research communications
and Hirshfeld surface analysis of 2-amino-6-[(1-phenylethyl)amino]-4-(thiophen-2-yl)pyridine-3,5-dicarbonitrile
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C19H15N5S, the thiophene ring is disordered in a 0.6:0.4 ratio by an approximate 180° rotation of the ring around the C—C bond linking it to the pyridine ring. In the crystal, the molecules are linked by N—H⋯N hydrogen bonds into dimers with an R22(12) motif, forming chains along the b-axis direction. These chains are connected to each other by further N—H⋯N hydrogen bonds, forming a three-dimensional network. Furthermore, N—H⋯π and π–π [centroid–centroid separations = 3.899 (8) and 3.7938 (12) Å] interactions also contribute to the crystal cohesion. A Hirshfeld surface analysis indicated that the most important contributions to the surface contacts are from H⋯H (46.1%), N⋯H/H⋯N (20.4%) and C⋯H/H⋯C (17.4%) interactions.
CCDC reference: 2260011
1. Chemical context
Diverse C—C, C—N and C—O bond-formation methods play important roles in organic synthesis. The reaction scopes have also been greatly expanded, employing these methods in different fields of chemistry, in both academia and industry (Çelik et al., 2023; Chalkha et al., 2023; Tapera et al., 2022; Gurbanov et al., 2020; Zubkov et al., 2018). The pyridine moiety is a widespread structural motif that can be found in various natural products and pharmacologically active compounds. 3,5-Dicyanopyridines have been reported as intermediates in the synthesis of pyrido[2,3-d]pyrimidines, pyridothienotriazines, azabenzanthracenes and pyrimidine S-nucleoside derivatives with a broad spectrum of biological activity (Cocco et al., 2005; Zhang et al., 2022; Poustforoosh et al., 2022). The design of new 3,5-dicyanopyridine derivatives is thus of great interest.
Continuing our studies of pyridine derivatives exhibiting biological activity, we designed and synthesized a novel 3,5-dicyanopyridine in this series. Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021, 2022), we report the and Hirshfeld surface analysis of the title compound, 2-amino-6-[(1-phenylethyl)amino]-4-(thiophen-2-yl)pyridine-3,5-dicarbonitrile.
2. Structural commentary
The pyridine ring (N1/C2–C6) of the title compound (Fig. 1) is largely planar [maximum deviation = 0.015 (2) Å for C5]. The thiophene and 1-phenylethan-1-amine groups are linked to the central pyridine ring in an equatorial arrangement. The major and minor parts (S1/C15–C18 and S1A/C15A–C18A) of the disordered thiophene ring make dihedral angles of 44.8 (5) and 48.9 (6)°, respectively, with the pyridine ring. The dihedral angle between the phenyl (C7–C12) and pyridine (N1/C2–C6) rings is 64.42 (11) °.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are linked by N—H⋯N hydrogen bonds into dimers with an (12) motif (Bernstein et al., 1995; Table 1, Fig. 2), forming chains along the b-axis direction. These chains are connected to each other by further N—H⋯N hydrogen bonds, forming a three-dimensional network (Tables 1 and 2, Figs. 3 and 4). Furthermore, N—H⋯π and π–π interactions [Cg1⋯Cg1i = 3.899 (8) Å; slippage = 1.899 Å; Cg3⋯Cg3ii = 3.7938 (12) Å; slippage = 1.383 Å; symmetry codes: (i) −x, 1 − y, z; (ii) 1 − x, 1 − y, z; Cg1 and Cg3 are the centroids of the major component of the disordered thiophene ring and of the pyridine ring, respectively] also contribute to crystal cohesion (Figs. 5 and 6).
|
Crystal Explorer 17.5 (Spackman et al., 2021) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to quantify the intermolecular interactions in the crystal. The intermolecular interactions are depicted as red spots, which denotes the N—H⋯N hydrogen bonds, on the Hirshfeld surface mapped over dnorm in the range −0.4485 to +1.5784 a.u. (Fig. 7a,b). Fig. 8 shows the two-dimensional fingerprint plots. The H⋯H contacts comprise 46.1% of the total interactions. Besides this contact, N⋯H/H⋯N (20.4%) and C⋯H/H⋯C (17.4%) interactions make significant contributions to the total Hirshfeld surface. The percentage contributions of the C⋯C, N⋯C/C⋯N, N⋯N, S⋯C/C⋯S, S⋯H/H⋯S and S⋯S contacts are 6.9, 3.8, 2.7, 1.5, 0.6 and 0.6%, respectively.
4. Database survey
The four related compounds found as a result of the search for `2,6-diamino-4-(thiophen-2-yl)pyridine-3,5-dicarbonitrile' in the Cambridge Structure Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) are MUCLAA (Vu Quoc et al., 2019), WOJCIJ (Vishnupriya et al., 2014a), WOPLAQ (Vishnupriya et al., 2014b) and DOPWOW (Vishnupriya et al., 2014c).
In the crystal of MUCLAA (space group P21/c), chains running along the b-axis direction are formed through N—H⋯O interactions between the 1,4-dihydropyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H⋯O and C—H⋯π interactions. In the crystal of WOJCIJ (space group P21/c), inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate (16) loops and the dimers are linked by C—H⋯π and aromatic π–π stacking interactions into a three-dimensional network. In WOPLAQ (space group P21/n), inversion dimers linked by pairs of N—H⋯Nc (c = cyanide) hydrogen bonds generate (16) loops. In DOPWOW (space group Pbca), inversion dimers linked by pairs of N—H⋯Nn (n = nitrile) hydrogen bonds generate (16) loops. Aromatic π–π stacking and very weak C—H⋯π interactions are also observed.
5. Synthesis and crystallization
To a solution of 2-(thiophen-2-ylmethylene)malononitrile (0.82 g; 5.1 mmol) and malononitrile (0.34 g; 5.2 mmol) in methanol (25 mL), phenylethylamine (0.63 g; 5.2 mmol) was added and the mixture was stirred at room temperature for 48 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 94%; m.p. 460–461 K).
1H NMR (300 MHz, DMSO-d6, ppm): 1.55 (d, 3H, CH3, 3JH–H = 7 MHz); 5.45 (k, 1H, CH—Ar, 3JH–H =7,1 MHz); 7.21–7.88 (m, 11H, 5CHarom + 3CHthienyl + NH2 + NH); 13C NMR (75 MHz, DMSO-d6, ppm): 21.69 (CH3), 50.00 (CH—Ar), 79.77 (=Ctert), 80.92 (=Ctert), 116.85 (CN), 116.97 (CN), 127.14 (2CHarom), 127.22 (CHarom), 128.11 (CHthienyl), 128.63 (2CHarom), 130.14 (CHthienyl), 130.75 (CHthienyl), 134.53 (Car), 144.53 (Cthienyl), 152.30 (=Ctert), 158.70 (N=Ctert), 161.38 (=Ctert).
6. Refinement
Crystal data, data collection and structure . The thiophene ring in the title compound was modelled as disordered over two sets of sites related by an approximate rotation of 180° about the C4—C15 bond in a 0.6:0.4 ratio. EADP commands in SHELXL were used for the Uij values of equivalent atom pairs (e.g., C16 and C16A) and DFIX commands were used to restrain the nearest-neighbour and next-nearest-neighbour bond distances in the two disorder components to be equal with a standard deviation of 0.03 Å. All C-bound H atoms were placed in calculated positions (0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were located in a difference map and refined with Uiso(H) = 1.2Ueq(N) [N2—H2 = 0.91 (3) Å, N6—H6A = 0.91 (3) Å, N6—H6B = 0.89 (3) Å].
details are summarized in Table 3
|
Supporting information
CCDC reference: 2260011
https://doi.org/10.1107/S2056989023003845/vm2282sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023003845/vm2282Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023003845/vm2282Isup3.cml
Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2022); cell
CrysAlis PRO 1.171.41.117a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C19H15N5S | Dx = 1.341 Mg m−3 |
Mr = 345.42 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P21212 | Cell parameters from 17132 reflections |
a = 7.89079 (13) Å | θ = 3.4–79.2° |
b = 16.4990 (3) Å | µ = 1.77 mm−1 |
c = 13.1394 (3) Å | T = 100 K |
V = 1710.62 (6) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.04 × 0.03 mm |
F(000) = 720 |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3612 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.044 |
φ and ω scans | θmax = 79.7°, θmin = 3.4° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −10→9 |
Tmin = 0.532, Tmax = 0.939 | k = −21→20 |
26907 measured reflections | l = −16→16 |
3713 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0507P)2 + 0.5356P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3713 reflections | Δρmax = 0.15 e Å−3 |
276 parameters | Δρmin = −0.25 e Å−3 |
12 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: difference Fourier map | Absolute structure parameter: 0.13 (3) |
Experimental. CrysAlisPro 1.171.41.123a (Rigaku OD, 2022); Numerical absorption correction based on Gaussian integration over a multifaceted crystal model; Empirical absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.1793 (3) | 0.56636 (9) | 0.24471 (14) | 0.0306 (3) | 0.6 |
S1A | 0.3236 (6) | 0.42012 (16) | 0.2521 (3) | 0.0254 (6) | 0.4 |
N1 | 0.2686 (2) | 0.50614 (12) | 0.64994 (15) | 0.0250 (4) | |
C1 | 0.1399 (3) | 0.38542 (14) | 0.77369 (17) | 0.0270 (5) | |
H1 | 0.1288 | 0.4439 | 0.7928 | 0.032* | |
C2 | 0.2054 (3) | 0.44038 (13) | 0.60337 (17) | 0.0239 (4) | |
N2 | 0.1451 (2) | 0.38039 (12) | 0.66239 (15) | 0.0263 (4) | |
H2 | 0.112 (4) | 0.332 (2) | 0.636 (2) | 0.032* | |
C3 | 0.1980 (3) | 0.43395 (13) | 0.49462 (17) | 0.0237 (4) | |
C4 | 0.2528 (2) | 0.49903 (13) | 0.43479 (15) | 0.0236 (4) | |
C5 | 0.3127 (3) | 0.56866 (13) | 0.48450 (17) | 0.0244 (4) | |
C6 | 0.3206 (3) | 0.56878 (12) | 0.59318 (17) | 0.0242 (4) | |
N6 | 0.3851 (3) | 0.63253 (13) | 0.64322 (17) | 0.0288 (4) | |
H6A | 0.392 (4) | 0.6297 (19) | 0.712 (3) | 0.035* | |
H6B | 0.413 (4) | 0.679 (2) | 0.615 (2) | 0.035* | |
C7 | 0.2992 (3) | 0.35278 (14) | 0.82352 (17) | 0.0255 (4) | |
C8 | 0.3550 (3) | 0.27466 (15) | 0.80460 (19) | 0.0313 (5) | |
H8 | 0.2958 | 0.2417 | 0.7571 | 0.038* | |
C9 | 0.4974 (3) | 0.24370 (16) | 0.8545 (2) | 0.0352 (5) | |
H9 | 0.5354 | 0.1903 | 0.8402 | 0.042* | |
C10 | 0.5827 (3) | 0.29053 (17) | 0.9245 (2) | 0.0352 (5) | |
H10 | 0.6777 | 0.2691 | 0.9599 | 0.042* | |
C11 | 0.5292 (3) | 0.3690 (2) | 0.9429 (2) | 0.0429 (6) | |
H11 | 0.5883 | 0.4019 | 0.9904 | 0.051* | |
C12 | 0.3887 (3) | 0.39989 (17) | 0.8918 (2) | 0.0361 (6) | |
H12 | 0.3540 | 0.4541 | 0.9041 | 0.043* | |
C13 | −0.0172 (3) | 0.34112 (18) | 0.8124 (2) | 0.0361 (6) | |
H13A | −0.1190 | 0.3670 | 0.7847 | 0.054* | |
H13B | −0.0203 | 0.3435 | 0.8869 | 0.054* | |
H13C | −0.0133 | 0.2844 | 0.7904 | 0.054* | |
C14 | 0.1206 (3) | 0.36403 (14) | 0.45060 (17) | 0.0257 (4) | |
N14 | 0.0540 (3) | 0.30718 (12) | 0.41871 (16) | 0.0310 (4) | |
C15 | 0.251 (3) | 0.4906 (6) | 0.3229 (3) | 0.029 (3) | 0.6 |
C16 | 0.3006 (16) | 0.4236 (4) | 0.2681 (5) | 0.025 (2) | 0.6 |
H16 | 0.3422 | 0.3748 | 0.2974 | 0.030* | 0.6 |
C17 | 0.2816 (10) | 0.4371 (4) | 0.1618 (5) | 0.0346 (15) | 0.6 |
H17 | 0.3135 | 0.3981 | 0.1121 | 0.042* | 0.6 |
C18 | 0.2137 (10) | 0.5107 (4) | 0.1371 (5) | 0.0366 (17) | 0.6 |
H18 | 0.1893 | 0.5284 | 0.0698 | 0.044* | 0.6 |
C15A | 0.246 (4) | 0.4989 (10) | 0.3229 (3) | 0.024 (4) | 0.4 |
C16A | 0.180 (2) | 0.5595 (5) | 0.2643 (5) | 0.025 (2) | 0.4 |
H16A | 0.1294 | 0.6078 | 0.2899 | 0.030* | 0.4 |
C17A | 0.1963 (15) | 0.5398 (6) | 0.1596 (6) | 0.029 (2) | 0.4 |
H17A | 0.1595 | 0.5750 | 0.1069 | 0.035* | 0.4 |
C18A | 0.2696 (14) | 0.4661 (7) | 0.1404 (6) | 0.032 (2) | 0.4 |
H18A | 0.2877 | 0.4439 | 0.0746 | 0.038* | 0.4 |
C19 | 0.3707 (3) | 0.63853 (14) | 0.43145 (18) | 0.0256 (4) | |
N19 | 0.4186 (3) | 0.69712 (13) | 0.39337 (16) | 0.0298 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0317 (6) | 0.0288 (5) | 0.0314 (6) | −0.0050 (5) | −0.0049 (7) | 0.0067 (5) |
S1A | 0.0253 (13) | 0.0248 (10) | 0.0261 (9) | 0.0020 (6) | 0.0027 (10) | −0.0027 (8) |
N1 | 0.0238 (8) | 0.0243 (9) | 0.0269 (9) | −0.0001 (7) | −0.0007 (7) | −0.0006 (7) |
C1 | 0.0261 (10) | 0.0271 (10) | 0.0279 (11) | 0.0024 (8) | 0.0027 (9) | −0.0004 (8) |
C2 | 0.0183 (9) | 0.0223 (9) | 0.0311 (11) | 0.0022 (8) | 0.0001 (8) | 0.0025 (8) |
N2 | 0.0276 (9) | 0.0248 (9) | 0.0266 (9) | −0.0007 (7) | 0.0000 (7) | 0.0024 (7) |
C3 | 0.0199 (9) | 0.0236 (10) | 0.0276 (10) | 0.0018 (9) | −0.0015 (8) | 0.0009 (8) |
C4 | 0.0157 (9) | 0.0249 (11) | 0.0303 (11) | 0.0022 (8) | −0.0005 (7) | 0.0013 (9) |
C5 | 0.0190 (9) | 0.0246 (10) | 0.0298 (10) | 0.0012 (9) | 0.0002 (8) | 0.0012 (8) |
C6 | 0.0190 (9) | 0.0221 (10) | 0.0314 (11) | 0.0014 (8) | −0.0005 (8) | −0.0016 (8) |
N6 | 0.0314 (9) | 0.0257 (10) | 0.0293 (10) | −0.0028 (8) | −0.0022 (8) | −0.0013 (8) |
C7 | 0.0234 (10) | 0.0289 (11) | 0.0242 (9) | −0.0018 (8) | 0.0052 (8) | 0.0007 (8) |
C8 | 0.0296 (11) | 0.0290 (11) | 0.0355 (12) | −0.0022 (9) | −0.0070 (9) | −0.0009 (9) |
C9 | 0.0301 (11) | 0.0311 (12) | 0.0443 (13) | 0.0014 (10) | −0.0047 (11) | 0.0011 (11) |
C10 | 0.0246 (10) | 0.0491 (15) | 0.0319 (11) | −0.0009 (10) | −0.0018 (9) | 0.0025 (11) |
C11 | 0.0339 (13) | 0.0532 (16) | 0.0415 (14) | −0.0033 (12) | −0.0083 (11) | −0.0148 (13) |
C12 | 0.0335 (12) | 0.0384 (14) | 0.0364 (12) | 0.0008 (10) | −0.0007 (10) | −0.0108 (11) |
C13 | 0.0260 (11) | 0.0479 (15) | 0.0344 (12) | 0.0015 (11) | 0.0037 (10) | 0.0083 (11) |
C14 | 0.0245 (9) | 0.0252 (10) | 0.0273 (10) | 0.0023 (8) | −0.0004 (8) | 0.0028 (9) |
N14 | 0.0334 (10) | 0.0264 (10) | 0.0331 (10) | −0.0023 (8) | −0.0034 (8) | 0.0012 (8) |
C15 | 0.022 (6) | 0.027 (4) | 0.036 (6) | −0.011 (3) | −0.004 (4) | 0.009 (3) |
C16 | 0.023 (3) | 0.033 (3) | 0.020 (3) | 0.0021 (19) | 0.003 (2) | −0.0031 (17) |
C17 | 0.027 (3) | 0.049 (4) | 0.028 (3) | −0.006 (3) | −0.001 (2) | −0.003 (3) |
C18 | 0.029 (3) | 0.061 (6) | 0.020 (3) | −0.016 (4) | 0.001 (3) | 0.004 (3) |
C15A | 0.017 (7) | 0.036 (6) | 0.020 (6) | 0.001 (6) | 0.004 (6) | −0.005 (5) |
C16A | 0.023 (3) | 0.033 (3) | 0.020 (3) | 0.0021 (19) | 0.003 (2) | −0.0031 (17) |
C17A | 0.027 (3) | 0.048 (6) | 0.012 (4) | 0.000 (4) | 0.003 (3) | −0.001 (3) |
C18A | 0.022 (4) | 0.053 (8) | 0.020 (4) | 0.011 (5) | −0.001 (3) | 0.005 (5) |
C19 | 0.0224 (9) | 0.0251 (10) | 0.0293 (10) | 0.0005 (8) | −0.0009 (9) | −0.0030 (9) |
N19 | 0.0300 (9) | 0.0265 (10) | 0.0331 (10) | −0.0034 (8) | 0.0004 (8) | −0.0006 (8) |
S1—C18 | 1.708 (4) | C8—H8 | 0.9500 |
S1—C15 | 1.713 (4) | C9—C10 | 1.377 (4) |
S1A—C18A | 1.707 (4) | C9—H9 | 0.9500 |
S1A—C15A | 1.711 (4) | C10—C11 | 1.384 (4) |
N1—C6 | 1.339 (3) | C10—H10 | 0.9500 |
N1—C2 | 1.342 (3) | C11—C12 | 1.392 (4) |
C1—N2 | 1.465 (3) | C11—H11 | 0.9500 |
C1—C7 | 1.516 (3) | C12—H12 | 0.9500 |
C1—C13 | 1.526 (3) | C13—H13A | 0.9800 |
C1—H1 | 1.0000 | C13—H13B | 0.9800 |
C2—N2 | 1.344 (3) | C13—H13C | 0.9800 |
C2—C3 | 1.434 (3) | C14—N14 | 1.154 (3) |
N2—H2 | 0.91 (3) | C15—C16 | 1.377 (4) |
C3—C4 | 1.399 (3) | C16—C17 | 1.423 (4) |
C3—C14 | 1.428 (3) | C16—H16 | 0.9500 |
C4—C5 | 1.404 (3) | C17—C18 | 1.368 (9) |
C4—C15A | 1.472 (4) | C17—H17 | 0.9500 |
C4—C15 | 1.477 (3) | C18—H18 | 0.9500 |
C5—C19 | 1.423 (3) | C15A—C16A | 1.368 (4) |
C5—C6 | 1.429 (3) | C16A—C17A | 1.420 (4) |
C6—N6 | 1.341 (3) | C16A—H16A | 0.9500 |
N6—H6A | 0.91 (3) | C17A—C18A | 1.369 (13) |
N6—H6B | 0.89 (3) | C17A—H17A | 0.9500 |
C7—C12 | 1.382 (3) | C18A—H18A | 0.9500 |
C7—C8 | 1.384 (3) | C19—N19 | 1.152 (3) |
C8—C9 | 1.398 (3) | ||
C18—S1—C15 | 93.0 (4) | C9—C10—C11 | 119.5 (2) |
C18A—S1A—C15A | 92.3 (5) | C9—C10—H10 | 120.2 |
C6—N1—C2 | 118.95 (19) | C11—C10—H10 | 120.2 |
N2—C1—C7 | 112.82 (18) | C10—C11—C12 | 120.1 (2) |
N2—C1—C13 | 109.13 (19) | C10—C11—H11 | 119.9 |
C7—C1—C13 | 111.07 (19) | C12—C11—H11 | 119.9 |
N2—C1—H1 | 107.9 | C7—C12—C11 | 121.0 (3) |
C7—C1—H1 | 107.9 | C7—C12—H12 | 119.5 |
C13—C1—H1 | 107.9 | C11—C12—H12 | 119.5 |
N1—C2—N2 | 117.6 (2) | C1—C13—H13A | 109.5 |
N1—C2—C3 | 122.0 (2) | C1—C13—H13B | 109.5 |
N2—C2—C3 | 120.4 (2) | H13A—C13—H13B | 109.5 |
C2—N2—C1 | 122.9 (2) | C1—C13—H13C | 109.5 |
C2—N2—H2 | 122 (2) | H13A—C13—H13C | 109.5 |
C1—N2—H2 | 115 (2) | H13B—C13—H13C | 109.5 |
C4—C3—C14 | 121.65 (19) | N14—C14—C3 | 177.1 (2) |
C4—C3—C2 | 119.4 (2) | C16—C15—C4 | 126.3 (4) |
C14—C3—C2 | 118.7 (2) | C16—C15—S1 | 111.5 (3) |
C3—C4—C5 | 118.08 (19) | C4—C15—S1 | 122.2 (3) |
C3—C4—C15A | 123.3 (11) | C15—C16—C17 | 110.9 (5) |
C5—C4—C15A | 118.6 (11) | C15—C16—H16 | 124.5 |
C3—C4—C15 | 118.9 (7) | C17—C16—H16 | 124.5 |
C5—C4—C15 | 123.0 (7) | C18—C17—C16 | 114.4 (6) |
C4—C5—C19 | 122.9 (2) | C18—C17—H17 | 122.8 |
C4—C5—C6 | 118.7 (2) | C16—C17—H17 | 122.8 |
C19—C5—C6 | 118.3 (2) | C17—C18—S1 | 110.1 (6) |
N1—C6—N6 | 116.7 (2) | C17—C18—H18 | 125.0 |
N1—C6—C5 | 122.8 (2) | S1—C18—H18 | 125.0 |
N6—C6—C5 | 120.5 (2) | C16A—C15A—C4 | 125.1 (5) |
C6—N6—H6A | 118 (2) | C16A—C15A—S1A | 112.8 (3) |
C6—N6—H6B | 125 (2) | C4—C15A—S1A | 122.1 (4) |
H6A—N6—H6B | 117 (3) | C15A—C16A—C17A | 109.9 (6) |
C12—C7—C8 | 118.5 (2) | C15A—C16A—H16A | 125.0 |
C12—C7—C1 | 120.3 (2) | C17A—C16A—H16A | 125.0 |
C8—C7—C1 | 121.1 (2) | C18A—C17A—C16A | 115.0 (9) |
C7—C8—C9 | 120.8 (2) | C18A—C17A—H17A | 122.5 |
C7—C8—H8 | 119.6 | C16A—C17A—H17A | 122.5 |
C9—C8—H8 | 119.6 | C17A—C18A—S1A | 110.0 (8) |
C10—C9—C8 | 120.1 (2) | C17A—C18A—H18A | 125.0 |
C10—C9—H9 | 120.0 | S1A—C18A—H18A | 125.0 |
C8—C9—H9 | 120.0 | N19—C19—C5 | 176.4 (2) |
C6—N1—C2—N2 | −176.22 (19) | C1—C7—C8—C9 | −176.9 (2) |
C6—N1—C2—C3 | 2.5 (3) | C7—C8—C9—C10 | 0.9 (4) |
N1—C2—N2—C1 | 2.4 (3) | C8—C9—C10—C11 | −1.7 (4) |
C3—C2—N2—C1 | −176.30 (19) | C9—C10—C11—C12 | 0.8 (4) |
C7—C1—N2—C2 | −90.5 (2) | C8—C7—C12—C11 | −1.8 (4) |
C13—C1—N2—C2 | 145.6 (2) | C1—C7—C12—C11 | 176.0 (2) |
N1—C2—C3—C4 | −2.2 (3) | C10—C11—C12—C7 | 1.0 (4) |
N2—C2—C3—C4 | 176.47 (18) | C3—C4—C15—C16 | −42 (2) |
N1—C2—C3—C14 | −176.64 (19) | C5—C4—C15—C16 | 135.4 (17) |
N2—C2—C3—C14 | 2.0 (3) | C15A—C4—C15—C16 | 173 (27) |
C14—C3—C4—C5 | 174.0 (2) | C3—C4—C15—S1 | 136.5 (12) |
C2—C3—C4—C5 | −0.3 (3) | C5—C4—C15—S1 | −46 (2) |
C14—C3—C4—C15A | −4.1 (12) | C15A—C4—C15—S1 | −8 (23) |
C2—C3—C4—C15A | −178.4 (11) | C18—S1—C15—C16 | 0.1 (16) |
C14—C3—C4—C15 | −8.0 (9) | C18—S1—C15—C4 | −179.0 (17) |
C2—C3—C4—C15 | 177.7 (8) | C4—C15—C16—C17 | −179.8 (17) |
C3—C4—C5—C19 | −179.6 (2) | S1—C15—C16—C17 | 1 (2) |
C15A—C4—C5—C19 | −1.4 (11) | C15—C16—C17—C18 | −2.2 (17) |
C15—C4—C5—C19 | 2.4 (9) | C16—C17—C18—S1 | 2.3 (10) |
C3—C4—C5—C6 | 2.2 (3) | C15—S1—C18—C17 | −1.3 (10) |
C15A—C4—C5—C6 | −179.5 (11) | C3—C4—C15A—C16A | 130 (2) |
C15—C4—C5—C6 | −175.7 (8) | C5—C4—C15A—C16A | −48 (4) |
C2—N1—C6—N6 | −179.01 (19) | C15—C4—C15A—C16A | 168 (28) |
C2—N1—C6—C5 | −0.4 (3) | C3—C4—C15A—S1A | −50 (3) |
C4—C5—C6—N1 | −2.0 (3) | C5—C4—C15A—S1A | 132.2 (18) |
C19—C5—C6—N1 | 179.74 (19) | C15—C4—C15A—S1A | −12 (23) |
C4—C5—C6—N6 | 176.58 (19) | C18A—S1A—C15A—C16A | 0 (2) |
C19—C5—C6—N6 | −1.6 (3) | C18A—S1A—C15A—C4 | −180 (2) |
N2—C1—C7—C12 | 126.2 (2) | C4—C15A—C16A—C17A | 179 (2) |
C13—C1—C7—C12 | −110.9 (3) | S1A—C15A—C16A—C17A | −1 (3) |
N2—C1—C7—C8 | −56.0 (3) | C15A—C16A—C17A—C18A | 1 (2) |
C13—C1—C7—C8 | 66.9 (3) | C16A—C17A—C18A—S1A | −1.2 (15) |
C12—C7—C8—C9 | 0.9 (4) | C15A—S1A—C18A—C17A | 0.6 (15) |
Cg4 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N19i | 0.91 (3) | 2.28 (3) | 3.152 (3) | 163 (3) |
N6—H6B···N14ii | 0.89 (3) | 2.17 (4) | 3.033 (3) | 164 (3) |
N6—H6A···Cg4iii | 0.91 (3) | 2.62 (4) | 3.405 (2) | 145 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1; (ii) −x+1/2, y+1/2, −z+1; (iii) −x+1, −y+1, z. |
Contact | Distance | Symmetry operation |
H13A···H6A | 2.36 | -x, 1 - y, z |
H6B···N14 | 2.18 | 1/2 - x, 1/2 + y, 1 - z |
H16···N19 | 2.56 | 1 - x, 1 - y, z |
C17···H9 | 2.86 | -1/2 + x, 1/2 - y, 1 - z |
C10···C13 | 3.58 | 1 + x, y, z |
H12···H18A | 2.31 | x, y, 1 + z |
H18···H11 | 2.34 | 1 - x, 1 - y, -1 + z |
Acknowledgements
Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and KAA; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and KAA; supervision, ANK and MA.
Funding information
This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158. Google Scholar
Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255. Web of Science CSD CrossRef Google Scholar
Cocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365–1372. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241. Web of Science CrossRef PubMed Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816. Web of Science CSD CrossRef Google Scholar
Vishnupriya, R., Suresh, J., Bharkavi, S., Perumal, S. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o968–o969. CSD CrossRef IUCr Journals Google Scholar
Vishnupriya, R., Suresh, J., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o978. CSD CrossRef IUCr Journals Google Scholar
Vishnupriya, R., Suresh, J., Sakthi, M., Perumal, S. & Lakshman, P. L. N. (2014c). Acta Cryst. E70, o1120–o1121. CSD CrossRef IUCr Journals Google Scholar
Vu Quoc, T., Tran Thi Thuy, D., Phung Ngoc, T., Vu Quoc, M., Nguyen, H., Duong Khanh, L., Tu Quang, A. & Van Meervelt, L. (2019). Acta Cryst. E75, 1861–1865. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, X., Tao, F., Cui, T., Luo, C., Zhou, Z., Huang, Y., Tan, L., Peng, W. & Wu, C. (2022). Molecules, 27, 7187. Web of Science CrossRef PubMed Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.