6—C5 | 124.47 (13) | C20—C19—H19 | 119.9 |
C15—C6—C5 | 113.26 (12) | C21—C20—C19 | 120.12 (14) |
C6—C7—C8 | 118.34 (13) | C21—C20—H20 | 119.9 |
C6—C7—C16 | 121.23 (13) | C19—C20—H20 | 119.9 |
C8—C7—C16 | 120.43 (13) | C20—C21—C16 | 119.98 (13) |
C8A—C8—C7 | 117.77 (13) | C20—C21—H21 | 120.0 |
C8A—C8—C22 | 116.44 (12) | C16—C21—H21 | 120.0 |
C7—C8—C22 | 125.79 (13) | N22—C22—C8 | 173.67 (15) |
N1—C8A—N4 | 106.01 (12) | O2—S1—C24 | 105.38 (7) |
N1—C8A—C8 | 131.52 (13) | O2—S1—C23 | 105.07 (7) |
N4—C8A—C8 | 122.47 (13) | C24—S1—C23 | 99.29 (8) |
C10—C9—C14 | 120.41 (13) | S1—C23—H23A | 109.5 |
C10—C9—N2 | 123.15 (13) | S1—C23—H23B | 109.5 |
C14—C9—N2 | 116.43 (13) | H23A—C23—H23B | 109.5 |
C9—C10—C11 | 118.88 (14) | S1—C23—H23C | 109.5 |
C9—C10—H10 | 120.6 | H23A—C23—H23C | 109.5 |
C11—C10—H10 | 120.6 | H23B—C23—H23C | 109.5 |
C12—C11—C10 | 121.06 (14) | S1—C24—H24A | 109.5 |
C12—C11—H11 | 119.5 | S1—C24—H24B | 109.5 |
C10—C11—H11 | 119.5 | H24A—C24—H24B | 109.5 |
C11—C12—C13 | 119.36 (14) | S1—C24—H24C | 109.5 |
C11—C12—H12 | 120.3 | H24A—C24—H24C | 109.5 |
C13—C12—H12 | 120.3 | H24B—C24—H24C | 109.5 |
C14—C13—C12 | 120.29 (14) | ||
C8A—N1—C2—N3 | −1.59 (16) | N3—N4—C8A—C8 | 179.38 (12) |
C8A—N1—C2—N2 | 178.85 (12) | C5—N4—C8A—C8 | −4.9 (2) |
N3—C2—N2—C9 | 1.7 (2) | C7—C8—C8A—N1 | −178.46 (13) |
N1—C2—N2—C9 | −178.83 (13) | C22—C8—C8A—N1 | 2.0 (2) |
N2—C2—N3—N4 | −179.43 (14) | C7—C8—C8A—N4 | 1.4 (2) |
N1—C2—N3—N4 | 1.07 (15) | C22—C8—C8A—N4 | −178.22 (13) |
C2—N3—N4—C8A | −0.17 (14) | C2—N2—C9—C10 | 14.8 (2) |
C2—N3—N4—C5 | −175.92 (12) | C2—N2—C9—C14 | −166.01 (14) |
C8A—N4—C5—O1 | −174.55 (13) | C14—C9—C10—C11 | 1.3 (2) |
N3—N4—C5—O1 | 0.7 (2) | N2—C9—C10—C11 | −179.53 (14) |
C8A—N4—C5—C6 | 6.19 (19) | C9—C10—C11—C12 | 0.4 (2) |
N3—N4—C5—C6 | −178.59 (11) | C10—C11—C12—C13 | −1.4 (3) |
O1—C5—C6—C7 | 176.10 (14) | C11—C12—C13—C14 | 0.8 (2) |
N4—C5—C6—C7 | −4.69 (19) | C12—C13—C14—C9 | 0.8 (2) |
O1—C5—C6—C15 | −7.8 (2) | C10—C9—C14—C13 | −1.9 (2) |
N4—C5—C6—C15 | 171.43 (11) | N2—C9—C14—C13 | 178.89 (13) |
C15—C6—C7—C8 | −173.97 (12) | C6—C7—C16—C17 | −134.34 (14) |
C5—C6—C7—C8 | 1.8 (2) | C8—C7—C16—C17 | 46.20 (19) |
C15—C6—C7—C16 | 6.6 (2) | C6—C7—C16—C21 | 47.42 (19) |
C5—C6—C7—C16 | −177.65 (12) | C8—C7—C16—C21 | −132.04 (14) |
C6—C7—C8—C8A | 0.09 (19) | C21—C16—C17—C18 | 0.1 (2) |
C16—C7—C8—C8A | 179.57 (12) | C7—C16—C17—C18 | −178.18 (13) |
C6—C7—C8—C22 | 179.62 (13) | C16—C17—C18—C19 | −0.2 (2) |
C16—C7—C8—C22 | −0.9 (2) | C17—C18—C19—C20 | −0.1 (2) |
C2—N1—C8A—N4 | 1.35 (14) | C18—C19—C20—C21 | 0.5 (2) |
C2—N1—C8A—C8 | −178.81 (14) | C19—C20—C21—C16 | −0.6 (2) |
N3—N4—C8A—N1 | −0.77 (15) | C17—C16—C21—C20 | 0.3 (2) |
C5—N4—C8A—N1 | 174.93 (12) | C7—C16—C21—C20 | 178.61 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.88 (2) | 1.84 (2) | 2.6249 (16) | 146.9 (17) |
N2—H2···O2 | 0.90 (2) | 2.07 (2) | 2.8680 (16) | 147.7 (17) |
C10—H10···N3 | 0.95 | 2.39 | 2.9956 (19) | 121 |
C23—H23B···O1i | 0.98 | 2.44 | 3.166 (2) | 131 |
C24—H24B···N22 | 0.98 | 2.53 | 3.474 (2) | 162 |
Symmetry code: (i) x+1, y+1, z. |
Contact | Distance | Symmetry operation |
O1···H23B | 2.44 | -1 + x, -1 + y, z |
H17···O1 | 2.65 | -x, 1 - y, 1 - z |
O1···H24A | 2.63 | 1 - x, 1 - y, 1 - z |
H1···O2 | 1.84 | x, y, z |
H14···C21 | 2.98 | 1 - x, 1 - y, 1 - z |
H19···N15 | 2.73 | -x, 1 - y, 2 - z |
H18···N22 | 2.82 | 1 - x, 2 - y, 2 - z |
C22···H23B | 3.08 | 1 - x, 2 - y, 1 - z |
C9···H20 | 3.05 | x, y, -1 + z |
C11···C11 | 3.53 | -x, -y, -z |
C12···H18 | 3.05 | x, -1 + y, -1 + z |
H19···H23A | 2.54 | x, y, 1 + z |
H12···H24A | 2.41 | -1 + x, -1 + y, -1 + z |
H12···S1 | 3.04 | 1 - x, 1 - y, -z |
H23C···H23C | 2.43 | 1 - x, 2 - y, 1 - z |
Acknowledgements
Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and HMM; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and HMM; supervision, ANK and MA.
Funding information
This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.
References
Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370. Web of Science CSD CrossRef IUCr Journals Google Scholar
Barsy, M. A., El Rady, E. A. & El Latif, F. M. A. (2008). J. Heterocycl. Chem. 45, 773–778. CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158. Google Scholar
Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumus, M. K., Kansiz, S., Yuksektepe Ataol, C., Dege, N. & Fritsky, I. O. (2019). Acta Cryst. E75, 492–498. CSD CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jones, G. & Abarca, B. (2010). Adv. Heterocycl. Chem. 100, 195–252. CrossRef CAS Google Scholar
Kotovshchikov, Y. N., Voloshkin, V. A., Latyshev, G. V., Lukashev, N. V. & Beletskaya, I. P. (2021). Russ. J. Org. Chem. 57, 1212–1244. CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11. Google Scholar
Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73. Google Scholar
Mohamed, S. K., Soliman, A. M., El Remaily, M. A. A. & Abdel-Ghany, H. (2013). J. Heterocycl. Chem. 50, 1425–1430. Web of Science CrossRef CAS Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241. Web of Science CrossRef PubMed Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soliman, A. M., Mohamed, S. K., El-Remaily, M. A. A. & Abdel-Ghany, H. (2014). J. Heterocycl. Chem. 51, 1202–1209. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816. Web of Science CSD CrossRef Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.