research communications
Polymorphic structures of 3-phenyl-1H-1,3-benzodiazol-2(3H)-one
aDepartment of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
*Correspondence e-mail: klee1@gnu.ac.kr
The polymorphic structures (I and II) of 3-phenyl-1H-1,3-benzodiazol-2(3H)-one, C13H10N2O, acquired from pentane diffusion into the solution in THF, are reported. The structures show negligible differences in bond distances and angles, but the C—N—C—C torsion angles between the backbone and the phenyl substituent, 123.02 (15)° for I and 137.18 (11)° for II, are different. Compound I features a stronger C=O⋯H—N hydrogen bond than that in II, while the structure of II exhibits a stronger π–π interaction than in I, as confirmed by the shorter intercentroid distance [3.3257 (8) Å in II in comparison to 3.6862 (7) Å in I]. Overall, the supramolecular interactions of I and II are distinct, presumably originating from the variation in the dihedral angle.
Keywords: crystal structure; benzimidazolone; hydrogen bond.
1. Chemical context
Benzimidazolones are widely found in functional organic and biologically active molecules (Palin et al., 2008; Monforte et al., 2010; Pribut et al., 2019; Bellenie et al., 2020). For example, substituted benzimidazolones have been used as pigments due to their high fastness and resistance to light and weathering (Metz & Morgenroth, 2009). In addition, the biological activities of benzimidazolone derivatives have been tested for anticancer, HIV, pain regulation, etc. (Henning et al., 1987; Elsinga et al., 1997; Tapia et al., 1999; Kawamoto et al., 2001; Poulain et al., 2001; Roger et al., 2003; Dombroski et al., 2004; Gustin et al., 2005; Li et al., 2005; Hammach et al., 2006; Monforte et al., 2009).
Singly N-substituted benzimidazolones exhibit interesting properties partially due to the hydrogen-bonding interactions between N—H⋯O=C moieties. N-phenyl-substituted benzimidazolone can be prepared by the intramolecular N-arylation of urea (Beyer et al., 2011), carbonylation of 2-nitroaniline (Qi et al., 2019), carbonylation of o-phenylenediamine with CO2 (Yu et al., 2013), carbonylation of iminophosphorane with CO2 (Łukasik & Wróbel, 2016), iodosylbenzene-induced intramolecular Hofmann rearrangement of 2-(phenylamino)benzamide (Liu et al., 2012), and carbonylation of N1-phenylbenzene-1,2-diamine with 1,1′-carbonyldiimidazole (Zhang et al., 2008). Preparations of phenyl-substituted benzimidazolone have been reported using various reagents and catalysts, but the structure is unknown.
Here we report two polymorphic structures of 3-phenyl-1H-1,3-benzodiazol-2(3H)-one. The compound was prepared following the reported procedure using 1,1′-carbonyldiimidazole and N1-phenylbenzene-1,2-diamine in CH2Cl2 (Zhang et al., 2008). Single crystals grown by pentane vapor diffusion into a THF solution formed colorless needles (I) and blocks (II).
2. Structural commentary
The title compounds crystallized as colorless needles (I) and blocks (II) in space groups C2/c and Pbca, respectively. The two polymorphic structures exhibit identical bond distances and angles, except for the dihedral angle of the phenyl substituent (Fig. 1). Both structures retain the planarity of benzimidazolone moiety, as demonstrated by the low r.m.s. deviations of 0.009 and 0.023 Å for I and II, respectively. The C2—N1—C8—C9/C13 torsion angle is 123.03 (14) and −137.18 (12)° for I and II, respectively. No additional differences are observed from an analysis of bond distances and angles.
3. Supramolecular features
Initial investigations of supramolecular features for I and II were carried out using Hirshfeld surface analysis with CrystalExplorer 21.5 (Spackman et al., 2021). The Hirshfeld surface was mapped over dnorm in the ranges −0.6415 to 1.2040 a.u. and −0.5612 to 1.1830 a.u. for I and II, respectively (Figs. 2 and 3). The most intense red spots on the surface for I and II indicate the N3—H3⋯O1 hydrogen-bonding interactions (Tables 1 and 2), which have R22(8) graph-set motifs (Bernstein et al., 1995). The shorter D⋯A and H⋯A distances, and more linear D—H⋯A angle reveal that the hydrogen-bonding interaction in I is stronger than that in II. In contrast, the structure of II contains a stronger π–π interaction between the adjacent benzimidazolone moieties, as defined by the centroid⋯centroid distance of 3.3257 (8) Å, while the corresponding distance in I is more elongated at 3.6862 (7) Å.
Minor intermolecular interactions are observed as faint red spots on the surface. The spots in I indicate the intermolecular interactions of C4⋯C2/C2⋯C4, C3A⋯C3A and C7—H7/H7—C7, whereas those in II correspond to C2⋯C5/C5⋯C2, C4—H4⋯C12/ C12⋯H4—C4, C7A⋯H6—C6/C6—H6⋯C7A, C3A⋯H6—C6/C6-H6⋯C3A and C3A⋯C6/C6⋯C3A contacts. The largest contributions to the Hirshfeld surface of I arises from H⋯H (44.4%), C⋯H/H⋯C (31.9%), and O⋯H/H⋯O (13.5%) contacts, whereas the contributions for II are H⋯H (45.8%), C⋯H/H⋯C (27.5%) and O⋯H/H⋯O (15.5%). Minor contributions include N⋯H/H⋯N (3.6%), C⋯C (3.2%), C⋯N/N⋯C (2.1%), C⋯O/O⋯C (1.4%) for I and C⋯C (5.4%), C⋯N/N⋯C (3.4%), N⋯H/H⋯N (3.2%), C⋯O/O⋯C (0.2%) for II.
4. Database survey
A search for the title compound in the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016) did not match any reported structures, including aryl-derivative searches. However, a survey for mono-N-substituted benzimidazolone compounds revealed 75 results, which included structures with simple substituents such as methyl (WIKPAJ; Rong et al., 2013), tert-butyl (WIKNOV; Rong et al., 2013), octyl (ZANXET; Belaziz, Kandri Rodi, Essassi et al., 2012), nonyl (IJUGIE; Ouzidan, Kandri Rodi et al., 2011), decyl (ESANAQ; Ait Elmachkouri et al., 2021), dodecyl (SECBUZ; Belaziz, Kandri Rodi, Ouazzani Chahdi et al., 2012), benzyl (EVEYIO; Ouzidan, Essassi et al., 2011), 4-methylbenzyl (NEQBIW; Belaziz et al., 2013), acetyl (VADYIM; Sebhaoui et al., 2021) and a trifluoromethyl group (ZEDJAX; Bouayad-Gervais et al., 2022). Most structures feature bimolecular hydrogen-bonding interactions between N—H ⋯ O=C moieties with an R22(8) graph-set motif, but in ZEDJAX N—H ⋯ O=C hydrogen bonds link the molecules into C(4) chains. The distances between a nitrogen donor and an oxygen acceptor range from 2.79–2.84 Å, comparable to the values for I and II of 2.7786 (14) and 2.8453 (14) Å, respectively.
5. Synthesis and crystallization
3-Phenyl-1H-1,3-benzodiazol-2(3H)-one was prepared following a reported procedure (Fig. 4; Zhang et al., 2008; Mark et al., 2013). A solution of 1,1′-carbonyldiimidazole (0.50 g, 3.1 mmol) and 2-aminodiphenylamine (0.57 g, 3.1 mmol) in CH2Cl2 (15 mL) was stirred at room temperature overnight. The resulting white precipitate was filtered. An additional white precipitate was acquired by adding Et2O (10 mL) into the filtrate. Combined yield: 0.30 g (46%). 1H NMR (CDCl3, 300 MHz): δ 10.75 (br s, NH, 1H), 7.58 (m, Ar, 4H), 7.45 (m, Ar, 1H), 7.17 (m, Ar, 1H), 7.10 (m, Ar, 1H), 7.06 (m, Ar, 2H). Pentane vapor diffusion into a solution of the compound in THF formed colorless needles and blocks.
6. Refinement
Crystal data, data collection, and . No appreciable disorder was observed for both structures. The hydrogen atoms were optimized using riding models.
are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989023003961/vm2281sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023003961/vm2281Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023003961/vm2281IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023003961/vm2281Isup4.cml
For both structures, data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).C13H10N2O | F(000) = 880 |
Mr = 210.23 | Dx = 1.377 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.0187 (9) Å | Cell parameters from 2753 reflections |
b = 6.4455 (3) Å | θ = 2.3–27.5° |
c = 18.7315 (10) Å | µ = 0.09 mm−1 |
β = 111.181 (3)° | T = 193 K |
V = 2028.50 (18) Å3 | NEEDLE, colourless |
Z = 8 | 0.51 × 0.23 × 0.14 mm |
Bruker APEXII CCD diffractometer | 1956 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.031 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.6°, θmin = 2.3° |
Tmin = 0.699, Tmax = 0.746 | h = −23→23 |
9328 measured reflections | k = −8→8 |
2350 independent reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0438P)2 + 1.4081P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2350 reflections | Δρmax = 0.18 e Å−3 |
145 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.60223 (5) | 0.96614 (15) | 0.57745 (5) | 0.0239 (2) | |
N3 | 0.53005 (6) | 0.77512 (18) | 0.46886 (6) | 0.0210 (3) | |
H3 | 0.488955 | 0.857863 | 0.448435 | 0.025* | |
N1 | 0.64477 (6) | 0.64976 (18) | 0.54578 (6) | 0.0199 (3) | |
C8 | 0.71782 (7) | 0.6314 (2) | 0.60949 (7) | 0.0200 (3) | |
C7A | 0.61292 (7) | 0.5048 (2) | 0.48703 (7) | 0.0198 (3) | |
C3A | 0.54019 (7) | 0.5865 (2) | 0.43844 (7) | 0.0202 (3) | |
C2 | 0.59267 (7) | 0.8152 (2) | 0.53505 (7) | 0.0201 (3) | |
C9 | 0.73216 (8) | 0.4585 (2) | 0.65660 (7) | 0.0242 (3) | |
H9 | 0.694564 | 0.348538 | 0.645522 | 0.029* | |
C13 | 0.77316 (7) | 0.7904 (2) | 0.62403 (7) | 0.0230 (3) | |
H13 | 0.763240 | 0.907155 | 0.590917 | 0.028* | |
C7 | 0.64074 (8) | 0.3170 (2) | 0.47242 (8) | 0.0236 (3) | |
H7 | 0.689738 | 0.261391 | 0.506014 | 0.028* | |
C4 | 0.49365 (8) | 0.4809 (2) | 0.37362 (7) | 0.0238 (3) | |
H4 | 0.443989 | 0.534926 | 0.340804 | 0.029* | |
C5 | 0.52220 (8) | 0.2924 (2) | 0.35821 (8) | 0.0274 (3) | |
H5 | 0.491700 | 0.217059 | 0.313667 | 0.033* | |
C10 | 0.80220 (8) | 0.4481 (2) | 0.72020 (8) | 0.0275 (3) | |
H10 | 0.812386 | 0.330940 | 0.753147 | 0.033* | |
C6 | 0.59439 (8) | 0.2116 (2) | 0.40654 (8) | 0.0266 (3) | |
H6 | 0.612378 | 0.082452 | 0.394429 | 0.032* | |
C12 | 0.84327 (8) | 0.7775 (2) | 0.68750 (8) | 0.0274 (3) | |
H12 | 0.881670 | 0.885313 | 0.697783 | 0.033* | |
C11 | 0.85719 (8) | 0.6075 (2) | 0.73576 (7) | 0.0283 (3) | |
H11 | 0.904654 | 0.600345 | 0.779703 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0232 (5) | 0.0213 (5) | 0.0244 (5) | 0.0026 (4) | 0.0052 (4) | −0.0008 (4) |
N3 | 0.0185 (5) | 0.0202 (6) | 0.0217 (5) | 0.0040 (4) | 0.0041 (4) | 0.0023 (4) |
N1 | 0.0177 (5) | 0.0193 (6) | 0.0223 (5) | 0.0027 (4) | 0.0068 (4) | 0.0014 (4) |
C8 | 0.0177 (6) | 0.0243 (8) | 0.0193 (6) | 0.0038 (5) | 0.0083 (5) | 0.0019 (5) |
C7A | 0.0191 (6) | 0.0213 (7) | 0.0216 (6) | −0.0015 (5) | 0.0105 (5) | 0.0018 (5) |
C3A | 0.0205 (6) | 0.0207 (7) | 0.0218 (6) | 0.0006 (5) | 0.0106 (5) | 0.0032 (5) |
C2 | 0.0195 (6) | 0.0207 (7) | 0.0209 (6) | 0.0012 (5) | 0.0081 (5) | 0.0031 (5) |
C9 | 0.0234 (6) | 0.0248 (8) | 0.0269 (7) | 0.0031 (6) | 0.0122 (5) | 0.0037 (6) |
C13 | 0.0221 (6) | 0.0232 (8) | 0.0244 (6) | 0.0019 (5) | 0.0095 (5) | 0.0030 (5) |
C7 | 0.0216 (6) | 0.0236 (8) | 0.0300 (7) | 0.0022 (5) | 0.0145 (5) | 0.0029 (6) |
C4 | 0.0229 (6) | 0.0272 (8) | 0.0210 (6) | −0.0022 (6) | 0.0076 (5) | 0.0025 (5) |
C5 | 0.0333 (7) | 0.0278 (9) | 0.0251 (7) | −0.0077 (6) | 0.0152 (6) | −0.0037 (6) |
C10 | 0.0300 (7) | 0.0295 (9) | 0.0239 (6) | 0.0100 (6) | 0.0109 (5) | 0.0071 (6) |
C6 | 0.0322 (7) | 0.0221 (8) | 0.0327 (7) | −0.0013 (6) | 0.0203 (6) | −0.0021 (6) |
C12 | 0.0220 (6) | 0.0306 (9) | 0.0288 (7) | −0.0010 (6) | 0.0083 (5) | −0.0044 (6) |
C11 | 0.0232 (6) | 0.0369 (9) | 0.0211 (6) | 0.0088 (6) | 0.0037 (5) | −0.0022 (6) |
O1—C2 | 1.2282 (16) | C13—H13 | 0.9500 |
N3—H3 | 0.8800 | C13—C12 | 1.3896 (18) |
N3—C3A | 1.3824 (18) | C7—H7 | 0.9500 |
N3—C2 | 1.3660 (16) | C7—C6 | 1.3920 (19) |
N1—C8 | 1.4266 (15) | C4—H4 | 0.9500 |
N1—C7A | 1.3988 (17) | C4—C5 | 1.390 (2) |
N1—C2 | 1.3864 (17) | C5—H5 | 0.9500 |
C8—C9 | 1.3868 (19) | C5—C6 | 1.390 (2) |
C8—C13 | 1.3867 (19) | C10—H10 | 0.9500 |
C7A—C3A | 1.4004 (17) | C10—C11 | 1.384 (2) |
C7A—C7 | 1.375 (2) | C6—H6 | 0.9500 |
C3A—C4 | 1.3803 (18) | C12—H12 | 0.9500 |
C9—H9 | 0.9500 | C12—C11 | 1.384 (2) |
C9—C10 | 1.3893 (18) | C11—H11 | 0.9500 |
C3A—N3—H3 | 124.7 | C12—C13—H13 | 120.3 |
C2—N3—H3 | 124.7 | C7A—C7—H7 | 121.3 |
C2—N3—C3A | 110.58 (11) | C7A—C7—C6 | 117.46 (12) |
C7A—N1—C8 | 126.52 (11) | C6—C7—H7 | 121.3 |
C2—N1—C8 | 123.83 (11) | C3A—C4—H4 | 121.3 |
C2—N1—C7A | 109.60 (10) | C3A—C4—C5 | 117.46 (12) |
C9—C8—N1 | 120.15 (12) | C5—C4—H4 | 121.3 |
C13—C8—N1 | 118.93 (12) | C4—C5—H5 | 119.3 |
C13—C8—C9 | 120.91 (12) | C4—C5—C6 | 121.45 (13) |
N1—C7A—C3A | 106.37 (12) | C6—C5—H5 | 119.3 |
C7—C7A—N1 | 131.98 (12) | C9—C10—H10 | 119.9 |
C7—C7A—C3A | 121.64 (12) | C11—C10—C9 | 120.28 (14) |
N3—C3A—C7A | 107.14 (11) | C11—C10—H10 | 119.9 |
C4—C3A—N3 | 131.89 (12) | C7—C6—H6 | 119.5 |
C4—C3A—C7A | 120.97 (13) | C5—C6—C7 | 121.00 (14) |
O1—C2—N3 | 127.84 (12) | C5—C6—H6 | 119.5 |
O1—C2—N1 | 125.88 (11) | C13—C12—H12 | 120.0 |
N3—C2—N1 | 106.28 (11) | C11—C12—C13 | 120.03 (13) |
C8—C9—H9 | 120.4 | C11—C12—H12 | 120.0 |
C8—C9—C10 | 119.16 (14) | C10—C11—C12 | 120.23 (12) |
C10—C9—H9 | 120.4 | C10—C11—H11 | 119.9 |
C8—C13—H13 | 120.3 | C12—C11—H11 | 119.9 |
C8—C13—C12 | 119.38 (13) | ||
N3—C3A—C4—C5 | 178.80 (13) | C3A—N3—C2—O1 | −178.55 (13) |
N1—C8—C9—C10 | −177.25 (12) | C3A—N3—C2—N1 | 1.45 (14) |
N1—C8—C13—C12 | 177.74 (12) | C3A—C7A—C7—C6 | 0.98 (19) |
N1—C7A—C3A—N3 | −0.29 (13) | C3A—C4—C5—C6 | 0.7 (2) |
N1—C7A—C3A—C4 | 179.34 (11) | C2—N3—C3A—C7A | −0.73 (14) |
N1—C7A—C7—C6 | −178.35 (12) | C2—N3—C3A—C4 | 179.69 (13) |
C8—N1—C7A—C3A | 178.81 (11) | C2—N1—C8—C9 | 123.03 (14) |
C8—N1—C7A—C7 | −1.8 (2) | C2—N1—C8—C13 | −55.86 (17) |
C8—N1—C2—O1 | 0.7 (2) | C2—N1—C7A—C3A | 1.19 (14) |
C8—N1—C2—N3 | −179.32 (11) | C2—N1—C7A—C7 | −179.40 (13) |
C8—C9—C10—C11 | −0.6 (2) | C9—C8—C13—C12 | −1.1 (2) |
C8—C13—C12—C11 | −0.3 (2) | C9—C10—C11—C12 | −0.8 (2) |
C7A—N1—C8—C9 | −54.27 (17) | C13—C8—C9—C10 | 1.62 (19) |
C7A—N1—C8—C13 | 126.85 (14) | C13—C12—C11—C10 | 1.3 (2) |
C7A—N1—C2—O1 | 178.38 (12) | C7—C7A—C3A—N3 | −179.77 (11) |
C7A—N1—C2—N3 | −1.62 (14) | C7—C7A—C3A—C4 | −0.14 (19) |
C7A—C3A—C4—C5 | −0.72 (19) | C4—C5—C6—C7 | 0.1 (2) |
C7A—C7—C6—C5 | −0.96 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.88 | 1.91 | 2.7786 (14) | 177 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
C13H10N2O | Dx = 1.408 Mg m−3 |
Mr = 210.23 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9912 reflections |
a = 13.7925 (3) Å | θ = 2.5–28.3° |
b = 7.2652 (1) Å | µ = 0.09 mm−1 |
c = 19.7956 (4) Å | T = 193 K |
V = 1983.62 (6) Å3 | BLOCK, colourless |
Z = 8 | 0.37 × 0.33 × 0.19 mm |
F(000) = 880 |
Bruker APEXII CCD diffractometer | 2203 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.4°, θmin = 2.1° |
Tmin = 0.712, Tmax = 0.746 | h = −18→18 |
34068 measured reflections | k = −8→9 |
2479 independent reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0401P)2 + 1.3866P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
2479 reflections | Δρmax = 0.25 e Å−3 |
145 parameters | Δρmin = −0.37 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.45568 (7) | 0.03382 (12) | 0.59030 (4) | 0.0202 (2) | |
N1 | 0.38806 (7) | 0.32974 (13) | 0.58960 (5) | 0.0156 (2) | |
N3 | 0.43199 (7) | 0.20514 (13) | 0.49242 (5) | 0.0162 (2) | |
H3 | 0.452728 | 0.125653 | 0.462151 | 0.019* | |
C7A | 0.37019 (8) | 0.46038 (16) | 0.53914 (6) | 0.0150 (2) | |
C2 | 0.42885 (8) | 0.17358 (16) | 0.56054 (6) | 0.0162 (2) | |
C8 | 0.37484 (8) | 0.35772 (16) | 0.66031 (6) | 0.0164 (2) | |
C3A | 0.39783 (8) | 0.38031 (16) | 0.47791 (6) | 0.0152 (2) | |
C7 | 0.33606 (8) | 0.63906 (16) | 0.54215 (6) | 0.0176 (2) | |
H7 | 0.319418 | 0.694844 | 0.583974 | 0.021* | |
C4 | 0.38813 (8) | 0.47304 (17) | 0.41748 (6) | 0.0178 (2) | |
H4 | 0.405896 | 0.417587 | 0.375818 | 0.021* | |
C5 | 0.35117 (8) | 0.65146 (17) | 0.42007 (6) | 0.0195 (2) | |
H5 | 0.342230 | 0.718091 | 0.379252 | 0.023* | |
C9 | 0.44915 (9) | 0.31474 (17) | 0.70512 (6) | 0.0198 (2) | |
H9 | 0.507674 | 0.261337 | 0.689104 | 0.024* | |
C13 | 0.28837 (9) | 0.43311 (16) | 0.68360 (6) | 0.0203 (3) | |
H13 | 0.237403 | 0.460514 | 0.652926 | 0.024* | |
C6 | 0.32707 (8) | 0.73401 (17) | 0.48132 (6) | 0.0192 (2) | |
H6 | 0.304090 | 0.857272 | 0.481620 | 0.023* | |
C12 | 0.27728 (10) | 0.46798 (17) | 0.75227 (7) | 0.0257 (3) | |
H12 | 0.218579 | 0.520089 | 0.768528 | 0.031* | |
C11 | 0.35128 (11) | 0.42719 (17) | 0.79701 (6) | 0.0268 (3) | |
H11 | 0.343401 | 0.451607 | 0.843835 | 0.032* | |
C10 | 0.43697 (10) | 0.35064 (18) | 0.77346 (6) | 0.0245 (3) | |
H10 | 0.487637 | 0.322592 | 0.804296 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0276 (5) | 0.0164 (4) | 0.0168 (4) | 0.0051 (3) | 0.0006 (3) | −0.0002 (3) |
N1 | 0.0173 (4) | 0.0150 (4) | 0.0145 (4) | 0.0021 (4) | 0.0005 (3) | −0.0022 (4) |
N3 | 0.0188 (5) | 0.0157 (5) | 0.0142 (4) | 0.0028 (4) | 0.0004 (4) | −0.0022 (4) |
C7A | 0.0122 (5) | 0.0172 (5) | 0.0156 (5) | −0.0013 (4) | −0.0007 (4) | −0.0008 (4) |
C2 | 0.0157 (5) | 0.0168 (5) | 0.0161 (5) | 0.0004 (4) | 0.0004 (4) | −0.0027 (4) |
C8 | 0.0215 (5) | 0.0137 (5) | 0.0140 (5) | −0.0014 (4) | 0.0023 (4) | −0.0020 (4) |
C3A | 0.0119 (5) | 0.0160 (5) | 0.0178 (5) | 0.0001 (4) | −0.0001 (4) | −0.0025 (4) |
C7 | 0.0148 (5) | 0.0177 (5) | 0.0203 (5) | 0.0006 (4) | 0.0012 (4) | −0.0035 (4) |
C4 | 0.0166 (5) | 0.0208 (6) | 0.0161 (5) | 0.0002 (4) | 0.0004 (4) | −0.0011 (4) |
C5 | 0.0167 (5) | 0.0215 (6) | 0.0202 (6) | −0.0001 (5) | −0.0006 (4) | 0.0039 (5) |
C9 | 0.0219 (6) | 0.0199 (5) | 0.0176 (5) | −0.0022 (5) | 0.0005 (4) | 0.0000 (4) |
C13 | 0.0241 (6) | 0.0162 (5) | 0.0205 (6) | 0.0009 (5) | 0.0031 (5) | −0.0014 (4) |
C6 | 0.0151 (5) | 0.0166 (5) | 0.0258 (6) | 0.0011 (4) | 0.0004 (4) | 0.0006 (5) |
C12 | 0.0353 (7) | 0.0180 (6) | 0.0237 (6) | 0.0025 (5) | 0.0117 (5) | −0.0024 (5) |
C11 | 0.0460 (8) | 0.0188 (6) | 0.0156 (5) | −0.0047 (6) | 0.0058 (5) | −0.0031 (5) |
C10 | 0.0340 (7) | 0.0230 (6) | 0.0166 (6) | −0.0066 (5) | −0.0028 (5) | 0.0013 (5) |
O1—C2 | 1.2309 (14) | C4—H4 | 0.9500 |
N1—C7A | 1.3997 (15) | C4—C5 | 1.3939 (17) |
N1—C2 | 1.3908 (14) | C5—H5 | 0.9500 |
N1—C8 | 1.4262 (14) | C5—C6 | 1.3928 (17) |
N3—H3 | 0.8800 | C9—H9 | 0.9500 |
N3—C2 | 1.3685 (15) | C9—C10 | 1.3880 (17) |
N3—C3A | 1.3872 (15) | C13—H13 | 0.9500 |
C7A—C3A | 1.3976 (15) | C13—C12 | 1.3912 (17) |
C7A—C7 | 1.3821 (16) | C6—H6 | 0.9500 |
C8—C9 | 1.3910 (17) | C12—H12 | 0.9500 |
C8—C13 | 1.3911 (16) | C12—C11 | 1.383 (2) |
C3A—C4 | 1.3793 (16) | C11—H11 | 0.9500 |
C7—H7 | 0.9500 | C11—C10 | 1.387 (2) |
C7—C6 | 1.3933 (17) | C10—H10 | 0.9500 |
C7A—N1—C8 | 125.54 (10) | C5—C4—H4 | 121.4 |
C2—N1—C7A | 109.23 (9) | C4—C5—H5 | 119.3 |
C2—N1—C8 | 125.02 (10) | C6—C5—C4 | 121.32 (11) |
C2—N3—H3 | 124.8 | C6—C5—H5 | 119.3 |
C2—N3—C3A | 110.31 (9) | C8—C9—H9 | 120.3 |
C3A—N3—H3 | 124.8 | C10—C9—C8 | 119.35 (12) |
C3A—C7A—N1 | 106.78 (10) | C10—C9—H9 | 120.3 |
C7—C7A—N1 | 131.77 (11) | C8—C13—H13 | 120.3 |
C7—C7A—C3A | 121.41 (11) | C8—C13—C12 | 119.33 (12) |
O1—C2—N1 | 126.63 (11) | C12—C13—H13 | 120.3 |
O1—C2—N3 | 126.89 (11) | C7—C6—H6 | 119.4 |
N3—C2—N1 | 106.48 (10) | C5—C6—C7 | 121.19 (11) |
C9—C8—N1 | 119.98 (10) | C5—C6—H6 | 119.4 |
C9—C8—C13 | 120.59 (11) | C13—C12—H12 | 119.8 |
C13—C8—N1 | 119.41 (10) | C11—C12—C13 | 120.36 (12) |
N3—C3A—C7A | 107.15 (10) | C11—C12—H12 | 119.8 |
C4—C3A—N3 | 131.35 (11) | C12—C11—H11 | 120.0 |
C4—C3A—C7A | 121.50 (11) | C12—C11—C10 | 119.96 (12) |
C7A—C7—H7 | 121.4 | C10—C11—H11 | 120.0 |
C7A—C7—C6 | 117.27 (11) | C9—C10—H10 | 119.8 |
C6—C7—H7 | 121.4 | C11—C10—C9 | 120.41 (12) |
C3A—C4—H4 | 121.4 | C11—C10—H10 | 119.8 |
C3A—C4—C5 | 117.24 (11) | ||
N1—C7A—C3A—N3 | −0.32 (12) | C8—N1—C7A—C3A | 176.62 (10) |
N1—C7A—C3A—C4 | 179.08 (10) | C8—N1—C7A—C7 | −1.01 (19) |
N1—C7A—C7—C6 | 179.56 (11) | C8—N1—C2—O1 | 3.36 (19) |
N1—C8—C9—C10 | 177.03 (11) | C8—N1—C2—N3 | −177.43 (10) |
N1—C8—C13—C12 | −177.13 (11) | C8—C9—C10—C11 | 0.53 (19) |
N3—C3A—C4—C5 | −179.65 (11) | C8—C13—C12—C11 | −0.35 (19) |
C7A—N1—C2—O1 | 178.21 (11) | C3A—N3—C2—O1 | −178.39 (11) |
C7A—N1—C2—N3 | −2.59 (12) | C3A—N3—C2—N1 | 2.40 (12) |
C7A—N1—C8—C9 | −129.31 (12) | C3A—C7A—C7—C6 | 2.22 (16) |
C7A—N1—C8—C13 | 48.81 (16) | C3A—C4—C5—C6 | 1.38 (17) |
C7A—C3A—C4—C5 | 1.11 (17) | C7—C7A—C3A—N3 | 177.61 (10) |
C7A—C7—C6—C5 | 0.27 (17) | C7—C7A—C3A—C4 | −2.99 (17) |
C2—N1—C7A—C3A | 1.81 (12) | C4—C5—C6—C7 | −2.11 (18) |
C2—N1—C7A—C7 | −175.82 (12) | C9—C8—C13—C12 | 0.98 (18) |
C2—N1—C8—C9 | 44.70 (17) | C13—C8—C9—C10 | −1.07 (18) |
C2—N1—C8—C13 | −137.18 (12) | C13—C12—C11—C10 | −0.2 (2) |
C2—N3—C3A—C7A | −1.31 (13) | C12—C11—C10—C9 | 0.1 (2) |
C2—N3—C3A—C4 | 179.37 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.88 | 2.00 | 2.8453 (13) | 174 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
Dr Ji-Eun Lee (Gyeongsang National University) is gratefully acknowledged for collecting the single-crystal XRD data.
Funding information
Funding for this research was provided by: National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1G1A1093332 and 2022R1F1A1064158).
References
Ait Elmachkouri, Y., Saber, A., Irrou, E., Amer, B., Mague, J. T., Hökelek, T., Labd Taha, M., Sebbar, N. K. & Essassi, E. M. (2021). Acta Cryst. E77, 559–563. Web of Science CSD CrossRef IUCr Journals Google Scholar
Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276. CSD CrossRef IUCr Journals Google Scholar
Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3069. CSD CrossRef IUCr Journals Google Scholar
Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122. CSD CrossRef IUCr Journals Google Scholar
Bellenie, B. R., Cheung, K. J., Varela, A., Pierrat, O. A., Collie, G. W., Box, G. M., Bright, M. D., Gowan, S., Hayes, A., Rodrigues, M. J., Shetty, K. N., Carter, M., Davis, O. A., Henley, A. T., Innocenti, P., Johnson, L. D., Liu, M., de Klerk, S., Le Bihan, Y.-V., Lloyd, M. G., McAndrew, P. C., Shehu, E., Talbot, R., Woodward, H. L., Burke, R., Kirkin, V., van Montfort, R. L. M., Raynaud, F. I., Rossanese, O. W. & Hoelder, S. (2020). J. Med. Chem. 63, 4047–4068. Web of Science CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Beyer, A., Reucher, C. M. M. & Bolm, C. (2011). Org. Lett. 13, 2876–2879. Web of Science CrossRef CAS PubMed Google Scholar
Bouayad-Gervais, S., Nielsen, C. D. T., Turksoy, A., Sperger, T., Deckers, K. & Schoenebeck, F. (2022). J. Am. Chem. Soc. 144, 6100–6106. Web of Science CAS PubMed Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dombroski, M. A., Letavic, M. A., McClure, K. F., Barberia, J. T., Carty, T. J., Cortina, S. R., Csiki, C., Dipesa, A. J., Elliott, N. C., Gabel, C. A., Jordan, C. K., Labasi, J. M., Martin, W. H., Peese, K. M., Stock, I. A., Svensson, L., Sweeney, F. J. & Yu, C. H. (2004). Bioorg. Med. Chem. Lett. 14, 919–923. Web of Science CrossRef PubMed CAS Google Scholar
Elsinga, P. H., van Waarde, A., Jaeggi, K. A., Schreiber, G., Heldoorn, M. & Vaalburg, W. (1997). J. Med. Chem. 40, 3829–3835. CrossRef CAS PubMed Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gustin, D. J., Sehon, C. A., Wei, J., Cai, H., Meduna, S. P., Khatuya, H., Sun, S., Gu, Y., Jiang, W., Thurmond, R. L., Karlsson, L. & Edwards, J. P. (2005). Bioorg. Med. Chem. Lett. 15, 1687–1691. Web of Science CrossRef PubMed CAS Google Scholar
Hammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). Bioorg. Med. Chem. Lett. 16, 6316–6320. Web of Science CrossRef PubMed CAS Google Scholar
Henning, R., Lattrell, R., Gerhards, H. J. & Leven, M. (1987). J. Med. Chem. 30, 814–819. CrossRef CAS PubMed Web of Science Google Scholar
Kawamoto, H., Nakashima, H., Kato, T., Arai, S., Kamata, K. & Iwasawa, Y. (2001). Tetrahedron, 57, 981–986. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, Q., Li, T., Woods, K. W., Gu, W.-Z., Cohen, J., Stoll, V. S., Galicia, T., Hutchins, C., Frost, D., Rosenberg, S. H. & Sham, H. L. (2005). Bioorg. Med. Chem. Lett. 15, 2918–2922. Web of Science CrossRef PubMed CAS Google Scholar
Liu, P., Wang, Z. & Hu, X. (2012). Eur. J. Org. Chem. pp. 1994–2000. Web of Science CrossRef Google Scholar
Łukasik, E. & Wróbel, Z. (2016). Synthesis, 48, 1159–1166. Google Scholar
Mark, C., Bornatowicz, B., Mitterhauser, M., Hendl, M., Nics, L., Haeusler, D., Lanzenberger, R., Berger, M. L., Spreitzer, H. & Wadsak, W. (2013). Nucl. Med. Biol. 40, 295–303. Web of Science CrossRef CAS PubMed Google Scholar
Metz, H.-J. & Morgenroth, F. (2009). In High Performance Pigments, edited by E. B. Faulkner & R. J. Schwarz, pp. 139–164. Weinheim: Wiley-VCH. Google Scholar
Monforte, A.-M., Logoteta, P., De Luca, L., Iraci, N., Ferro, S., Maga, G., De Clercq, E., Pannecouque, C. & Chimirri, A. (2010). Bioorg. Med. Chem. 18, 1702–1710. Web of Science CrossRef CAS PubMed Google Scholar
Monforte, A.-M., Logoteta, P., Ferro, S., De Luca, L., Iraci, N., Maga, G., Clercq, E. D., Pannecouque, C. & Chimirri, A. (2009). Bioorg. Med. Chem. 17, 5962–5967. Web of Science CrossRef PubMed CAS Google Scholar
Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283. Web of Science CSD CrossRef IUCr Journals Google Scholar
Palin, R., Clark, J. K., Evans, L., Houghton, A. K., Jones, P. S., Prosser, A., Wishart, G. & Yoshiizumi, K. (2008). Bioorg. Med. Chem. 16, 2829–2851. Web of Science CSD CrossRef PubMed CAS Google Scholar
Poulain, R., Horvath, D., Bonnet, B., Eckhoff, C., Chapelain, B., Bodinier, M.-C. & Déprez, B. (2001). J. Med. Chem. 44, 3378–3390. CrossRef PubMed CAS Google Scholar
Pribut, N., Basson, A. E., van Otterlo, W. A. L., Liotta, D. C. & Pelly, S. C. (2019). ACS Med. Chem. Lett. 10, 196–202. Web of Science CrossRef CAS PubMed Google Scholar
Qi, X., Zhou, R., Peng, J.-B., Ying, J. & Wu, X.-F. (2019). Eur. J. Org. Chem. pp. 5161–5164. Web of Science CrossRef Google Scholar
Roger, G., Lagnel, B., Besret, L., Bramoullé, Y., Coulon, C., Ottaviani, M., Kassiou, M., Bottlaender, M., Valette, H. & Dollé, F. (2003). Bioorg. Med. Chem. 11, 5401–5408. Web of Science CrossRef PubMed CAS Google Scholar
Rong, Y., Al-Harbi, A., Kriegel, B. & Parkin, G. (2013). Inorg. Chem. 52, 7172–7182. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sebhaoui, J., El Bakri, Y., Lai, C.-H., Karthikeyan, S., Anouar, E. H., Mague, J. T. & Essassi, E. M. (2021). J. Biomol. Struct. Dyn. 39, 4859–4877. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tapia, I., Alonso-Cires, L., López-Tudanca, P. L., Mosquera, R., Labeaga, L., Innerárity, A. & Orjales, A. (1999). J. Med. Chem. 42, 2870–2880. Web of Science CrossRef PubMed CAS Google Scholar
Yu, B., Zhang, H., Zhao, Y., Chen, S., Xu, J., Hao, L. & Liu, Z. (2013). ACS Catal. 3, 2076–2082. Web of Science CrossRef CAS Google Scholar
Zhang, P., Terefenko, E. A., McComas, C. C., Mahaney, P. E., Vu, A., Trybulski, E., Koury, E., Johnston, G., Bray, J. & Deecher, D. (2008). Bioorg. Med. Chem. Lett. 18, 6067–6070. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.