research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Polymorphic structures of 3-phenyl-1H-1,3-benzo­diazol-2(3H)-one

crossmark logo

aDepartment of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
*Correspondence e-mail: klee1@gnu.ac.kr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 12 April 2023; accepted 3 May 2023; online 12 May 2023)

The polymorphic structures (I and II) of 3-phenyl-1H-1,3-benzo­diazol-2(3H)-one, C13H10N2O, acquired from pentane diffusion into the solution in THF, are reported. The structures show negligible differences in bond distances and angles, but the C—N—C—C torsion angles between the backbone and the phenyl substituent, 123.02 (15)° for I and 137.18 (11)° for II, are different. Compound I features a stronger C=O⋯H—N hydrogen bond than that in II, while the structure of II exhibits a stronger ππ inter­action than in I, as confirmed by the shorter inter­centroid distance [3.3257 (8) Å in II in comparison to 3.6862 (7) Å in I]. Overall, the supra­molecular inter­actions of I and II are distinct, presumably originating from the variation in the dihedral angle.

1. Chemical context

Benzimidazolo­nes are widely found in functional organic and biologically active mol­ecules (Palin et al., 2008[Palin, R., Clark, J. K., Evans, L., Houghton, A. K., Jones, P. S., Prosser, A., Wishart, G. & Yoshiizumi, K. (2008). Bioorg. Med. Chem. 16, 2829-2851.]; Monforte et al., 2010[Monforte, A.-M., Logoteta, P., De Luca, L., Iraci, N., Ferro, S., Maga, G., De Clercq, E., Pannecouque, C. & Chimirri, A. (2010). Bioorg. Med. Chem. 18, 1702-1710.]; Pribut et al., 2019[Pribut, N., Basson, A. E., van Otterlo, W. A. L., Liotta, D. C. & Pelly, S. C. (2019). ACS Med. Chem. Lett. 10, 196-202.]; Bellenie et al., 2020[Bellenie, B. R., Cheung, K. J., Varela, A., Pierrat, O. A., Collie, G. W., Box, G. M., Bright, M. D., Gowan, S., Hayes, A., Rodrigues, M. J., Shetty, K. N., Carter, M., Davis, O. A., Henley, A. T., Innocenti, P., Johnson, L. D., Liu, M., de Klerk, S., Le Bihan, Y.-V., Lloyd, M. G., McAndrew, P. C., Shehu, E., Talbot, R., Woodward, H. L., Burke, R., Kirkin, V., van Montfort, R. L. M., Raynaud, F. I., Rossanese, O. W. & Hoelder, S. (2020). J. Med. Chem. 63, 4047-4068.]). For example, substituted benzimidazolones have been used as pigments due to their high fastness and resistance to light and weathering (Metz & Morgenroth, 2009[Metz, H.-J. & Morgenroth, F. (2009). In High Performance Pigments, edited by E. B. Faulkner & R. J. Schwarz, pp. 139-164. Weinheim: Wiley-VCH.]). In addition, the biological activities of benzimidazolone derivatives have been tested for anti­cancer, HIV, pain regulation, etc. (Henning et al., 1987[Henning, R., Lattrell, R., Gerhards, H. J. & Leven, M. (1987). J. Med. Chem. 30, 814-819.]; Elsinga et al., 1997[Elsinga, P. H., van Waarde, A., Jaeggi, K. A., Schreiber, G., Heldoorn, M. & Vaalburg, W. (1997). J. Med. Chem. 40, 3829-3835.]; Tapia et al., 1999[Tapia, I., Alonso-Cires, L., López-Tudanca, P. L., Mosquera, R., Labeaga, L., Innerárity, A. & Orjales, A. (1999). J. Med. Chem. 42, 2870-2880.]; Kawamoto et al., 2001[Kawamoto, H., Nakashima, H., Kato, T., Arai, S., Kamata, K. & Iwasawa, Y. (2001). Tetrahedron, 57, 981-986.]; Poulain et al., 2001[Poulain, R., Horvath, D., Bonnet, B., Eckhoff, C., Chapelain, B., Bodinier, M.-C. & Déprez, B. (2001). J. Med. Chem. 44, 3378-3390.]; Roger et al., 2003[Roger, G., Lagnel, B., Besret, L., Bramoullé, Y., Coulon, C., Ottaviani, M., Kassiou, M., Bottlaender, M., Valette, H. & Dollé, F. (2003). Bioorg. Med. Chem. 11, 5401-5408.]; Dombroski et al., 2004[Dombroski, M. A., Letavic, M. A., McClure, K. F., Barberia, J. T., Carty, T. J., Cortina, S. R., Csiki, C., Dipesa, A. J., Elliott, N. C., Gabel, C. A., Jordan, C. K., Labasi, J. M., Martin, W. H., Peese, K. M., Stock, I. A., Svensson, L., Sweeney, F. J. & Yu, C. H. (2004). Bioorg. Med. Chem. Lett. 14, 919-923.]; Gustin et al., 2005[Gustin, D. J., Sehon, C. A., Wei, J., Cai, H., Meduna, S. P., Khatuya, H., Sun, S., Gu, Y., Jiang, W., Thurmond, R. L., Karlsson, L. & Edwards, J. P. (2005). Bioorg. Med. Chem. Lett. 15, 1687-1691.]; Li et al., 2005[Li, Q., Li, T., Woods, K. W., Gu, W.-Z., Cohen, J., Stoll, V. S., Galicia, T., Hutchins, C., Frost, D., Rosenberg, S. H. & Sham, H. L. (2005). Bioorg. Med. Chem. Lett. 15, 2918-2922.]; Hammach et al., 2006[Hammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). Bioorg. Med. Chem. Lett. 16, 6316-6320.]; Monforte et al., 2009[Monforte, A.-M., Logoteta, P., Ferro, S., De Luca, L., Iraci, N., Maga, G., Clercq, E. D., Pannecouque, C. & Chimirri, A. (2009). Bioorg. Med. Chem. 17, 5962-5967.]).

Singly N-substituted benzimidazolo­nes exhibit inter­esting properties partially due to the hydrogen-bonding inter­actions between N—H⋯O=C moieties. N-phenyl-substituted benzimidazolone can be prepared by the intra­molecular N-aryl­ation of urea (Beyer et al., 2011[Beyer, A., Reucher, C. M. M. & Bolm, C. (2011). Org. Lett. 13, 2876-2879.]), carbonyl­ation of 2-nitro­aniline (Qi et al., 2019[Qi, X., Zhou, R., Peng, J.-B., Ying, J. & Wu, X.-F. (2019). Eur. J. Org. Chem. pp. 5161-5164.]), carbonyl­ation of o-phenyl­enedi­amine with CO2 (Yu et al., 2013[Yu, B., Zhang, H., Zhao, Y., Chen, S., Xu, J., Hao, L. & Liu, Z. (2013). ACS Catal. 3, 2076-2082.]), carbonyl­ation of imino­phospho­rane with CO2 (Łukasik & Wróbel, 2016[Łukasik, E. & Wróbel, Z. (2016). Synthesis, 48, 1159-1166.]), iodo­syl­benzene-induced intra­molecular Hofmann rearrangement of 2-(phenyl­amino)­benzamide (Liu et al., 2012[Liu, P., Wang, Z. & Hu, X. (2012). Eur. J. Org. Chem. pp. 1994-2000.]), and carbonyl­ation of N1-phenyl­benzene-1,2-di­amine with 1,1′-carbonyl­diimidazole (Zhang et al., 2008[Zhang, P., Terefenko, E. A., McComas, C. C., Mahaney, P. E., Vu, A., Trybulski, E., Koury, E., Johnston, G., Bray, J. & Deecher, D. (2008). Bioorg. Med. Chem. Lett. 18, 6067-6070.]). Preparations of phenyl-substituted benzimidazolone have been reported using various reagents and catalysts, but the structure is unknown.

Here we report two polymorphic structures of 3-phenyl-1H-1,3-benzo­diazol-2(3H)-one. The compound was prepared following the reported procedure using 1,1′-carbonyl­diimidazole and N1-phenyl­benzene-1,2-di­amine in CH2Cl2 (Zhang et al., 2008[Zhang, P., Terefenko, E. A., McComas, C. C., Mahaney, P. E., Vu, A., Trybulski, E., Koury, E., Johnston, G., Bray, J. & Deecher, D. (2008). Bioorg. Med. Chem. Lett. 18, 6067-6070.]). Single crystals grown by pentane vapor diffusion into a THF solution formed colorless needles (I) and blocks (II).

[Scheme 1]

2. Structural commentary

The title compounds crystallized as colorless needles (I) and blocks (II) in space groups C2/c and Pbca, respectively. The two polymorphic structures exhibit identical bond distances and angles, except for the dihedral angle of the phenyl substituent (Fig. 1[link]). Both structures retain the planarity of benzimidazolone moiety, as demonstrated by the low r.m.s. deviations of 0.009 and 0.023 Å for I and II, respectively. The C2—N1—C8—C9/C13 torsion angle is 123.03 (14) and −137.18 (12)° for I and II, respectively. No additional differences are observed from an analysis of bond distances and angles.

[Figure 1]
Figure 1
Mol­ecular structures of (a) I, (b) II, and (c) overlay of I and II with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

Initial investigations of supra­molecular features for I and II were carried out using Hirshfeld surface analysis with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface was mapped over dnorm in the ranges −0.6415 to 1.2040 a.u. and −0.5612 to 1.1830 a.u. for I and II, respectively (Figs. 2[link] and 3[link]). The most intense red spots on the surface for I and II indicate the N3—H3⋯O1 hydrogen-bonding inter­actions (Tables 1[link] and 2[link]), which have R22(8) graph-set motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The shorter DA and H⋯A distances, and more linear D—H⋯A angle reveal that the hydrogen-bonding inter­action in I is stronger than that in II. In contrast, the structure of II contains a stronger ππ inter­action between the adjacent benzimidazolone moieties, as defined by the centroid⋯centroid distance of 3.3257 (8) Å, while the corres­ponding distance in I is more elongated at 3.6862 (7) Å.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 1.91 2.7786 (14) 177
Symmetry code: (i) [-x+1, -y+2, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 2.00 2.8453 (13) 174
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
(a) Hirshfeld surface of I mapped over dnorm. (b) Partial packing plot of I.
[Figure 3]
Figure 3
(a) Hirshfeld surface of II mapped over dnorm. (b) Partial packing plot of II.

Minor inter­molecular inter­actions are observed as faint red spots on the surface. The spots in I indicate the inter­molecular inter­actions of C4⋯C2/C2⋯C4, C3A⋯C3A and C7—H7/H7—C7, whereas those in II correspond to C2⋯C5/C5⋯C2, C4—H4⋯C12/ C12⋯H4—C4, C7A⋯H6—C6/C6—H6⋯C7A, C3A⋯H6—C6/C6-H6⋯C3A and C3A⋯C6/C6⋯C3A contacts. The largest contributions to the Hirshfeld surface of I arises from H⋯H (44.4%), C⋯H/H⋯C (31.9%), and O⋯H/H⋯O (13.5%) contacts, whereas the contributions for II are H⋯H (45.8%), C⋯H/H⋯C (27.5%) and O⋯H/H⋯O (15.5%). Minor contributions include N⋯H/H⋯N (3.6%), C⋯C (3.2%), C⋯N/N⋯C (2.1%), C⋯O/O⋯C (1.4%) for I and C⋯C (5.4%), C⋯N/N⋯C (3.4%), N⋯H/H⋯N (3.2%), C⋯O/O⋯C (0.2%) for II.

4. Database survey

A search for the title compound in the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not match any reported structures, including aryl-derivative searches. However, a survey for mono-N-substituted benzimidazolone compounds revealed 75 results, which included structures with simple substituents such as methyl (WIKPAJ; Rong et al., 2013[Rong, Y., Al-Harbi, A., Kriegel, B. & Parkin, G. (2013). Inorg. Chem. 52, 7172-7182.]), tert-butyl (WIKNOV; Rong et al., 2013[Rong, Y., Al-Harbi, A., Kriegel, B. & Parkin, G. (2013). Inorg. Chem. 52, 7172-7182.]), octyl (ZANXET; Belaziz, Kandri Rodi, Essassi et al., 2012[Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.]), nonyl (IJUGIE; Ouzidan, Kandri Rodi et al., 2011[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.]), decyl (ESANAQ; Ait Elmachkouri et al., 2021[Ait Elmachkouri, Y., Saber, A., Irrou, E., Amer, B., Mague, J. T., Hökelek, T., Labd Taha, M., Sebbar, N. K. & Essassi, E. M. (2021). Acta Cryst. E77, 559-563.]), dodecyl (SECBUZ; Belaziz, Kandri Rodi, Ouazzani Chahdi et al., 2012[Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3069.]), benzyl (EVEYIO; Ouzidan, Essassi et al., 2011[Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.]), 4-methyl­benzyl (NEQBIW; Belaziz et al., 2013[Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122.]), acetyl (VADYIM; Sebhaoui et al., 2021[Sebhaoui, J., El Bakri, Y., Lai, C.-H., Karthikeyan, S., Anouar, E. H., Mague, J. T. & Essassi, E. M. (2021). J. Biomol. Struct. Dyn. 39, 4859-4877.]) and a tri­fluoro­methyl group (ZEDJAX; Bouayad-Gervais et al., 2022[Bouayad-Gervais, S., Nielsen, C. D. T., Turksoy, A., Sperger, T., Deckers, K. & Schoenebeck, F. (2022). J. Am. Chem. Soc. 144, 6100-6106.]). Most structures feature bimolecular hydrogen-bonding inter­actions between N—H ⋯ O=C moieties with an R22(8) graph-set motif, but in ZEDJAX N—H ⋯ O=C hydrogen bonds link the mol­ecules into C(4) chains. The distances between a nitro­gen donor and an oxygen acceptor range from 2.79–2.84 Å, comparable to the values for I and II of 2.7786 (14) and 2.8453 (14) Å, respectively.

5. Synthesis and crystallization

3-Phenyl-1H-1,3-benzo­diazol-2(3H)-one was prepared following a reported procedure (Fig. 4[link]; Zhang et al., 2008[Zhang, P., Terefenko, E. A., McComas, C. C., Mahaney, P. E., Vu, A., Trybulski, E., Koury, E., Johnston, G., Bray, J. & Deecher, D. (2008). Bioorg. Med. Chem. Lett. 18, 6067-6070.]; Mark et al., 2013[Mark, C., Bornatowicz, B., Mitterhauser, M., Hendl, M., Nics, L., Haeusler, D., Lanzenberger, R., Berger, M. L., Spreitzer, H. & Wadsak, W. (2013). Nucl. Med. Biol. 40, 295-303.]). A solution of 1,1′-carbonyl­diimidazole (0.50 g, 3.1 mmol) and 2-amino­diphenyl­amine (0.57 g, 3.1 mmol) in CH2Cl2 (15 mL) was stirred at room temperature overnight. The resulting white precipitate was filtered. An additional white precipitate was acquired by adding Et2O (10 mL) into the filtrate. Combined yield: 0.30 g (46%). 1H NMR (CDCl3, 300 MHz): δ 10.75 (br s, NH, 1H), 7.58 (m, Ar, 4H), 7.45 (m, Ar, 1H), 7.17 (m, Ar, 1H), 7.10 (m, Ar, 1H), 7.06 (m, Ar, 2H). Pentane vapor diffusion into a solution of the compound in THF formed colorless needles and blocks.

[Figure 4]
Figure 4
Synthesis of 3-phenyl-1H-1,3-benzo­diazol-2(3H)-one.

6. Refinement

Crystal data, data collection, and refinement statistics are summarized in Table 3[link]. No appreciable disorder was observed for both structures. The hydrogen atoms were optimized using riding models.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C13H10N2O C13H10N2O
Mr 210.23 210.23
Crystal system, space group Monoclinic, C2/c Orthorhombic, Pbca
Temperature (K) 193 193
a, b, c (Å) 18.0187 (9), 6.4455 (3), 18.7315 (10) 13.7925 (3), 7.2652 (1), 19.7956 (4)
α, β, γ (°) 90, 111.181 (3), 90 90, 90, 90
V3) 2028.50 (18) 1983.62 (6)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.51 × 0.23 × 0.14 0.37 × 0.33 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.699, 0.746 0.712, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9328, 2350, 1956 34068, 2479, 2203
Rint 0.031 0.036
(sin θ/λ)max−1) 0.651 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.07 0.039, 0.099, 1.02
No. of reflections 2350 2479
No. of parameters 145 145
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.23 0.25, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).

3-Phenyl-1H-1,3-benzodiazol-2(3H)-one (I) top
Crystal data top
C13H10N2OF(000) = 880
Mr = 210.23Dx = 1.377 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.0187 (9) ÅCell parameters from 2753 reflections
b = 6.4455 (3) Åθ = 2.3–27.5°
c = 18.7315 (10) ŵ = 0.09 mm1
β = 111.181 (3)°T = 193 K
V = 2028.50 (18) Å3NEEDLE, colourless
Z = 80.51 × 0.23 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
1956 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.6°, θmin = 2.3°
Tmin = 0.699, Tmax = 0.746h = 2323
9328 measured reflectionsk = 88
2350 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0438P)2 + 1.4081P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2350 reflectionsΔρmax = 0.18 e Å3
145 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60223 (5)0.96614 (15)0.57745 (5)0.0239 (2)
N30.53005 (6)0.77512 (18)0.46886 (6)0.0210 (3)
H30.4889550.8578630.4484350.025*
N10.64477 (6)0.64976 (18)0.54578 (6)0.0199 (3)
C80.71782 (7)0.6314 (2)0.60949 (7)0.0200 (3)
C7A0.61292 (7)0.5048 (2)0.48703 (7)0.0198 (3)
C3A0.54019 (7)0.5865 (2)0.43844 (7)0.0202 (3)
C20.59267 (7)0.8152 (2)0.53505 (7)0.0201 (3)
C90.73216 (8)0.4585 (2)0.65660 (7)0.0242 (3)
H90.6945640.3485380.6455220.029*
C130.77316 (7)0.7904 (2)0.62403 (7)0.0230 (3)
H130.7632400.9071550.5909170.028*
C70.64074 (8)0.3170 (2)0.47242 (8)0.0236 (3)
H70.6897380.2613910.5060140.028*
C40.49365 (8)0.4809 (2)0.37362 (7)0.0238 (3)
H40.4439890.5349260.3408040.029*
C50.52220 (8)0.2924 (2)0.35821 (8)0.0274 (3)
H50.4917000.2170590.3136670.033*
C100.80220 (8)0.4481 (2)0.72020 (8)0.0275 (3)
H100.8123860.3309400.7531470.033*
C60.59439 (8)0.2116 (2)0.40654 (8)0.0266 (3)
H60.6123780.0824520.3944290.032*
C120.84327 (8)0.7775 (2)0.68750 (8)0.0274 (3)
H120.8816700.8853130.6977830.033*
C110.85719 (8)0.6075 (2)0.73576 (7)0.0283 (3)
H110.9046540.6003450.7797030.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0232 (5)0.0213 (5)0.0244 (5)0.0026 (4)0.0052 (4)0.0008 (4)
N30.0185 (5)0.0202 (6)0.0217 (5)0.0040 (4)0.0041 (4)0.0023 (4)
N10.0177 (5)0.0193 (6)0.0223 (5)0.0027 (4)0.0068 (4)0.0014 (4)
C80.0177 (6)0.0243 (8)0.0193 (6)0.0038 (5)0.0083 (5)0.0019 (5)
C7A0.0191 (6)0.0213 (7)0.0216 (6)0.0015 (5)0.0105 (5)0.0018 (5)
C3A0.0205 (6)0.0207 (7)0.0218 (6)0.0006 (5)0.0106 (5)0.0032 (5)
C20.0195 (6)0.0207 (7)0.0209 (6)0.0012 (5)0.0081 (5)0.0031 (5)
C90.0234 (6)0.0248 (8)0.0269 (7)0.0031 (6)0.0122 (5)0.0037 (6)
C130.0221 (6)0.0232 (8)0.0244 (6)0.0019 (5)0.0095 (5)0.0030 (5)
C70.0216 (6)0.0236 (8)0.0300 (7)0.0022 (5)0.0145 (5)0.0029 (6)
C40.0229 (6)0.0272 (8)0.0210 (6)0.0022 (6)0.0076 (5)0.0025 (5)
C50.0333 (7)0.0278 (9)0.0251 (7)0.0077 (6)0.0152 (6)0.0037 (6)
C100.0300 (7)0.0295 (9)0.0239 (6)0.0100 (6)0.0109 (5)0.0071 (6)
C60.0322 (7)0.0221 (8)0.0327 (7)0.0013 (6)0.0203 (6)0.0021 (6)
C120.0220 (6)0.0306 (9)0.0288 (7)0.0010 (6)0.0083 (5)0.0044 (6)
C110.0232 (6)0.0369 (9)0.0211 (6)0.0088 (6)0.0037 (5)0.0022 (6)
Geometric parameters (Å, º) top
O1—C21.2282 (16)C13—H130.9500
N3—H30.8800C13—C121.3896 (18)
N3—C3A1.3824 (18)C7—H70.9500
N3—C21.3660 (16)C7—C61.3920 (19)
N1—C81.4266 (15)C4—H40.9500
N1—C7A1.3988 (17)C4—C51.390 (2)
N1—C21.3864 (17)C5—H50.9500
C8—C91.3868 (19)C5—C61.390 (2)
C8—C131.3867 (19)C10—H100.9500
C7A—C3A1.4004 (17)C10—C111.384 (2)
C7A—C71.375 (2)C6—H60.9500
C3A—C41.3803 (18)C12—H120.9500
C9—H90.9500C12—C111.384 (2)
C9—C101.3893 (18)C11—H110.9500
C3A—N3—H3124.7C12—C13—H13120.3
C2—N3—H3124.7C7A—C7—H7121.3
C2—N3—C3A110.58 (11)C7A—C7—C6117.46 (12)
C7A—N1—C8126.52 (11)C6—C7—H7121.3
C2—N1—C8123.83 (11)C3A—C4—H4121.3
C2—N1—C7A109.60 (10)C3A—C4—C5117.46 (12)
C9—C8—N1120.15 (12)C5—C4—H4121.3
C13—C8—N1118.93 (12)C4—C5—H5119.3
C13—C8—C9120.91 (12)C4—C5—C6121.45 (13)
N1—C7A—C3A106.37 (12)C6—C5—H5119.3
C7—C7A—N1131.98 (12)C9—C10—H10119.9
C7—C7A—C3A121.64 (12)C11—C10—C9120.28 (14)
N3—C3A—C7A107.14 (11)C11—C10—H10119.9
C4—C3A—N3131.89 (12)C7—C6—H6119.5
C4—C3A—C7A120.97 (13)C5—C6—C7121.00 (14)
O1—C2—N3127.84 (12)C5—C6—H6119.5
O1—C2—N1125.88 (11)C13—C12—H12120.0
N3—C2—N1106.28 (11)C11—C12—C13120.03 (13)
C8—C9—H9120.4C11—C12—H12120.0
C8—C9—C10119.16 (14)C10—C11—C12120.23 (12)
C10—C9—H9120.4C10—C11—H11119.9
C8—C13—H13120.3C12—C11—H11119.9
C8—C13—C12119.38 (13)
N3—C3A—C4—C5178.80 (13)C3A—N3—C2—O1178.55 (13)
N1—C8—C9—C10177.25 (12)C3A—N3—C2—N11.45 (14)
N1—C8—C13—C12177.74 (12)C3A—C7A—C7—C60.98 (19)
N1—C7A—C3A—N30.29 (13)C3A—C4—C5—C60.7 (2)
N1—C7A—C3A—C4179.34 (11)C2—N3—C3A—C7A0.73 (14)
N1—C7A—C7—C6178.35 (12)C2—N3—C3A—C4179.69 (13)
C8—N1—C7A—C3A178.81 (11)C2—N1—C8—C9123.03 (14)
C8—N1—C7A—C71.8 (2)C2—N1—C8—C1355.86 (17)
C8—N1—C2—O10.7 (2)C2—N1—C7A—C3A1.19 (14)
C8—N1—C2—N3179.32 (11)C2—N1—C7A—C7179.40 (13)
C8—C9—C10—C110.6 (2)C9—C8—C13—C121.1 (2)
C8—C13—C12—C110.3 (2)C9—C10—C11—C120.8 (2)
C7A—N1—C8—C954.27 (17)C13—C8—C9—C101.62 (19)
C7A—N1—C8—C13126.85 (14)C13—C12—C11—C101.3 (2)
C7A—N1—C2—O1178.38 (12)C7—C7A—C3A—N3179.77 (11)
C7A—N1—C2—N31.62 (14)C7—C7A—C3A—C40.14 (19)
C7A—C3A—C4—C50.72 (19)C4—C5—C6—C70.1 (2)
C7A—C7—C6—C50.96 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.881.912.7786 (14)177
Symmetry code: (i) x+1, y+2, z+1.
(II) top
Crystal data top
C13H10N2ODx = 1.408 Mg m3
Mr = 210.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9912 reflections
a = 13.7925 (3) Åθ = 2.5–28.3°
b = 7.2652 (1) ŵ = 0.09 mm1
c = 19.7956 (4) ÅT = 193 K
V = 1983.62 (6) Å3BLOCK, colourless
Z = 80.37 × 0.33 × 0.19 mm
F(000) = 880
Data collection top
Bruker APEXII CCD
diffractometer
2203 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.4°, θmin = 2.1°
Tmin = 0.712, Tmax = 0.746h = 1818
34068 measured reflectionsk = 89
2479 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.3866P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2479 reflectionsΔρmax = 0.25 e Å3
145 parametersΔρmin = 0.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45568 (7)0.03382 (12)0.59030 (4)0.0202 (2)
N10.38806 (7)0.32974 (13)0.58960 (5)0.0156 (2)
N30.43199 (7)0.20514 (13)0.49242 (5)0.0162 (2)
H30.4527280.1256530.4621510.019*
C7A0.37019 (8)0.46038 (16)0.53914 (6)0.0150 (2)
C20.42885 (8)0.17358 (16)0.56054 (6)0.0162 (2)
C80.37484 (8)0.35772 (16)0.66031 (6)0.0164 (2)
C3A0.39783 (8)0.38031 (16)0.47791 (6)0.0152 (2)
C70.33606 (8)0.63906 (16)0.54215 (6)0.0176 (2)
H70.3194180.6948440.5839740.021*
C40.38813 (8)0.47304 (17)0.41748 (6)0.0178 (2)
H40.4058960.4175870.3758180.021*
C50.35117 (8)0.65146 (17)0.42007 (6)0.0195 (2)
H50.3422300.7180910.3792520.023*
C90.44915 (9)0.31474 (17)0.70512 (6)0.0198 (2)
H90.5076740.2613370.6891040.024*
C130.28837 (9)0.43311 (16)0.68360 (6)0.0203 (3)
H130.2374030.4605140.6529260.024*
C60.32707 (8)0.73401 (17)0.48132 (6)0.0192 (2)
H60.3040900.8572720.4816200.023*
C120.27728 (10)0.46798 (17)0.75227 (7)0.0257 (3)
H120.2185790.5200890.7685280.031*
C110.35128 (11)0.42719 (17)0.79701 (6)0.0268 (3)
H110.3434010.4516070.8438350.032*
C100.43697 (10)0.35064 (18)0.77346 (6)0.0245 (3)
H100.4876370.3225920.8042960.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0276 (5)0.0164 (4)0.0168 (4)0.0051 (3)0.0006 (3)0.0002 (3)
N10.0173 (4)0.0150 (4)0.0145 (4)0.0021 (4)0.0005 (3)0.0022 (4)
N30.0188 (5)0.0157 (5)0.0142 (4)0.0028 (4)0.0004 (4)0.0022 (4)
C7A0.0122 (5)0.0172 (5)0.0156 (5)0.0013 (4)0.0007 (4)0.0008 (4)
C20.0157 (5)0.0168 (5)0.0161 (5)0.0004 (4)0.0004 (4)0.0027 (4)
C80.0215 (5)0.0137 (5)0.0140 (5)0.0014 (4)0.0023 (4)0.0020 (4)
C3A0.0119 (5)0.0160 (5)0.0178 (5)0.0001 (4)0.0001 (4)0.0025 (4)
C70.0148 (5)0.0177 (5)0.0203 (5)0.0006 (4)0.0012 (4)0.0035 (4)
C40.0166 (5)0.0208 (6)0.0161 (5)0.0002 (4)0.0004 (4)0.0011 (4)
C50.0167 (5)0.0215 (6)0.0202 (6)0.0001 (5)0.0006 (4)0.0039 (5)
C90.0219 (6)0.0199 (5)0.0176 (5)0.0022 (5)0.0005 (4)0.0000 (4)
C130.0241 (6)0.0162 (5)0.0205 (6)0.0009 (5)0.0031 (5)0.0014 (4)
C60.0151 (5)0.0166 (5)0.0258 (6)0.0011 (4)0.0004 (4)0.0006 (5)
C120.0353 (7)0.0180 (6)0.0237 (6)0.0025 (5)0.0117 (5)0.0024 (5)
C110.0460 (8)0.0188 (6)0.0156 (5)0.0047 (6)0.0058 (5)0.0031 (5)
C100.0340 (7)0.0230 (6)0.0166 (6)0.0066 (5)0.0028 (5)0.0013 (5)
Geometric parameters (Å, º) top
O1—C21.2309 (14)C4—H40.9500
N1—C7A1.3997 (15)C4—C51.3939 (17)
N1—C21.3908 (14)C5—H50.9500
N1—C81.4262 (14)C5—C61.3928 (17)
N3—H30.8800C9—H90.9500
N3—C21.3685 (15)C9—C101.3880 (17)
N3—C3A1.3872 (15)C13—H130.9500
C7A—C3A1.3976 (15)C13—C121.3912 (17)
C7A—C71.3821 (16)C6—H60.9500
C8—C91.3910 (17)C12—H120.9500
C8—C131.3911 (16)C12—C111.383 (2)
C3A—C41.3793 (16)C11—H110.9500
C7—H70.9500C11—C101.387 (2)
C7—C61.3933 (17)C10—H100.9500
C7A—N1—C8125.54 (10)C5—C4—H4121.4
C2—N1—C7A109.23 (9)C4—C5—H5119.3
C2—N1—C8125.02 (10)C6—C5—C4121.32 (11)
C2—N3—H3124.8C6—C5—H5119.3
C2—N3—C3A110.31 (9)C8—C9—H9120.3
C3A—N3—H3124.8C10—C9—C8119.35 (12)
C3A—C7A—N1106.78 (10)C10—C9—H9120.3
C7—C7A—N1131.77 (11)C8—C13—H13120.3
C7—C7A—C3A121.41 (11)C8—C13—C12119.33 (12)
O1—C2—N1126.63 (11)C12—C13—H13120.3
O1—C2—N3126.89 (11)C7—C6—H6119.4
N3—C2—N1106.48 (10)C5—C6—C7121.19 (11)
C9—C8—N1119.98 (10)C5—C6—H6119.4
C9—C8—C13120.59 (11)C13—C12—H12119.8
C13—C8—N1119.41 (10)C11—C12—C13120.36 (12)
N3—C3A—C7A107.15 (10)C11—C12—H12119.8
C4—C3A—N3131.35 (11)C12—C11—H11120.0
C4—C3A—C7A121.50 (11)C12—C11—C10119.96 (12)
C7A—C7—H7121.4C10—C11—H11120.0
C7A—C7—C6117.27 (11)C9—C10—H10119.8
C6—C7—H7121.4C11—C10—C9120.41 (12)
C3A—C4—H4121.4C11—C10—H10119.8
C3A—C4—C5117.24 (11)
N1—C7A—C3A—N30.32 (12)C8—N1—C7A—C3A176.62 (10)
N1—C7A—C3A—C4179.08 (10)C8—N1—C7A—C71.01 (19)
N1—C7A—C7—C6179.56 (11)C8—N1—C2—O13.36 (19)
N1—C8—C9—C10177.03 (11)C8—N1—C2—N3177.43 (10)
N1—C8—C13—C12177.13 (11)C8—C9—C10—C110.53 (19)
N3—C3A—C4—C5179.65 (11)C8—C13—C12—C110.35 (19)
C7A—N1—C2—O1178.21 (11)C3A—N3—C2—O1178.39 (11)
C7A—N1—C2—N32.59 (12)C3A—N3—C2—N12.40 (12)
C7A—N1—C8—C9129.31 (12)C3A—C7A—C7—C62.22 (16)
C7A—N1—C8—C1348.81 (16)C3A—C4—C5—C61.38 (17)
C7A—C3A—C4—C51.11 (17)C7—C7A—C3A—N3177.61 (10)
C7A—C7—C6—C50.27 (17)C7—C7A—C3A—C42.99 (17)
C2—N1—C7A—C3A1.81 (12)C4—C5—C6—C72.11 (18)
C2—N1—C7A—C7175.82 (12)C9—C8—C13—C120.98 (18)
C2—N1—C8—C944.70 (17)C13—C8—C9—C101.07 (18)
C2—N1—C8—C13137.18 (12)C13—C12—C11—C100.2 (2)
C2—N3—C3A—C7A1.31 (13)C12—C11—C10—C90.1 (2)
C2—N3—C3A—C4179.37 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.882.002.8453 (13)174
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

Dr Ji-Eun Lee (Gyeongsang National University) is gratefully acknowledged for collecting the single-crystal XRD data.

Funding information

Funding for this research was provided by: National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1G1A1093332 and 2022R1F1A1064158).

References

First citationAit Elmachkouri, Y., Saber, A., Irrou, E., Amer, B., Mague, J. T., Hökelek, T., Labd Taha, M., Sebbar, N. K. & Essassi, E. M. (2021). Acta Cryst. E77, 559–563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.  CSD CrossRef IUCr Journals Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3069.  CSD CrossRef IUCr Journals Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122.  CSD CrossRef IUCr Journals Google Scholar
First citationBellenie, B. R., Cheung, K. J., Varela, A., Pierrat, O. A., Collie, G. W., Box, G. M., Bright, M. D., Gowan, S., Hayes, A., Rodrigues, M. J., Shetty, K. N., Carter, M., Davis, O. A., Henley, A. T., Innocenti, P., Johnson, L. D., Liu, M., de Klerk, S., Le Bihan, Y.-V., Lloyd, M. G., McAndrew, P. C., Shehu, E., Talbot, R., Woodward, H. L., Burke, R., Kirkin, V., van Montfort, R. L. M., Raynaud, F. I., Rossanese, O. W. & Hoelder, S. (2020). J. Med. Chem. 63, 4047–4068.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBeyer, A., Reucher, C. M. M. & Bolm, C. (2011). Org. Lett. 13, 2876–2879.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBouayad-Gervais, S., Nielsen, C. D. T., Turksoy, A., Sperger, T., Deckers, K. & Schoenebeck, F. (2022). J. Am. Chem. Soc. 144, 6100–6106.  Web of Science CAS PubMed Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDombroski, M. A., Letavic, M. A., McClure, K. F., Barberia, J. T., Carty, T. J., Cortina, S. R., Csiki, C., Dipesa, A. J., Elliott, N. C., Gabel, C. A., Jordan, C. K., Labasi, J. M., Martin, W. H., Peese, K. M., Stock, I. A., Svensson, L., Sweeney, F. J. & Yu, C. H. (2004). Bioorg. Med. Chem. Lett. 14, 919–923.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElsinga, P. H., van Waarde, A., Jaeggi, K. A., Schreiber, G., Heldoorn, M. & Vaalburg, W. (1997). J. Med. Chem. 40, 3829–3835.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGustin, D. J., Sehon, C. A., Wei, J., Cai, H., Meduna, S. P., Khatuya, H., Sun, S., Gu, Y., Jiang, W., Thurmond, R. L., Karlsson, L. & Edwards, J. P. (2005). Bioorg. Med. Chem. Lett. 15, 1687–1691.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). Bioorg. Med. Chem. Lett. 16, 6316–6320.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHenning, R., Lattrell, R., Gerhards, H. J. & Leven, M. (1987). J. Med. Chem. 30, 814–819.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKawamoto, H., Nakashima, H., Kato, T., Arai, S., Kamata, K. & Iwasawa, Y. (2001). Tetrahedron, 57, 981–986.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Q., Li, T., Woods, K. W., Gu, W.-Z., Cohen, J., Stoll, V. S., Galicia, T., Hutchins, C., Frost, D., Rosenberg, S. H. & Sham, H. L. (2005). Bioorg. Med. Chem. Lett. 15, 2918–2922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, P., Wang, Z. & Hu, X. (2012). Eur. J. Org. Chem. pp. 1994–2000.  Web of Science CrossRef Google Scholar
First citationŁukasik, E. & Wróbel, Z. (2016). Synthesis, 48, 1159–1166.  Google Scholar
First citationMark, C., Bornatowicz, B., Mitterhauser, M., Hendl, M., Nics, L., Haeusler, D., Lanzenberger, R., Berger, M. L., Spreitzer, H. & Wadsak, W. (2013). Nucl. Med. Biol. 40, 295–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMetz, H.-J. & Morgenroth, F. (2009). In High Performance Pigments, edited by E. B. Faulkner & R. J. Schwarz, pp. 139–164. Weinheim: Wiley-VCH.  Google Scholar
First citationMonforte, A.-M., Logoteta, P., De Luca, L., Iraci, N., Ferro, S., Maga, G., De Clercq, E., Pannecouque, C. & Chimirri, A. (2010). Bioorg. Med. Chem. 18, 1702–1710.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMonforte, A.-M., Logoteta, P., Ferro, S., De Luca, L., Iraci, N., Maga, G., Clercq, E. D., Pannecouque, C. & Chimirri, A. (2009). Bioorg. Med. Chem. 17, 5962–5967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOuzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalin, R., Clark, J. K., Evans, L., Houghton, A. K., Jones, P. S., Prosser, A., Wishart, G. & Yoshiizumi, K. (2008). Bioorg. Med. Chem. 16, 2829–2851.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPoulain, R., Horvath, D., Bonnet, B., Eckhoff, C., Chapelain, B., Bodinier, M.-C. & Déprez, B. (2001). J. Med. Chem. 44, 3378–3390.  CrossRef PubMed CAS Google Scholar
First citationPribut, N., Basson, A. E., van Otterlo, W. A. L., Liotta, D. C. & Pelly, S. C. (2019). ACS Med. Chem. Lett. 10, 196–202.  Web of Science CrossRef CAS PubMed Google Scholar
First citationQi, X., Zhou, R., Peng, J.-B., Ying, J. & Wu, X.-F. (2019). Eur. J. Org. Chem. pp. 5161–5164.  Web of Science CrossRef Google Scholar
First citationRoger, G., Lagnel, B., Besret, L., Bramoullé, Y., Coulon, C., Ottaviani, M., Kassiou, M., Bottlaender, M., Valette, H. & Dollé, F. (2003). Bioorg. Med. Chem. 11, 5401–5408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRong, Y., Al-Harbi, A., Kriegel, B. & Parkin, G. (2013). Inorg. Chem. 52, 7172–7182.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSebhaoui, J., El Bakri, Y., Lai, C.-H., Karthikeyan, S., Anouar, E. H., Mague, J. T. & Essassi, E. M. (2021). J. Biomol. Struct. Dyn. 39, 4859–4877.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTapia, I., Alonso-Cires, L., López-Tudanca, P. L., Mosquera, R., Labeaga, L., Innerárity, A. & Orjales, A. (1999). J. Med. Chem. 42, 2870–2880.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, B., Zhang, H., Zhao, Y., Chen, S., Xu, J., Hao, L. & Liu, Z. (2013). ACS Catal. 3, 2076–2082.  Web of Science CrossRef CAS Google Scholar
First citationZhang, P., Terefenko, E. A., McComas, C. C., Mahaney, P. E., Vu, A., Trybulski, E., Koury, E., Johnston, G., Bray, J. & Deecher, D. (2008). Bioorg. Med. Chem. Lett. 18, 6067–6070.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds