research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-amino-6-[(1-phenyl­eth­yl)amino]-4-(thio­phen-2-yl)pyridine-3,5-dicarbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 26 April 2023; accepted 28 April 2023; online 5 May 2023)

In the title compound, C19H15N5S, the thio­phene ring is disordered in a 0.6:0.4 ratio by an approximate 180° rotation of the ring around the C—C bond linking it to the pyridine ring. In the crystal, the mol­ecules are linked by N—H⋯N hydrogen bonds into dimers with an R22(12) motif, forming chains along the b-axis direction. These chains are connected to each other by further N—H⋯N hydrogen bonds, forming a three-dimensional network. Furthermore, N—H⋯π and ππ [centroid–centroid separations = 3.899 (8) and 3.7938 (12) Å] inter­actions also contribute to the crystal cohesion. A Hirshfeld surface analysis indicated that the most important contributions to the surface contacts are from H⋯H (46.1%), N⋯H/H⋯N (20.4%) and C⋯H/H⋯C (17.4%) inter­actions.

1. Chemical context

Diverse C—C, C—N and C—O bond-formation methods play important roles in organic synthesis. The reaction scopes have also been greatly expanded, employing these methods in different fields of chemistry, in both academia and industry (Çelik et al., 2023[Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.]; Chalkha et al., 2023[Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.]; Tapera et al., 2022[Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833-14837.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). The pyridine moiety is a widespread structural motif that can be found in various natural products and pharmacologically active compounds. 3,5-Di­cyano­pyridines have been reported as inter­mediates in the synthesis of pyrido[2,3-d]pyrimidines, pyridothienotriazines, aza­benzanthracenes and pyrimidine S-nucleoside derivatives with a broad spectrum of biological activity (Cocco et al., 2005[Cocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365-1372.]; Zhang et al., 2022[Zhang, X., Tao, F., Cui, T., Luo, C., Zhou, Z., Huang, Y., Tan, L., Peng, W. & Wu, C. (2022). Molecules, 27, 7187.]; Poustforoosh et al., 2022[Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.]). The design of new 3,5-di­cyano­pyridine derivatives is thus of great inter­est.

[Scheme 1]

Continuing our studies of pyridine derivatives exhibiting biological activity, we designed and synthesized a novel 3,5-di­cyano­pyridine in this series. Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, 2-amino-6-[(1-phenyl­eth­yl)amino]-4-(thio­phen-2-yl)pyridine-3,5-dicarb­o­nitrile.

2. Structural commentary

The pyridine ring (N1/C2–C6) of the title compound (Fig. 1[link]) is largely planar [maximum deviation = 0.015 (2) Å for C5]. The thio­phene and 1-phenyl­ethan-1-amine groups are linked to the central pyridine ring in an equatorial arrangement. The major and minor parts (S1/C15–C18 and S1A/C15A–C18A) of the disordered thio­phene ring make dihedral angles of 44.8 (5) and 48.9 (6)°, respectively, with the pyridine ring. The dihedral angle between the phenyl (C7–C12) and pyridine (N1/C2–C6) rings is 64.42 (11) °.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. For clarity, the minor disorder component is not shown.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked by N—H⋯N hydrogen bonds into dimers with an [R_{2}^{2}](12) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link], Fig. 2[link]), forming chains along the b-axis direction. These chains are connected to each other by further N—H⋯N hydrogen bonds, forming a three-dimensional network (Tables 1[link] and 2[link], Figs. 3[link] and 4[link]). Furthermore, N—H⋯π and ππ inter­actions [Cg1⋯Cg1i = 3.899 (8) Å; slippage = 1.899 Å; Cg3⋯Cg3ii = 3.7938 (12) Å; slippage = 1.383 Å; symmetry codes: (i) −x, 1 − y, z; (ii) 1 − x, 1 − y, z; Cg1 and Cg3 are the centroids of the major component of the disordered thio­phene ring and of the pyridine ring, respectively] also contribute to crystal cohesion (Figs. 5[link] and 6[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N19i 0.91 (3) 2.28 (3) 3.152 (3) 163 (3)
N6—H6B⋯N14ii 0.89 (3) 2.17 (4) 3.033 (3) 164 (3)
N6—H6ACg4iii 0.91 (3) 2.62 (4) 3.405 (2) 145 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, -y+1, z].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H13A⋯H6A 2.36 x, 1 − y, z
H6B⋯N14 2.18 [{1\over 2}] − x, [{1\over 2}] + y, 1 − z
H16⋯N19 2.56 1 − x, 1 − y, z
C17⋯H9 2.86 [{1\over 2}] + x, [{1\over 2}] − y, 1 − z
C10⋯C13 3.58 1 + x, y, z
H12⋯H18A 2.31 x, y, 1 + z
H18⋯H11 2.34 1 − x, 1 − y, −1 + z
[Figure 2]
Figure 2
View of the mol­ecular packing along the a axis. N—H⋯N hydrogen bonds are shown as dashed lines. For clarity, the minor disorder component is not shown.
[Figure 3]
Figure 3
View of the mol­ecular packing along the b axis. Hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
View of the mol­ecular packing along the c axis. Hydrogen bonds are shown as dashed lines.
[Figure 5]
Figure 5
View of the mol­ecular packing along the b axis. N—H⋯π inter­actions and ππ stacking inter­actions are shown as dashed lines.
[Figure 6]
Figure 6
View of the mol­ecular packing along the c axis. N—H⋯π inter­actions and ππ stacking inter­actions are shown as dashed lines.

Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots in order to qu­antify the inter­molecular inter­actions in the crystal. The inter­molecular inter­actions are depicted as red spots, which denotes the N—H⋯N hydrogen bonds, on the Hirshfeld surface mapped over dnorm in the range −0.4485 to +1.5784 a.u. (Fig. 7[link]a,b). Fig. 8[link] shows the two-dimensional fingerprint plots. The H⋯H contacts comprise 46.1% of the total inter­actions. Besides this contact, N⋯H/H⋯N (20.4%) and C⋯H/H⋯C (17.4%) inter­actions make significant contributions to the total Hirshfeld surface. The percentage contributions of the C⋯C, N⋯C/C⋯N, N⋯N, S⋯C/C⋯S, S⋯H/H⋯S and S⋯S contacts are 6.9, 3.8, 2.7, 1.5, 0.6 and 0.6%, respectively.

[Figure 7]
Figure 7
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.4485 to +1.5784 a.u. N—H⋯N hydrogen bonds are shown as dashed lines.
[Figure 8]
Figure 8
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N and (d) C⋯H/H⋯C inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

The four related compounds found as a result of the search for `2,6-di­amino-4-(thio­phen-2-yl)pyridine-3,5-dicarbo­nitrile' in the Cambridge Structure Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) are MUCLAA (Vu Quoc et al., 2019[Vu Quoc, T., Tran Thi Thuy, D., Phung Ngoc, T., Vu Quoc, M., Nguyen, H., Duong Khanh, L., Tu Quang, A. & Van Meervelt, L. (2019). Acta Cryst. E75, 1861-1865.]), WOJCIJ (Vishnupriya et al., 2014a[Vishnupriya, R., Suresh, J., Bharkavi, S., Perumal, S. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o968-o969.]), WOPLAQ (Vishnupriya et al., 2014b[Vishnupriya, R., Suresh, J., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o978.]) and DOPWOW (Vishnupriya et al., 2014c[Vishnupriya, R., Suresh, J., Sakthi, M., Perumal, S. & Lakshman, P. L. N. (2014c). Acta Cryst. E70, o1120-o1121.]).

In the crystal of MUCLAA (space group P21/c), chains running along the b-axis direction are formed through N—H⋯O inter­actions between the 1,4-di­hydro­pyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H⋯O and C—H⋯π inter­actions. In the crystal of WOJCIJ (space group P21/c), inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate [R_{2}^{2}](16) loops and the dimers are linked by C—H⋯π and aromatic ππ stacking inter­actions into a three-dimensional network. In WOPLAQ (space group P21/n), inversion dimers linked by pairs of N—H⋯Nc (c = cyanide) hydrogen bonds generate [R_{2}^{2}] (16) loops. In DOPWOW (space group Pbca), inversion dimers linked by pairs of N—H⋯Nn (n = nitrile) hydrogen bonds generate [R_{2}^{2}](16) loops. Aromatic ππ stacking and very weak C—H⋯π inter­actions are also observed.

5. Synthesis and crystallization

To a solution of 2-(thio­phen-2-yl­methyl­ene)malono­nitrile (0.82 g; 5.1 mmol) and malono­nitrile (0.34 g; 5.2 mmol) in methanol (25 mL), phenyl­ethyl­amine (0.63 g; 5.2 mmol) was added and the mixture was stirred at room temperature for 48 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 94%; m.p. 460–461 K).

1H NMR (300 MHz, DMSO-d6, ppm): 1.55 (d, 3H, CH3, 3JH–H = 7 MHz); 5.45 (k, 1H, CH—Ar, 3JH–H =7,1 MHz); 7.21–7.88 (m, 11H, 5CHarom + 3CHthien­yl + NH2 + NH); 13C NMR (75 MHz, DMSO-d6, ppm): 21.69 (CH3), 50.00 (CH—Ar), 79.77 (=Ctert), 80.92 (=Ctert), 116.85 (CN), 116.97 (CN), 127.14 (2CHarom), 127.22 (CHarom), 128.11 (CHthien­yl), 128.63 (2CHarom), 130.14 (CHthien­yl), 130.75 (CHthien­yl), 134.53 (Car), 144.53 (Cthien­yl), 152.30 (=Ctert), 158.70 (N=Ctert), 161.38 (=Ctert).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The thio­phene ring in the title compound was modelled as disordered over two sets of sites related by an approximate rotation of 180° about the C4—C15 bond in a 0.6:0.4 ratio. EADP commands in SHELXL were used for the Uij values of equivalent atom pairs (e.g., C16 and C16A) and DFIX commands were used to restrain the nearest-neighbour and next-nearest-neighbour bond distances in the two disorder components to be equal with a standard deviation of 0.03 Å. All C-bound H atoms were placed in calculated positions (0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were located in a difference map and refined with Uiso(H) = 1.2Ueq(N) [N2—H2 = 0.91 (3) Å, N6—H6A = 0.91 (3) Å, N6—H6B = 0.89 (3) Å].

Table 3
Experimental details

Crystal data
Chemical formula C19H15N5S
Mr 345.42
Crystal system, space group Orthorhombic, P21212
Temperature (K) 100
a, b, c (Å) 7.89079 (13), 16.4990 (3), 13.1394 (3)
V3) 1710.62 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.77
Crystal size (mm) 0.40 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.532, 0.939
No. of measured, independent and observed [I > 2σ(I)] reflections 26907, 3713, 3612
Rint 0.044
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.05
No. of reflections 3713
No. of parameters 276
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.25
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.13 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.41.117a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2-Amino-6-[(1-phenylethyl)amino]-4-(thiophen-2-yl)pyridine-3,5-dicarbonitrile top
Crystal data top
C19H15N5SDx = 1.341 Mg m3
Mr = 345.42Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P21212Cell parameters from 17132 reflections
a = 7.89079 (13) Åθ = 3.4–79.2°
b = 16.4990 (3) ŵ = 1.77 mm1
c = 13.1394 (3) ÅT = 100 K
V = 1710.62 (6) Å3Needle, colourless
Z = 40.40 × 0.04 × 0.03 mm
F(000) = 720
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3612 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.044
φ and ω scansθmax = 79.7°, θmin = 3.4°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 109
Tmin = 0.532, Tmax = 0.939k = 2120
26907 measured reflectionsl = 1616
3713 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.5356P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3713 reflectionsΔρmax = 0.15 e Å3
276 parametersΔρmin = 0.25 e Å3
12 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.13 (3)
Special details top

Experimental. CrysAlisPro 1.171.41.123a (Rigaku OD, 2022); Numerical absorption correction based on Gaussian integration over a multifaceted crystal model; Empirical absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.1793 (3)0.56636 (9)0.24471 (14)0.0306 (3)0.6
S1A0.3236 (6)0.42012 (16)0.2521 (3)0.0254 (6)0.4
N10.2686 (2)0.50614 (12)0.64994 (15)0.0250 (4)
C10.1399 (3)0.38542 (14)0.77369 (17)0.0270 (5)
H10.12880.44390.79280.032*
C20.2054 (3)0.44038 (13)0.60337 (17)0.0239 (4)
N20.1451 (2)0.38039 (12)0.66239 (15)0.0263 (4)
H20.112 (4)0.332 (2)0.636 (2)0.032*
C30.1980 (3)0.43395 (13)0.49462 (17)0.0237 (4)
C40.2528 (2)0.49903 (13)0.43479 (15)0.0236 (4)
C50.3127 (3)0.56866 (13)0.48450 (17)0.0244 (4)
C60.3206 (3)0.56878 (12)0.59318 (17)0.0242 (4)
N60.3851 (3)0.63253 (13)0.64322 (17)0.0288 (4)
H6A0.392 (4)0.6297 (19)0.712 (3)0.035*
H6B0.413 (4)0.679 (2)0.615 (2)0.035*
C70.2992 (3)0.35278 (14)0.82352 (17)0.0255 (4)
C80.3550 (3)0.27466 (15)0.80460 (19)0.0313 (5)
H80.29580.24170.75710.038*
C90.4974 (3)0.24370 (16)0.8545 (2)0.0352 (5)
H90.53540.19030.84020.042*
C100.5827 (3)0.29053 (17)0.9245 (2)0.0352 (5)
H100.67770.26910.95990.042*
C110.5292 (3)0.3690 (2)0.9429 (2)0.0429 (6)
H110.58830.40190.99040.051*
C120.3887 (3)0.39989 (17)0.8918 (2)0.0361 (6)
H120.35400.45410.90410.043*
C130.0172 (3)0.34112 (18)0.8124 (2)0.0361 (6)
H13A0.11900.36700.78470.054*
H13B0.02030.34350.88690.054*
H13C0.01330.28440.79040.054*
C140.1206 (3)0.36403 (14)0.45060 (17)0.0257 (4)
N140.0540 (3)0.30718 (12)0.41871 (16)0.0310 (4)
C150.251 (3)0.4906 (6)0.3229 (3)0.029 (3)0.6
C160.3006 (16)0.4236 (4)0.2681 (5)0.025 (2)0.6
H160.34220.37480.29740.030*0.6
C170.2816 (10)0.4371 (4)0.1618 (5)0.0346 (15)0.6
H170.31350.39810.11210.042*0.6
C180.2137 (10)0.5107 (4)0.1371 (5)0.0366 (17)0.6
H180.18930.52840.06980.044*0.6
C15A0.246 (4)0.4989 (10)0.3229 (3)0.024 (4)0.4
C16A0.180 (2)0.5595 (5)0.2643 (5)0.025 (2)0.4
H16A0.12940.60780.28990.030*0.4
C17A0.1963 (15)0.5398 (6)0.1596 (6)0.029 (2)0.4
H17A0.15950.57500.10690.035*0.4
C18A0.2696 (14)0.4661 (7)0.1404 (6)0.032 (2)0.4
H18A0.28770.44390.07460.038*0.4
C190.3707 (3)0.63853 (14)0.43145 (18)0.0256 (4)
N190.4186 (3)0.69712 (13)0.39337 (16)0.0298 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0317 (6)0.0288 (5)0.0314 (6)0.0050 (5)0.0049 (7)0.0067 (5)
S1A0.0253 (13)0.0248 (10)0.0261 (9)0.0020 (6)0.0027 (10)0.0027 (8)
N10.0238 (8)0.0243 (9)0.0269 (9)0.0001 (7)0.0007 (7)0.0006 (7)
C10.0261 (10)0.0271 (10)0.0279 (11)0.0024 (8)0.0027 (9)0.0004 (8)
C20.0183 (9)0.0223 (9)0.0311 (11)0.0022 (8)0.0001 (8)0.0025 (8)
N20.0276 (9)0.0248 (9)0.0266 (9)0.0007 (7)0.0000 (7)0.0024 (7)
C30.0199 (9)0.0236 (10)0.0276 (10)0.0018 (9)0.0015 (8)0.0009 (8)
C40.0157 (9)0.0249 (11)0.0303 (11)0.0022 (8)0.0005 (7)0.0013 (9)
C50.0190 (9)0.0246 (10)0.0298 (10)0.0012 (9)0.0002 (8)0.0012 (8)
C60.0190 (9)0.0221 (10)0.0314 (11)0.0014 (8)0.0005 (8)0.0016 (8)
N60.0314 (9)0.0257 (10)0.0293 (10)0.0028 (8)0.0022 (8)0.0013 (8)
C70.0234 (10)0.0289 (11)0.0242 (9)0.0018 (8)0.0052 (8)0.0007 (8)
C80.0296 (11)0.0290 (11)0.0355 (12)0.0022 (9)0.0070 (9)0.0009 (9)
C90.0301 (11)0.0311 (12)0.0443 (13)0.0014 (10)0.0047 (11)0.0011 (11)
C100.0246 (10)0.0491 (15)0.0319 (11)0.0009 (10)0.0018 (9)0.0025 (11)
C110.0339 (13)0.0532 (16)0.0415 (14)0.0033 (12)0.0083 (11)0.0148 (13)
C120.0335 (12)0.0384 (14)0.0364 (12)0.0008 (10)0.0007 (10)0.0108 (11)
C130.0260 (11)0.0479 (15)0.0344 (12)0.0015 (11)0.0037 (10)0.0083 (11)
C140.0245 (9)0.0252 (10)0.0273 (10)0.0023 (8)0.0004 (8)0.0028 (9)
N140.0334 (10)0.0264 (10)0.0331 (10)0.0023 (8)0.0034 (8)0.0012 (8)
C150.022 (6)0.027 (4)0.036 (6)0.011 (3)0.004 (4)0.009 (3)
C160.023 (3)0.033 (3)0.020 (3)0.0021 (19)0.003 (2)0.0031 (17)
C170.027 (3)0.049 (4)0.028 (3)0.006 (3)0.001 (2)0.003 (3)
C180.029 (3)0.061 (6)0.020 (3)0.016 (4)0.001 (3)0.004 (3)
C15A0.017 (7)0.036 (6)0.020 (6)0.001 (6)0.004 (6)0.005 (5)
C16A0.023 (3)0.033 (3)0.020 (3)0.0021 (19)0.003 (2)0.0031 (17)
C17A0.027 (3)0.048 (6)0.012 (4)0.000 (4)0.003 (3)0.001 (3)
C18A0.022 (4)0.053 (8)0.020 (4)0.011 (5)0.001 (3)0.005 (5)
C190.0224 (9)0.0251 (10)0.0293 (10)0.0005 (8)0.0009 (9)0.0030 (9)
N190.0300 (9)0.0265 (10)0.0331 (10)0.0034 (8)0.0004 (8)0.0006 (8)
Geometric parameters (Å, º) top
S1—C181.708 (4)C8—H80.9500
S1—C151.713 (4)C9—C101.377 (4)
S1A—C18A1.707 (4)C9—H90.9500
S1A—C15A1.711 (4)C10—C111.384 (4)
N1—C61.339 (3)C10—H100.9500
N1—C21.342 (3)C11—C121.392 (4)
C1—N21.465 (3)C11—H110.9500
C1—C71.516 (3)C12—H120.9500
C1—C131.526 (3)C13—H13A0.9800
C1—H11.0000C13—H13B0.9800
C2—N21.344 (3)C13—H13C0.9800
C2—C31.434 (3)C14—N141.154 (3)
N2—H20.91 (3)C15—C161.377 (4)
C3—C41.399 (3)C16—C171.423 (4)
C3—C141.428 (3)C16—H160.9500
C4—C51.404 (3)C17—C181.368 (9)
C4—C15A1.472 (4)C17—H170.9500
C4—C151.477 (3)C18—H180.9500
C5—C191.423 (3)C15A—C16A1.368 (4)
C5—C61.429 (3)C16A—C17A1.420 (4)
C6—N61.341 (3)C16A—H16A0.9500
N6—H6A0.91 (3)C17A—C18A1.369 (13)
N6—H6B0.89 (3)C17A—H17A0.9500
C7—C121.382 (3)C18A—H18A0.9500
C7—C81.384 (3)C19—N191.152 (3)
C8—C91.398 (3)
C18—S1—C1593.0 (4)C9—C10—C11119.5 (2)
C18A—S1A—C15A92.3 (5)C9—C10—H10120.2
C6—N1—C2118.95 (19)C11—C10—H10120.2
N2—C1—C7112.82 (18)C10—C11—C12120.1 (2)
N2—C1—C13109.13 (19)C10—C11—H11119.9
C7—C1—C13111.07 (19)C12—C11—H11119.9
N2—C1—H1107.9C7—C12—C11121.0 (3)
C7—C1—H1107.9C7—C12—H12119.5
C13—C1—H1107.9C11—C12—H12119.5
N1—C2—N2117.6 (2)C1—C13—H13A109.5
N1—C2—C3122.0 (2)C1—C13—H13B109.5
N2—C2—C3120.4 (2)H13A—C13—H13B109.5
C2—N2—C1122.9 (2)C1—C13—H13C109.5
C2—N2—H2122 (2)H13A—C13—H13C109.5
C1—N2—H2115 (2)H13B—C13—H13C109.5
C4—C3—C14121.65 (19)N14—C14—C3177.1 (2)
C4—C3—C2119.4 (2)C16—C15—C4126.3 (4)
C14—C3—C2118.7 (2)C16—C15—S1111.5 (3)
C3—C4—C5118.08 (19)C4—C15—S1122.2 (3)
C3—C4—C15A123.3 (11)C15—C16—C17110.9 (5)
C5—C4—C15A118.6 (11)C15—C16—H16124.5
C3—C4—C15118.9 (7)C17—C16—H16124.5
C5—C4—C15123.0 (7)C18—C17—C16114.4 (6)
C4—C5—C19122.9 (2)C18—C17—H17122.8
C4—C5—C6118.7 (2)C16—C17—H17122.8
C19—C5—C6118.3 (2)C17—C18—S1110.1 (6)
N1—C6—N6116.7 (2)C17—C18—H18125.0
N1—C6—C5122.8 (2)S1—C18—H18125.0
N6—C6—C5120.5 (2)C16A—C15A—C4125.1 (5)
C6—N6—H6A118 (2)C16A—C15A—S1A112.8 (3)
C6—N6—H6B125 (2)C4—C15A—S1A122.1 (4)
H6A—N6—H6B117 (3)C15A—C16A—C17A109.9 (6)
C12—C7—C8118.5 (2)C15A—C16A—H16A125.0
C12—C7—C1120.3 (2)C17A—C16A—H16A125.0
C8—C7—C1121.1 (2)C18A—C17A—C16A115.0 (9)
C7—C8—C9120.8 (2)C18A—C17A—H17A122.5
C7—C8—H8119.6C16A—C17A—H17A122.5
C9—C8—H8119.6C17A—C18A—S1A110.0 (8)
C10—C9—C8120.1 (2)C17A—C18A—H18A125.0
C10—C9—H9120.0S1A—C18A—H18A125.0
C8—C9—H9120.0N19—C19—C5176.4 (2)
C6—N1—C2—N2176.22 (19)C1—C7—C8—C9176.9 (2)
C6—N1—C2—C32.5 (3)C7—C8—C9—C100.9 (4)
N1—C2—N2—C12.4 (3)C8—C9—C10—C111.7 (4)
C3—C2—N2—C1176.30 (19)C9—C10—C11—C120.8 (4)
C7—C1—N2—C290.5 (2)C8—C7—C12—C111.8 (4)
C13—C1—N2—C2145.6 (2)C1—C7—C12—C11176.0 (2)
N1—C2—C3—C42.2 (3)C10—C11—C12—C71.0 (4)
N2—C2—C3—C4176.47 (18)C3—C4—C15—C1642 (2)
N1—C2—C3—C14176.64 (19)C5—C4—C15—C16135.4 (17)
N2—C2—C3—C142.0 (3)C15A—C4—C15—C16173 (27)
C14—C3—C4—C5174.0 (2)C3—C4—C15—S1136.5 (12)
C2—C3—C4—C50.3 (3)C5—C4—C15—S146 (2)
C14—C3—C4—C15A4.1 (12)C15A—C4—C15—S18 (23)
C2—C3—C4—C15A178.4 (11)C18—S1—C15—C160.1 (16)
C14—C3—C4—C158.0 (9)C18—S1—C15—C4179.0 (17)
C2—C3—C4—C15177.7 (8)C4—C15—C16—C17179.8 (17)
C3—C4—C5—C19179.6 (2)S1—C15—C16—C171 (2)
C15A—C4—C5—C191.4 (11)C15—C16—C17—C182.2 (17)
C15—C4—C5—C192.4 (9)C16—C17—C18—S12.3 (10)
C3—C4—C5—C62.2 (3)C15—S1—C18—C171.3 (10)
C15A—C4—C5—C6179.5 (11)C3—C4—C15A—C16A130 (2)
C15—C4—C5—C6175.7 (8)C5—C4—C15A—C16A48 (4)
C2—N1—C6—N6179.01 (19)C15—C4—C15A—C16A168 (28)
C2—N1—C6—C50.4 (3)C3—C4—C15A—S1A50 (3)
C4—C5—C6—N12.0 (3)C5—C4—C15A—S1A132.2 (18)
C19—C5—C6—N1179.74 (19)C15—C4—C15A—S1A12 (23)
C4—C5—C6—N6176.58 (19)C18A—S1A—C15A—C16A0 (2)
C19—C5—C6—N61.6 (3)C18A—S1A—C15A—C4180 (2)
N2—C1—C7—C12126.2 (2)C4—C15A—C16A—C17A179 (2)
C13—C1—C7—C12110.9 (3)S1A—C15A—C16A—C17A1 (3)
N2—C1—C7—C856.0 (3)C15A—C16A—C17A—C18A1 (2)
C13—C1—C7—C866.9 (3)C16A—C17A—C18A—S1A1.2 (15)
C12—C7—C8—C90.9 (4)C15A—S1A—C18A—C17A0.6 (15)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N19i0.91 (3)2.28 (3)3.152 (3)163 (3)
N6—H6B···N14ii0.89 (3)2.17 (4)3.033 (3)164 (3)
N6—H6A···Cg4iii0.91 (3)2.62 (4)3.405 (2)145 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H13A···H6A2.36-x, 1 - y, z
H6B···N142.181/2 - x, 1/2 + y, 1 - z
H16···N192.561 - x, 1 - y, z
C17···H92.86-1/2 + x, 1/2 - y, 1 - z
C10···C133.581 + x, y, z
H12···H18A2.31x, y, 1 + z
H18···H112.341 - x, 1 - y, -1 + z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and KAA; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and KAA; supervision, ANK and MA.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationÇelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.  Google Scholar
First citationChalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.  Web of Science CSD CrossRef Google Scholar
First citationCocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365–1372.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPoustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.  Web of Science CSD CrossRef Google Scholar
First citationVishnupriya, R., Suresh, J., Bharkavi, S., Perumal, S. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o968–o969.  CSD CrossRef IUCr Journals Google Scholar
First citationVishnupriya, R., Suresh, J., Gunasekaran, P., Perumal, S. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o978.  CSD CrossRef IUCr Journals Google Scholar
First citationVishnupriya, R., Suresh, J., Sakthi, M., Perumal, S. & Lakshman, P. L. N. (2014c). Acta Cryst. E70, o1120–o1121.  CSD CrossRef IUCr Journals Google Scholar
First citationVu Quoc, T., Tran Thi Thuy, D., Phung Ngoc, T., Vu Quoc, M., Nguyen, H., Duong Khanh, L., Tu Quang, A. & Van Meervelt, L. (2019). Acta Cryst. E75, 1861–1865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Tao, F., Cui, T., Luo, C., Zhou, Z., Huang, Y., Tan, L., Peng, W. & Wu, C. (2022). Molecules, 27, 7187.  Web of Science CrossRef PubMed Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds