research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure studies of 5-(tri­fluoro­meth­yl)-1,3,4-thia­diazol-2(3H)-one at 180 K

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, cDepartment of Science and Humanities, PES University, BSK III Stage, Bengaluru-560 085, India, dHoneychem Pharma Research Pvt. Ltd., Peenya Industrial Area, Bengaluru-560 058, India, and eDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: ybb2706@gmail.com, yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 12 May 2023; accepted 16 May 2023; online 19 May 2023)

The synthesis and crystal structure of C3HF3N2OS, systematic name 5-(tri­fluoro­meth­yl)-1,3,4-thia­diazol-2(3H)-one (5-TMD-2-one), a compound containing the pharmacologically important heterocycle 1,3,4-thia­diazole, is presented. The asymmetric unit comprises six independent mol­ecules (Z′ = 6), all of which are planar. The r.m.s. deviations from each mean plane range from 0.0063 to 0.0381 Å, not including the CF3 fluorine atoms. Within the crystal, two of the mol­ecules form hydrogen-bonded dimers that in turn combine with inversion-related copies to form tetra­meric constructs. Similar tetra­mers, but lacking inversion symmetry, are formed by the remaining four mol­ecules. The tetra­mers are linked into tape-like motifs by S⋯O and O⋯O close contacts. The environments of each symmetry-independent mol­ecule were compared via a Hirshfeld surface analysis. The most abundant atom–atom contacts are between fluorine atoms, while the strongest result from N—H⋯O hydrogen bonds.

1. Chemical context

The 1,3,4-thia­diazole ring is a pharmacologically important heterocycle found in compounds covering a broad spectrum of bioactivity (Moussa et al., 2023[Moussa, Z., Paz, A. P., Judeh, Z. M. A., Alzamly, A., Saadeh, H. A., Asghar, B. H., Alsaedi, S., Masoud, B., Almeqbaali, S., Estwani, S., Aljaberi, A., Al-Rooqi, M. M. & Ahmed, S. A. (2023). Int. J. Mol. Sci. 24, 3759.]). Recent reviews have highlighted the beneficial properties of 1,3,4-thia­diazole derivatives, including microbiological activity (Barbosa & de Aguiar, 2019[Barbosa, G. A. D. & de Aguiar, A. P. (2019). Rev. Virtual Quim., 11, 806-848.]) and their potential use as scaffolds for drug design and development (Han et al., 2021[Han, X., Yu, Y. L., Hu, Y. S. & Liu, X. H. (2021). Curr. Top. Med. Chem. 21, 2546-2573.]). A series of 2,5-disubstituted 1,3,4-thia­diazole derivatives were synthesized and investigated for anti­tuberculosis structure–activity relationships by Oruç et al. (2004[Oruç, E. E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760-6767.]). The structures and thermal behaviour of substituted 1,3,4-thia­diazole organic crystals have been investigated by Shen et al. (2005[Shen, X.-Q., Li, Z.-J., Zhang, H.-Y., Qiao, H.-B., Wu, Q.-A., Wang, H.-Y. & Zu, Y. (2005). J. Phys. Chem. Solids, 66, 1755-1760.]). Reviews of progress covering the biological activities of 1,3,4-thia­diazole and its derivatives were reported by Jain et al. (2013[Jain, A. K., Sharma, S., Vaidya, A., Ravichandran, V. & Agrawal, R. K. (2013). Chem. Biol. Drug Des. 81, 557-576.]) and by Anthwal et al. (2022[Anthwal, T., Paliwal, S. & Nain, S. (2022). Chemistry, 4, 1654-1671.]). Their use as scaffolds for promising anti­microbial agents (Serban et al., 2018[Serban, G., Stanasel, O., Serban, E. & Bota, S. (2018). Drug. Des. Dev. Ther. Vol. 12, 1545-1566.]) and anti-cancer agents (Çevik et al., 2020[Çevik, U. A., Osmaniye, D., Levent, S., Sağlik, B. N., Çavuşoğlu, B. K., Özkay, Y. & Kaplancikl, Z. A. (2020). Heterocycl. Commun. 26, 6-13.]) have also been published. The inter­play of inter- and intra­molecular inter­actions in the crystal structures of 1,3,4-thia­diazole resorcinol derivatives was reported by Hoser et al. (2018[Hoser, A. A., Kamiński, D. M., Skrzypek, A., Matwijczuk, A., Niewiadomy, A., Gagoś, M. & Woźniak, K. (2018). Cryst. Growth Des. 18, 3851-3862.]). A series of four biologically active 2-benzamido-5-(4-fluoro-3-phen­oxy­phen­yl)-1,3,4-thia­diazo­les derivatives were synthesized by Panini et al. (2013[Panini, P., Mohan, T. P., Gangwar, U., Sankolli, R. & Chopra, D. (2013). CrystEngComm, 15, 4549-4564.]) and their crystal structures studied to evaluate the effects of systematic variations in the functional group attached at the para position of the benzamido ring. Lastly, the crystal structures of three 6-aryl-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazo­les were reported by Shamanth et al. (2020[Shamanth, S., Mantelingu, K., Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 18-24.]).

Overall, the 1,3,4-thia­diazole heterocycle provides the basis of a promising area of research in medicinal chemistry and drug discovery, with a wide range of potential applications. The reported findings provide insights into the mol­ecular properties and biological activities of 1,3,4-thia­diazole derivatives, contributing to the development of novel therapeutic agents. With the importance of 1,3,4-thia­diazo­les in drug discovery research in mind, this paper reports the synthesis and crystal structure of 5-(tri­fluoro­meth­yl)-1,3,4-thia­diazol-2(3H)-one, C3HF3N2OS (5-TMD-2-one).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 5-TMD-2-one consists of a 1,3,4-thia­diazone ring, essentially a flat penta­gonal heterocycle with two adjacent nitro­gen atoms, each flanked by carbon atoms, with a sulfur atom completing the ring. The simplicity of the mol­ecular structure notwithstanding, the crystal structure of 5-TMD-2-one is far more complex, as the asymmetric unit contains six mol­ecules (Z′ = 6; designated AF in Fig. 1[link]). In each mol­ecule, one of the nitro­gen atoms (N1) carries a hydrogen atom and is single bonded to C1, while N2 is double bonded to C2. Atom C1 forms a carbonyl group with O1, and C2 carries a tri­fluoro­methyl substituent. Deviations (r.m.s.) from planarity range from 0.0063 Å in mol­ecule B to 0.0381 Å in mol­ecule D, with the largest deviation for any atom (aside from fluorine), being 0.065 (8) Å for C3D, the tri­fluoro­methyl carbon of mol­ecule D. The only inter­nal degree of freedom is the torsion of the tri­fluoro­methyl group, which is disordered in all six symmetry-independent mol­ecules in the structure. Indeed, the CF3 orientations and the refined occupancies of the disorder components, which range from 0.500 (5):0.500 (5) for mol­ecule D to 0.908 (2):0.092 (2) for mol­ecule F, are the only significant differences between the six mol­ecules.

[Figure 1]
Figure 1
An ellipsoid plot (30% probability) of the asymmetric unit of 5-TMD-2-one. The CF3 groups on all six independent mol­ecules are disordered over two orientations, but only the major components are shown.

The crystals were observed to shatter when cooled to 90 K, but remained intact and gave sharp diffraction at 180 K. This observation prompted us to investigate whether warming the crystals might lead to a simpler crystal structure, i.e., with fewer mol­ecules in the asymmetric unit. A crystal mounted at room temperature, however, indexed to give essentially the same unit cell and structure (again with Z′ = 6) as at 180 K.

3. Supra­molecular features

The main supra­molecular constructs in crystals of 5-TMD-2-one are hydrogen-bonded tetra­mers. There are, however, slight differences for tetra­mers formed by mol­ecules A and B (with inversion-related copies) and by mol­ecules C, D, E and F. Within the chosen asymmetric unit, mol­ecules A and B are joined by one short N1A—H1A⋯O1B [dD–A = 2.726 (2) Å] and one longer N1B—H1B⋯O1A [dD–A = 3.328 (2) Å] hydrogen bond, leading to R22(8) dimer motifs. Pairs of these dimers are connected to inversion-related copies by N1B—H1B⋯O1Ai [dD–A = 2.955 (2) Å; symmetry code: (i) 2 − x, 1 − y, 1 − z] hydrogen bonds, producing R22(4) motifs in which the hydrogen atoms act as bifurcated donors (Fig. 2[link]), thereby generating tetra­mers. Adjacent tetra­mers of A and B mol­ecules are in close contact [via S1B⋯O1Bii = 2.9743 (14) Å and O1B⋯O1Bii = 2.996 (3) Å; symmetry code: (ii) 1 − x, 1 − y, 1 − z] contacts, forming tape-like structures parallel to (011) that extend along the [100] direction. For mol­ecules C, D, E and F, the individual motifs are similar (see Table 1[link]), but lack the constraints of inversion symmetry, leading to tapes with a slightly V-shaped cross section, as shown in Fig. 3[link]. Owing to the complexity, however, the overall packing is best viewed using a mol­ecular graphics program such as Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Hydrogen bonding and close-contact distances are given in Table 1[link].

Table 1
Hydrogen bonds and other inter­molecular contacts (Å, °) for 5-TMD-2-one

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A—O1B 0.819 (16) 1.918 (16) 2.726 (2) 169 (2)
N1B—H1B—O1A 0.826 (15) 2.574 (17) 3.328 (2) 152.3 (19)
N1B—H1B—O1Ai 0.826 (15) 2.347 (19) 2.955 (2) 131.0 (18)
N1C—H1C—O1D 0.829 (15) 1.927 (16) 2.7485 (19) 171 (2)
N1D—H1D—O1C 0.821 (15) 2.605 (17) 3.342 (2) 150 (2)
N1D—H1D—O1F 0.821 (15) 2.280 (19) 2.908 (2) 134 (2)
N1E—H1E—O1C 0.814 (15) 2.262 (19) 2.912 (2) 137 (2)
N1E—H1E—O1F 0.814 (15) 2.643 (18) 3.359 (2) 148 (2)
N1F—H1F—O1E 0.820 (16) 1.952 (16) 2.764 (2) 171 (2)
S1B⋯O1Bii     2.9743 (14)  
O1B⋯O1Bii     2.996 (3)  
S1D⋯O1Eiii     3.0279 (14)  
O1D⋯O1Eiii     3.0686 (18)  
O1D⋯S1Eiii     3.0093 (14)  
Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1; (iii) x − 1, y, z.
[Figure 2]
Figure 2
A partial packing plot of 5-TMD-2-one viewed down the c-axis for the A and B mol­ecules, showing N—H⋯O hydrogen bonds (dashed lines) and inter­molecular contacts (S⋯O and O⋯O, dotted lines), forming a tape-like motif parallel to (011) that extends along the a-axis direction. The hydrogen bonding and inter­molecular contacts for mol­ecules C, D, E and F are similar, but lack crystallographically imposed inversion symmetry.
[Figure 3]
Figure 3
A partial packing plot of 5-TMD-2-one viewed down the a-axis, showing the main difference between the A/B tape motif and those formed by mol­ecules C, D, E and F, which have a shallow V-shaped cross section.

Atom–atom contact two-dimensional fingerprint plots calculated using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) for each of the six independent mol­ecules show that their environments are similar (Fig. 4[link]af). The most abundant contacts in each case are F⋯F (shown in blue and green), ranging from 39.8% in mol­ecule A (Fig. 4[link]a) to 25.6% in mol­ecule E (Fig. 4[link]e).

[Figure 4]
Figure 4
Hirshfeld surface two-dimensional fingerprint plots for each of the six independent mol­ecules AF [depicted in panels (a)–(f)] of 5-TMD-2-one. The F⋯F contacts, highlighted in blue and green have the greatest coverage. The N—H⋯O hydrogen bonds are apparent as grey spikes extending to the lower left in each panel. The longer, sharper spikes correspond to the shorter, stronger inter­actions in each case.

4. Database survey

A search of the Cambridge Structural Database (CSD, v5.43 with updates to November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for `thia­diazole' returned 2068 hits, while `1,3,4-thia­diazole' gave 745 hits. A subsequent search using just the 1,3,4-thia­diazole ring fragment with `any substituent' specified at the equivalent of C1, C2, and N1 produced 682 hits. This fragment, but with hydrogen attached to N1 gave 114 hits. A search with tri­fluoro­methyl added at C2 gave no hits, while a search with `any oxygen-bound' substituent on C1 returned only four hits. These are GAQVIF (Zhang et al., 2012[Zhang, W.-Y., Liu, J. & Liu, Y.-J. (2012). Acta Cryst. E68, o475.]), which is 5-meth­oxy-1,3,4-thia­diazol-2(3H)-one, LAPSAY (Kang et al., 2012a[Kang, S. K., Cho, N. S. & Jang, S. (2012a). Acta Cryst. E68, o781.]), which is a DMSO solvate of 5,5′-[1,4-phenyl­enebis(methyl­enesulfanedi­yl)]bis­[1,3,4-thia­diazol-2(3H)-one], and triclinic (YAXWAX: Kang et al., 2012b[Kang, S. K., Cho, N. S. & Jang, S. (2012b). Acta Cryst. E68, o1198.]) and monoclinic (YAXWAX01: Kim & Kang, 2014[Kim, N. & Kang, S. K. (2014). Acta Cryst. E70, o922.]) polymorphs of 5-amino-1,3,4-thia­diazol-2(3H)-one.

A few other crystal structures of compounds related to 5-TMD-2-one include MAZZIX and NIYDOO01 (Boechat et al., 2006[Boechat, N., Ferreira, S. B., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, S. M. S. V. (2006). Acta Cryst. C62, o42-o44.]), 1,3,4-thia­diazo­lium-2-thiol­ate (Hu et al., 2006[Hu, P.-Z., Wang, J.-G., Ma, L.-F., Zhao, B.-T. & Wang, L.-Y. (2006). Acta Cryst. E62, o350-o351.]) and 3-(mercaptometh­yl)-1,3,4-thia­diazol-2(3H)-one (HORZAQ; Hartung et al., 2009[Hartung, R., Golz, G., Schlaf, S., Silvenoinen, G., Polborn, K., Mayer, P. & Pfaendler, H. R. (2009). Synthesis, pp. 495-501.]).

Although crystal structures with Z′ > 1 are not uncommon, their scarcity increases with Z′. In a detailed survey of structures with high Z′, Brock (2016[Brock, C. P. (2016). Acta Cryst. B72, 807-821.]) estimated that only about 12% of structures in the Cambridge Structural Database at the time (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) had Z′ > 1, and < 0.1% had Z′ > 4. Without any attempt to filter duplicates or pathological cases, in the current version of the CSD (v5.43, vide supra) there are 655 entries with Z′ = 6 out of over 1.2 million (∼0.05%), so by this criterion alone, the structure of 5-TMD-2-one is unusual, though not unprecedented.

5. Synthesis, crystallization and spectroscopic details

Synthesis of 2-amino-5-tri­fluoro­methyl-1,3,4-thia­diazole

To a clean and dry 1 L round-bottom flask, 14.5 g of thio­semicarbazide suspended in 500 ml of 1,4 dioxane was added, with stirring. 12.0 ml of CF3COOH and 15.0 mL of POCl3 were slowly added over about 30 min. The reaction was maintained for 3 h, during which time, a large amount of HCl gas was produced. After completion of HCl gas liberation, the reaction mixture was poured into 100 mL of cold water with stirring and the pH adjusted to 9 with 50% NaOH solution, to give a solid precipitate. The product, 2-amino-5-tri­fluoro­methyl-1,3,4-thia­diazole, was filtered, washed with cold water and dried at 363 K (20.6 g).

Synthesis of 5-TMD-2-one

In a 250 ml round-bottomed flask, 20.6 g of 2-amino-5-tri­fluoro­methyl-1,3,4-thia­diazole was suspended with 150 ml conc. hydro­chloric acid, with stirring. The reaction mixture was cooled to between 263 and 268 K. Then, 350 mL of aqueous NaNO2 were added slowly (21.2 g, 0.307 mol, 4 eq.) while maintaining the temperature at 263–268 K with continued stirring. After 2 h, 100 ml of H2O were added with warming up to 333–353 K and stirred for a further 3 h. The reaction mixture was then cooled to room temperature, 150 mL of CH2Cl2 were added, the organic layer separated and a further 150 ml CH2Cl2 were added. The combined organic layers were washed with water twice and dried with sodium sulfate, then finally distilled completely. The crude product was purified by chromatography over SiO2 (hexa­ne:EtOAc, 9:1). The resulting product, pure 5-TMD-2-one (12.5 g) was recrystallized from hexane. MS m/z: 169.12 (M − H)+.

A generalized reaction scheme is presented in Fig. 5[link].

[Figure 5]
Figure 5
A general scheme for the synthesis of 5-TMD-2-one.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were found in difference-Fourier maps. Their coordinates were refined freely with Uiso parameters set to 1.2Ueq of their attached nitro­gen atom. To ensure satisfactory refinement of the disordered CF3 groups, a combination of constraints (EADP in SHELXL) and restraints (SHELXL commands SAME, SADI, SIMU, and RIGU) were employed.

Table 2
Experimental details

Crystal data
Chemical formula C3HF3N2OS
Mr 170.12
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 180
a, b, c (Å) 10.8996 (7), 13.9700 (8), 14.1351 (9)
α, β, γ (°) 63.253 (2), 71.160 (2), 67.954 (2)
V3) 1750.38 (19)
Z 12
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.32 × 0.29 × 0.28
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.922, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 52212, 8021, 6646
Rint 0.045
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.02
No. of reflections 8021
No. of parameters 728
No. of restraints 273
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.41, −0.31
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010).

5-(Trifluoromethyl)-1,3,4-thiadiazol-2(3H)-one top
Crystal data top
C3HF3N2OSZ = 12
Mr = 170.12F(000) = 1008
Triclinic, P1Dx = 1.937 Mg m3
a = 10.8996 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.9700 (8) ÅCell parameters from 9954 reflections
c = 14.1351 (9) Åθ = 2.4–33.1°
α = 63.253 (2)°µ = 0.54 mm1
β = 71.160 (2)°T = 180 K
γ = 67.954 (2)°Block, colourless
V = 1750.38 (19) Å30.32 × 0.29 × 0.28 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
8021 independent reflections
Radiation source: microsource6646 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.045
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.922, Tmax = 0.971k = 1718
52212 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Only H-atom coordinates refined
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.258P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8021 reflectionsΔρmax = 0.41 e Å3
728 parametersΔρmin = 0.31 e Å3
273 restraintsExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (13)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

The crystals appeared to undergo a destructive phase transition when cooled to 90K. Visual inspection of crystal integrity and diffraction quality vs temperature established a safe temperature for data collection of -93° C.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.96653 (5)0.22146 (4)0.77875 (4)0.03426 (12)
O1A0.95363 (14)0.40427 (12)0.59471 (11)0.0408 (3)
N1A0.76657 (16)0.34097 (14)0.68704 (13)0.0350 (4)
H1A0.720 (2)0.3890 (16)0.6429 (16)0.042*
N2A0.71853 (16)0.25921 (14)0.77307 (13)0.0365 (4)
C1A0.89728 (18)0.33853 (15)0.66966 (14)0.0286 (4)
C2A0.81231 (18)0.19210 (15)0.82619 (14)0.0294 (4)
C3A0.7884 (12)0.0917 (7)0.9244 (7)0.0411 (6)0.731 (9)
F1A0.8079 (7)0.0963 (5)1.0078 (2)0.1020 (18)0.731 (9)
F2A0.8728 (5)0.0021 (2)0.9115 (4)0.1037 (19)0.731 (9)
F3A0.6673 (3)0.0848 (4)0.9448 (4)0.0895 (16)0.731 (9)
C3A'0.792 (3)0.0889 (17)0.9217 (17)0.0411 (6)0.269 (9)
F1A'0.7891 (17)0.0107 (7)0.8980 (6)0.081 (4)0.269 (9)
F2A'0.6812 (11)0.1049 (7)0.9895 (8)0.084 (4)0.269 (9)
F3A'0.8842 (9)0.0400 (8)0.9797 (8)0.068 (3)0.269 (9)
S1B0.55246 (4)0.65799 (4)0.34668 (4)0.03139 (12)
O1B0.63289 (14)0.48600 (12)0.52132 (12)0.0451 (4)
N1B0.77624 (15)0.59413 (13)0.40477 (12)0.0291 (3)
H1B0.8414 (18)0.5583 (16)0.4356 (16)0.035*
N2B0.78780 (15)0.68295 (13)0.31098 (12)0.0313 (3)
C1B0.65984 (18)0.56361 (15)0.44064 (15)0.0300 (4)
C2B0.67908 (18)0.72306 (15)0.27328 (14)0.0291 (4)
C3B0.6649 (7)0.8230 (4)0.1690 (4)0.0376 (6)0.802 (7)
F1B0.5873 (4)0.8191 (3)0.1169 (2)0.0688 (9)0.802 (7)
F2B0.6098 (5)0.91515 (18)0.1856 (2)0.0919 (15)0.802 (7)
F3B0.7804 (2)0.8280 (3)0.1034 (2)0.0872 (14)0.802 (7)
C3B'0.657 (3)0.8255 (15)0.1755 (15)0.0376 (6)0.198 (7)
F1B'0.7410 (13)0.8816 (9)0.152 (1)0.069 (4)0.198 (7)
F2B'0.6675 (19)0.8020 (9)0.0960 (8)0.076 (4)0.198 (7)
F3B'0.5395 (10)0.8927 (9)0.1870 (9)0.073 (3)0.198 (7)
S1C0.51557 (5)0.34764 (4)1.01026 (4)0.03561 (13)
O1C0.52164 (14)0.50625 (12)0.80892 (11)0.0396 (3)
N1C0.33717 (16)0.43878 (13)0.89515 (13)0.0323 (4)
H1C0.295 (2)0.4746 (17)0.8448 (15)0.039*
N2C0.28288 (16)0.36498 (13)0.98623 (13)0.0338 (4)
C1C0.46203 (18)0.44504 (15)0.88628 (14)0.0285 (4)
C2C0.36572 (18)0.31244 (15)1.05150 (14)0.0297 (4)
C3C0.3342 (8)0.2217 (5)1.1581 (4)0.0396 (6)0.789 (5)
F1C0.3650 (4)0.2303 (2)1.23606 (15)0.0761 (10)0.789 (5)
F2C0.4036 (4)0.12531 (17)1.1556 (2)0.0997 (16)0.789 (5)
F3C0.2062 (2)0.2288 (3)1.1867 (2)0.0937 (14)0.789 (5)
C3C'0.335 (3)0.2182 (18)1.1521 (14)0.0396 (6)0.211 (5)
F1C'0.2788 (13)0.1565 (8)1.1434 (6)0.069 (3)0.211 (5)
F2C'0.2543 (14)0.2491 (6)1.2276 (7)0.079 (4)0.211 (5)
F3C'0.4371 (9)0.1531 (10)1.1961 (9)0.084 (4)0.211 (5)
S1D0.12479 (5)0.74725 (4)0.55582 (4)0.03674 (13)
O1D0.22315 (13)0.56130 (11)0.71384 (11)0.0359 (3)
N1D0.34765 (15)0.68830 (13)0.61291 (13)0.0316 (3)
H1D0.4136 (18)0.6541 (17)0.6423 (17)0.038*
N2D0.34835 (16)0.78693 (14)0.52875 (13)0.0367 (4)
C1D0.23960 (18)0.64841 (15)0.64245 (14)0.0280 (4)
C2D0.2393 (2)0.82565 (16)0.49213 (15)0.0343 (4)
C3D0.2279 (17)0.9296 (11)0.3921 (11)0.0446 (16)0.499 (5)
F1D0.2101 (9)1.0139 (4)0.4116 (5)0.112 (3)0.499 (5)
F2D0.3266 (4)0.9244 (3)0.3131 (3)0.0764 (15)0.499 (5)
F3D0.1208 (4)0.9442 (4)0.3547 (4)0.087 (2)0.499 (5)
C3D'0.2036 (17)0.9381 (11)0.4023 (11)0.0446 (16)0.501 (5)
F1D'0.2156 (10)0.9282 (4)0.3157 (3)0.116 (3)0.501 (5)
F2D'0.0860 (4)1.0024 (3)0.4237 (4)0.0802 (16)0.501 (5)
F3D'0.2875 (4)0.9973 (4)0.3863 (5)0.0759 (18)0.501 (5)
S1E1.01005 (4)0.44778 (4)0.86856 (4)0.03126 (12)
O1E0.94784 (14)0.58947 (12)0.67573 (11)0.0405 (3)
N1E0.79039 (15)0.50383 (13)0.80787 (13)0.0314 (3)
H1E0.7261 (19)0.5320 (17)0.7778 (17)0.038*
N2E0.77016 (15)0.42897 (13)0.91058 (13)0.0312 (3)
C1E0.91157 (18)0.52690 (15)0.76578 (15)0.0293 (4)
C2E0.87636 (18)0.39383 (14)0.95031 (14)0.0280 (4)
C3E0.8872 (13)0.3062 (9)1.0617 (6)0.0361 (6)0.69 (3)
F1E0.9321 (9)0.3380 (7)1.1172 (7)0.0522 (13)0.69 (3)
F2E0.9686 (10)0.2101 (6)1.0618 (7)0.0684 (17)0.69 (3)
F3E0.7664 (7)0.2929 (10)1.1172 (8)0.0677 (19)0.69 (3)
C3E'0.880 (3)0.308 (2)1.0615 (14)0.0361 (6)0.31 (3)
F1E'0.926 (3)0.2096 (11)1.0533 (14)0.072 (4)0.31 (3)
F2E'0.7658 (15)0.3082 (18)1.1266 (18)0.051 (3)0.31 (3)
F3E'0.965 (2)0.312 (2)1.1065 (16)0.063 (4)0.31 (3)
S1F0.58836 (5)0.88473 (4)0.44640 (4)0.03321 (12)
O1F0.62033 (14)0.68089 (11)0.60648 (11)0.0388 (3)
N1F0.79719 (17)0.75904 (14)0.52504 (13)0.0367 (4)
H1F0.849 (2)0.7086 (16)0.5639 (17)0.044*
N2F0.83663 (16)0.85025 (14)0.44911 (13)0.0364 (4)
C1F0.66894 (18)0.75638 (15)0.54119 (14)0.0296 (4)
C2F0.73824 (18)0.92081 (15)0.40304 (14)0.0298 (4)
C3F0.7544 (3)1.0293 (2)0.3131 (2)0.0362 (5)0.908 (2)
F1F0.7885 (3)1.02172 (14)0.21920 (11)0.0763 (7)0.908 (2)
F2F0.64084 (16)1.11017 (12)0.31281 (15)0.0615 (5)0.908 (2)
F3F0.84528 (19)1.06373 (14)0.32310 (15)0.0662 (5)0.908 (2)
C3F'0.759 (2)1.0237 (17)0.3096 (18)0.0362 (5)0.092 (2)
F1F'0.718 (3)1.1043 (14)0.3427 (12)0.0763 (7)0.092 (2)
F2F'0.8847 (15)1.0179 (13)0.2641 (15)0.0615 (5)0.092 (2)
F3F'0.6761 (19)1.0648 (15)0.2436 (15)0.0662 (5)0.092 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0256 (2)0.0354 (2)0.0310 (2)0.01036 (19)0.00812 (18)0.00015 (19)
O1A0.0352 (7)0.0419 (8)0.0344 (7)0.0201 (6)0.0069 (6)0.0029 (6)
N1A0.0300 (8)0.0348 (8)0.0300 (8)0.0151 (7)0.0127 (7)0.0062 (7)
N2A0.0319 (8)0.0372 (9)0.0322 (8)0.0176 (7)0.0099 (7)0.0031 (7)
C1A0.0299 (9)0.0288 (8)0.0245 (8)0.0112 (7)0.0072 (7)0.0036 (7)
C2A0.0290 (9)0.0304 (9)0.0245 (8)0.0118 (7)0.0056 (7)0.0033 (7)
C3A0.0385 (12)0.0386 (11)0.0327 (11)0.0159 (10)0.0089 (9)0.0040 (9)
F1A0.176 (5)0.108 (3)0.0278 (12)0.085 (3)0.0336 (19)0.0169 (14)
F2A0.094 (3)0.0308 (12)0.099 (3)0.0039 (15)0.022 (2)0.0103 (13)
F3A0.0565 (16)0.088 (2)0.080 (3)0.0527 (17)0.0287 (16)0.0425 (19)
C3A'0.0385 (12)0.0386 (11)0.0327 (11)0.0159 (10)0.0089 (9)0.0040 (9)
F1A'0.16 (1)0.047 (4)0.042 (3)0.057 (5)0.021 (5)0.004 (3)
F2A'0.064 (5)0.046 (4)0.061 (5)0.005 (4)0.027 (4)0.012 (3)
F3A'0.064 (5)0.060 (5)0.058 (5)0.034 (4)0.039 (4)0.027 (3)
S1B0.0244 (2)0.0297 (2)0.0311 (2)0.01107 (18)0.01094 (18)0.00303 (18)
O1B0.0392 (8)0.0442 (8)0.0402 (8)0.0244 (7)0.0213 (6)0.0140 (6)
N1B0.0224 (7)0.0317 (8)0.0298 (8)0.0101 (6)0.0082 (6)0.0042 (6)
N2B0.0282 (8)0.0332 (8)0.0295 (8)0.0137 (6)0.0034 (6)0.0064 (6)
C1B0.0263 (9)0.0291 (9)0.0309 (9)0.0097 (7)0.0121 (7)0.0017 (7)
C2B0.0290 (9)0.0269 (8)0.0277 (9)0.0118 (7)0.0036 (7)0.0048 (7)
C3B0.0402 (13)0.034 (1)0.0306 (11)0.0157 (9)0.0072 (10)0.0006 (9)
F1B0.085 (2)0.0696 (17)0.0473 (14)0.0416 (16)0.0370 (14)0.0152 (11)
F2B0.176 (4)0.0276 (10)0.0484 (13)0.0149 (16)0.024 (2)0.0022 (9)
F3B0.0469 (12)0.091 (2)0.0511 (15)0.0233 (12)0.0028 (10)0.0301 (14)
C3B'0.0402 (13)0.034 (1)0.0306 (11)0.0157 (9)0.0072 (10)0.0006 (9)
F1B'0.075 (7)0.056 (6)0.063 (6)0.049 (5)0.037 (5)0.032 (4)
F2B'0.137 (11)0.053 (5)0.036 (4)0.018 (7)0.029 (6)0.013 (4)
F3B'0.060 (5)0.035 (5)0.070 (6)0.005 (3)0.017 (4)0.014 (4)
S1C0.0280 (2)0.0413 (3)0.0296 (2)0.0141 (2)0.01040 (18)0.0006 (2)
O1C0.0328 (7)0.0437 (8)0.0311 (7)0.0191 (6)0.0046 (6)0.0013 (6)
N1C0.0303 (8)0.0344 (8)0.0259 (8)0.0143 (7)0.0109 (6)0.0024 (6)
N2C0.0308 (8)0.0344 (8)0.0306 (8)0.0151 (7)0.0078 (7)0.0010 (7)
C1C0.0263 (9)0.0291 (9)0.0264 (9)0.0092 (7)0.0057 (7)0.0054 (7)
C2C0.0271 (9)0.0294 (9)0.0275 (9)0.0097 (7)0.0047 (7)0.0049 (7)
C3C0.0377 (11)0.0379 (11)0.0316 (12)0.0139 (9)0.0066 (9)0.0003 (9)
F1C0.112 (2)0.0858 (19)0.0287 (10)0.0521 (18)0.0219 (12)0.0062 (10)
F2C0.151 (4)0.0261 (10)0.0597 (17)0.0153 (14)0.0255 (19)0.002 (1)
F3C0.0472 (12)0.113 (3)0.0635 (18)0.0458 (14)0.0143 (11)0.0371 (16)
C3C'0.0377 (11)0.0379 (11)0.0316 (12)0.0139 (9)0.0066 (9)0.0003 (9)
F1C'0.111 (8)0.062 (5)0.043 (4)0.066 (6)0.015 (5)0.007 (3)
F2C'0.114 (8)0.039 (4)0.042 (4)0.018 (5)0.024 (5)0.008 (3)
F3C'0.052 (4)0.072 (7)0.066 (6)0.017 (4)0.027 (4)0.035 (5)
S1D0.0316 (2)0.0360 (3)0.0367 (3)0.0148 (2)0.0166 (2)0.0028 (2)
O1D0.0348 (7)0.0359 (7)0.0326 (7)0.0158 (6)0.0154 (6)0.0020 (6)
N1D0.0236 (8)0.0372 (8)0.0312 (8)0.0114 (7)0.0083 (6)0.0059 (7)
N2D0.0320 (8)0.0407 (9)0.0331 (9)0.0182 (7)0.0032 (7)0.0056 (7)
C1D0.0258 (9)0.0318 (9)0.0243 (8)0.0091 (7)0.0073 (7)0.0061 (7)
C2D0.0358 (10)0.0347 (10)0.0285 (9)0.0163 (8)0.0053 (8)0.0036 (8)
C3D0.044 (5)0.0404 (18)0.037 (2)0.019 (2)0.009 (2)0.0020 (16)
F1D0.234 (9)0.0336 (19)0.068 (3)0.025 (4)0.056 (5)0.0092 (19)
F2D0.064 (2)0.069 (2)0.0406 (18)0.0176 (18)0.0047 (16)0.0153 (15)
F3D0.064 (2)0.088 (3)0.066 (3)0.038 (2)0.040 (2)0.039 (2)
C3D'0.044 (5)0.0404 (18)0.037 (2)0.019 (2)0.009 (2)0.0020 (16)
F1D'0.255 (9)0.059 (2)0.038 (2)0.043 (5)0.054 (4)0.0030 (18)
F2D'0.060 (2)0.0460 (19)0.089 (3)0.0044 (15)0.0225 (19)0.0116 (18)
F3D'0.068 (2)0.047 (3)0.089 (4)0.035 (2)0.034 (2)0.023 (2)
S1E0.0248 (2)0.0340 (2)0.0298 (2)0.01272 (18)0.00930 (17)0.00089 (18)
O1E0.0323 (7)0.0462 (8)0.0326 (7)0.0175 (6)0.0125 (6)0.0039 (6)
N1E0.0236 (8)0.0353 (8)0.0323 (8)0.0104 (6)0.0086 (6)0.0059 (7)
N2E0.0262 (8)0.0325 (8)0.0331 (8)0.0121 (6)0.0028 (6)0.0095 (7)
C1E0.0244 (8)0.0299 (9)0.0305 (9)0.0088 (7)0.0084 (7)0.0053 (7)
C2E0.0268 (9)0.0265 (8)0.0299 (9)0.0113 (7)0.0033 (7)0.0080 (7)
C3E0.0355 (16)0.0319 (10)0.0338 (10)0.0124 (10)0.0049 (9)0.0047 (8)
F1E0.071 (3)0.053 (2)0.0369 (16)0.022 (2)0.020 (2)0.0093 (14)
F2E0.089 (4)0.0332 (16)0.049 (2)0.0112 (18)0.016 (2)0.0081 (13)
F3E0.048 (2)0.091 (5)0.041 (3)0.043 (3)0.0090 (19)0.014 (2)
C3E'0.0355 (16)0.0319 (10)0.0338 (10)0.0124 (10)0.0049 (9)0.0047 (8)
F1E'0.123 (10)0.023 (3)0.041 (4)0.013 (5)0.015 (6)0.004 (3)
F2E'0.048 (5)0.051 (4)0.033 (4)0.013 (4)0.010 (4)0.010 (3)
F3E'0.061 (6)0.076 (9)0.043 (5)0.038 (6)0.021 (5)0.009 (4)
S1F0.0259 (2)0.0324 (2)0.0338 (2)0.00987 (18)0.00592 (18)0.00442 (19)
O1F0.0346 (7)0.0387 (7)0.0349 (7)0.0186 (6)0.0050 (6)0.0010 (6)
N1F0.0307 (8)0.0396 (9)0.0290 (8)0.0158 (7)0.0110 (7)0.0047 (7)
N2F0.0332 (8)0.0418 (9)0.0283 (8)0.0187 (7)0.0079 (7)0.0001 (7)
C1F0.0286 (9)0.0327 (9)0.0247 (9)0.0110 (7)0.0046 (7)0.0065 (7)
C2F0.0305 (9)0.0348 (9)0.0225 (8)0.0144 (8)0.0032 (7)0.0060 (7)
C3F0.0387 (10)0.0366 (10)0.0297 (10)0.0167 (9)0.0051 (8)0.0052 (8)
F1F0.141 (2)0.0501 (9)0.0212 (7)0.0369 (11)0.0040 (9)0.0042 (6)
F2F0.0500 (9)0.0390 (8)0.0646 (11)0.0093 (7)0.0085 (8)0.0026 (7)
F3F0.0679 (11)0.0567 (10)0.0703 (11)0.0422 (9)0.0275 (9)0.0095 (8)
C3F'0.0387 (10)0.0366 (10)0.0297 (10)0.0167 (9)0.0051 (8)0.0052 (8)
F1F'0.141 (2)0.0501 (9)0.0212 (7)0.0369 (11)0.0040 (9)0.0042 (6)
F2F'0.0500 (9)0.0390 (8)0.0646 (11)0.0093 (7)0.0085 (8)0.0026 (7)
F3F'0.0679 (11)0.0567 (10)0.0703 (11)0.0422 (9)0.0275 (9)0.0095 (8)
Geometric parameters (Å, º) top
S1A—C2A1.7279 (18)S1D—C2D1.7262 (19)
S1A—C1A1.7825 (18)S1D—C1D1.7728 (17)
O1A—C1A1.213 (2)O1D—C1D1.214 (2)
N1A—C1A1.355 (2)N1D—C1D1.355 (2)
N1A—N2A1.358 (2)N1D—N2D1.357 (2)
N1A—H1A0.819 (16)N1D—H1D0.821 (15)
N2A—C2A1.277 (2)N2D—C2D1.279 (3)
C2A—C3A'1.497 (13)C2D—C3D1.501 (9)
C2A—C3A1.500 (5)C2D—C3D'1.516 (9)
C3A—F3A1.289 (12)C3D—F1D1.26 (2)
C3A—F1A1.295 (12)C3D—F2D1.284 (15)
C3A—F2A1.296 (12)C3D—F3D1.34 (2)
C3A'—F3A'1.29 (3)C3D'—F1D'1.25 (2)
C3A'—F2A'1.29 (3)C3D'—F2D'1.293 (15)
C3A'—F1A'1.29 (3)C3D'—F3D'1.35 (2)
S1B—C2B1.7251 (18)S1E—C2E1.7262 (18)
S1B—C1B1.7725 (17)S1E—C1E1.7764 (18)
O1B—C1B1.213 (2)O1E—C1E1.214 (2)
N1B—N2B1.357 (2)N1E—C1E1.357 (2)
N1B—C1B1.358 (2)N1E—N2E1.360 (2)
N1B—H1B0.826 (15)N1E—H1E0.814 (15)
N2B—C2B1.282 (2)N2E—C2E1.281 (2)
C2B—C3B'1.481 (15)C2E—C3E'1.490 (13)
C2B—C3B1.509 (4)C2E—C3E1.506 (6)
C3B—F2B1.294 (7)C3E—F2E1.301 (12)
C3B—F3B1.305 (7)C3E—F3E1.329 (11)
C3B—F1B1.317 (7)C3E—F1E1.333 (12)
C3B'—F2B'1.27 (2)C3E'—F2E'1.29 (2)
C3B'—F3B'1.28 (2)C3E'—F3E'1.31 (2)
C3B'—F1B'1.29 (2)C3E'—F1E'1.32 (3)
S1C—C2C1.7261 (18)S1F—C2F1.7297 (18)
S1C—C1C1.7835 (18)S1F—C1F1.7881 (18)
O1C—C1C1.211 (2)O1F—C1F1.213 (2)
N1C—N2C1.357 (2)N1F—C1F1.354 (2)
N1C—C1C1.358 (2)N1F—N2F1.357 (2)
N1C—H1C0.829 (15)N1F—H1F0.820 (16)
N2C—C2C1.279 (2)N2F—C2F1.275 (2)
C2C—C3C'1.485 (14)C2F—C3F'1.484 (17)
C2C—C3C1.506 (4)C2F—C3F1.505 (3)
C3C—F2C1.283 (8)C3F—F1F1.300 (4)
C3C—F3C1.299 (8)C3F—F3F1.319 (4)
C3C—F1C1.317 (7)C3F—F2F1.326 (4)
C3C'—F2C'1.27 (2)C3F'—F1F'1.28 (2)
C3C'—F3C'1.28 (2)C3F'—F3F'1.30 (2)
C3C'—F1C'1.29 (2)C3F'—F2F'1.30 (2)
C2A—S1A—C1A88.14 (8)C2D—S1D—C1D87.99 (9)
C1A—N1A—N2A119.32 (15)C1D—N1D—N2D118.36 (15)
C1A—N1A—H1A119.3 (16)C1D—N1D—H1D122.7 (16)
N2A—N1A—H1A121.2 (16)N2D—N1D—H1D118.9 (16)
C2A—N2A—N1A109.19 (15)C2D—N2D—N1D109.65 (15)
O1A—C1A—N1A126.00 (17)O1D—C1D—N1D127.28 (16)
O1A—C1A—S1A127.78 (15)O1D—C1D—S1D125.59 (14)
N1A—C1A—S1A106.22 (12)N1D—C1D—S1D107.14 (13)
N2A—C2A—C3A'121.6 (12)N2D—C2D—C3D117.0 (8)
N2A—C2A—C3A120.8 (5)N2D—C2D—C3D'123.4 (8)
N2A—C2A—S1A117.06 (14)N2D—C2D—S1D116.86 (14)
C3A'—C2A—S1A121.2 (12)C3D—C2D—S1D125.9 (9)
C3A—C2A—S1A122.1 (5)C3D'—C2D—S1D119.7 (8)
F3A—C3A—F1A107.9 (8)F1D—C3D—F2D110.1 (14)
F3A—C3A—F2A109.2 (8)F1D—C3D—F3D108.4 (10)
F1A—C3A—F2A107.7 (8)F2D—C3D—F3D103.9 (14)
F3A—C3A—C2A112.0 (7)F1D—C3D—C2D111.5 (13)
F1A—C3A—C2A110.0 (7)F2D—C3D—C2D114.5 (9)
F2A—C3A—C2A109.9 (7)F3D—C3D—C2D107.9 (12)
F3A'—C3A'—F2A'104.3 (17)F1D'—C3D'—F2D'109.6 (14)
F3A'—C3A'—F1A'103.3 (17)F1D'—C3D'—F3D'108.4 (10)
F2A'—C3A'—F1A'104.3 (18)F2D'—C3D'—F3D'102.7 (14)
F3A'—C3A'—C2A115.2 (19)F1D'—C3D'—C2D111.5 (13)
F2A'—C3A'—C2A114.1 (18)F2D'—C3D'—C2D114.9 (9)
F1A'—C3A'—C2A114.4 (18)F3D'—C3D'—C2D109.0 (13)
C2B—S1B—C1B87.86 (8)C2E—S1E—C1E88.10 (8)
N2B—N1B—C1B118.20 (15)C1E—N1E—N2E118.65 (15)
N2B—N1B—H1B119.2 (15)C1E—N1E—H1E126.0 (16)
C1B—N1B—H1B122.4 (15)N2E—N1E—H1E115.3 (16)
C2B—N2B—N1B109.50 (15)C2E—N2E—N1E109.35 (15)
O1B—C1B—N1B127.14 (16)O1E—C1E—N1E127.58 (17)
O1B—C1B—S1B125.52 (14)O1E—C1E—S1E125.56 (14)
N1B—C1B—S1B107.33 (12)N1E—C1E—S1E106.86 (13)
N2B—C2B—C3B'122.3 (10)N2E—C2E—C3E'119.3 (11)
N2B—C2B—C3B120.5 (3)N2E—C2E—C3E121.9 (5)
N2B—C2B—S1B117.11 (14)N2E—C2E—S1E117.02 (14)
C3B'—C2B—S1B120.5 (10)C3E'—C2E—S1E123.7 (11)
C3B—C2B—S1B122.4 (3)C3E—C2E—S1E121.0 (5)
F2B—C3B—F3B108.9 (5)F2E—C3E—F3E109.1 (9)
F2B—C3B—F1B106.6 (5)F2E—C3E—F1E107.0 (8)
F3B—C3B—F1B106.2 (5)F3E—C3E—F1E105.9 (9)
F2B—C3B—C2B111.7 (4)F2E—C3E—C2E113.5 (9)
F3B—C3B—C2B112.1 (4)F3E—C3E—C2E110.5 (9)
F1B—C3B—C2B111.0 (4)F1E—C3E—C2E110.5 (8)
F2B'—C3B'—F3B'106.6 (18)F2E'—C3E'—F3E'109 (2)
F2B'—C3B'—F1B'109.8 (18)F2E'—C3E'—F1E'106 (2)
F3B'—C3B'—F1B'105.5 (16)F3E'—C3E'—F1E'106.1 (19)
F2B'—C3B'—C2B110.7 (16)F2E'—C3E'—C2E116 (2)
F3B'—C3B'—C2B112.6 (16)F3E'—C3E'—C2E111.9 (19)
F1B'—C3B'—C2B111.4 (15)F1E'—C3E'—C2E107.3 (18)
C2C—S1C—C1C88.23 (8)C2F—S1F—C1F88.00 (9)
N2C—N1C—C1C119.38 (15)C1F—N1F—N2F119.42 (16)
N2C—N1C—H1C118.0 (16)C1F—N1F—H1F120.7 (17)
C1C—N1C—H1C122.4 (16)N2F—N1F—H1F119.7 (17)
C2C—N2C—N1C109.16 (15)C2F—N2F—N1F109.29 (15)
O1C—C1C—N1C125.55 (17)O1F—C1F—N1F126.26 (17)
O1C—C1C—S1C128.35 (14)O1F—C1F—S1F127.58 (15)
N1C—C1C—S1C106.10 (12)N1F—C1F—S1F106.16 (13)
N2C—C2C—C3C'118.9 (10)N2F—C2F—C3F'120 (1)
N2C—C2C—C3C120.8 (3)N2F—C2F—C3F120.8 (2)
N2C—C2C—S1C117.10 (14)N2F—C2F—S1F117.12 (14)
C3C'—C2C—S1C123.7 (10)C3F'—C2F—S1F122.7 (10)
C3C—C2C—S1C122.0 (3)C3F—C2F—S1F122.07 (17)
F2C—C3C—F3C111.2 (5)F1F—C3F—F3F108.5 (3)
F2C—C3C—F1C106.7 (5)F1F—C3F—F2F107.2 (3)
F3C—C3C—F1C105.0 (5)F3F—C3F—F2F105.7 (3)
F2C—C3C—C2C110.8 (5)F1F—C3F—C2F111.7 (2)
F3C—C3C—C2C111.8 (5)F3F—C3F—C2F112.0 (2)
F1C—C3C—C2C111.0 (4)F2F—C3F—C2F111.4 (2)
F2C'—C3C'—F3C'101.9 (16)F1F'—C3F'—F3F'97.7 (18)
F2C'—C3C'—F1C'103.9 (17)F1F'—C3F'—F2F'106 (2)
F3C'—C3C'—F1C'107.0 (17)F3F'—C3F'—F2F'115.2 (19)
F2C'—C3C'—C2C113.3 (17)F1F'—C3F'—C2F108.7 (18)
F3C'—C3C'—C2C113.8 (17)F3F'—C3F'—C2F114.3 (17)
F1C'—C3C'—C2C115.6 (16)F2F'—C3F'—C2F113.6 (16)
C1A—N1A—N2A—C2A1.5 (3)C1D—N1D—N2D—C2D0.5 (3)
N2A—N1A—C1A—O1A177.87 (19)N2D—N1D—C1D—O1D178.44 (19)
N2A—N1A—C1A—S1A2.7 (2)N2D—N1D—C1D—S1D1.0 (2)
C2A—S1A—C1A—O1A178.3 (2)C2D—S1D—C1D—O1D178.59 (19)
C2A—S1A—C1A—N1A2.28 (14)C2D—S1D—C1D—N1D0.85 (14)
N1A—N2A—C2A—C3A'176.0 (14)N1D—N2D—C2D—C3D174.6 (9)
N1A—N2A—C2A—C3A178.6 (6)N1D—N2D—C2D—C3D'176.2 (9)
N1A—N2A—C2A—S1A0.6 (2)N1D—N2D—C2D—S1D0.2 (2)
C1A—S1A—C2A—N2A1.78 (17)C1D—S1D—C2D—N2D0.65 (18)
C1A—S1A—C2A—C3A'174.9 (14)C1D—S1D—C2D—C3D173.7 (9)
C1A—S1A—C2A—C3A177.4 (6)C1D—S1D—C2D—C3D'176.8 (9)
N2A—C2A—C3A—F3A0.0 (11)N2D—C2D—C3D—F1D73.1 (13)
S1A—C2A—C3A—F3A179.1 (6)S1D—C2D—C3D—F1D112.6 (14)
N2A—C2A—C3A—F1A120.0 (7)N2D—C2D—C3D—F2D53 (2)
S1A—C2A—C3A—F1A60.9 (10)S1D—C2D—C3D—F2D121.5 (14)
N2A—C2A—C3A—F2A121.6 (7)N2D—C2D—C3D—F3D167.9 (8)
S1A—C2A—C3A—F2A57.5 (10)S1D—C2D—C3D—F3D6.4 (16)
N2A—C2A—C3A'—F3A'167.5 (15)N2D—C2D—C3D'—F1D'106.3 (15)
S1A—C2A—C3A'—F3A'16 (3)S1D—C2D—C3D'—F1D'77.8 (13)
N2A—C2A—C3A'—F2A'47 (3)N2D—C2D—C3D'—F2D'128.1 (14)
S1A—C2A—C3A'—F2A'136.6 (18)S1D—C2D—C3D'—F2D'48 (2)
N2A—C2A—C3A'—F1A'73 (2)N2D—C2D—C3D'—F3D'13.4 (16)
S1A—C2A—C3A'—F1A'103 (2)S1D—C2D—C3D'—F3D'162.4 (7)
C1B—N1B—N2B—C2B0.5 (2)C1E—N1E—N2E—C2E0.9 (2)
N2B—N1B—C1B—O1B178.8 (2)N2E—N1E—C1E—O1E178.64 (19)
N2B—N1B—C1B—S1B0.7 (2)N2E—N1E—C1E—S1E1.6 (2)
C2B—S1B—C1B—O1B179.0 (2)C2E—S1E—C1E—O1E178.87 (19)
C2B—S1B—C1B—N1B0.47 (14)C2E—S1E—C1E—N1E1.36 (14)
N1B—N2B—C2B—C3B'175.6 (12)N1E—N2E—C2E—C3E'178.1 (13)
N1B—N2B—C2B—C3B179.9 (3)N1E—N2E—C2E—C3E177.4 (6)
N1B—N2B—C2B—S1B0.1 (2)N1E—N2E—C2E—S1E0.3 (2)
C1B—S1B—C2B—N2B0.25 (16)C1E—S1E—C2E—N2E1.04 (16)
C1B—S1B—C2B—C3B'176.0 (11)C1E—S1E—C2E—C3E'177.3 (14)
C1B—S1B—C2B—C3B179.8 (3)C1E—S1E—C2E—C3E176.7 (6)
N2B—C2B—C3B—F2B92.6 (5)N2E—C2E—C3E—F2E108.4 (9)
S1B—C2B—C3B—F2B87.3 (6)S1E—C2E—C3E—F2E69.2 (11)
N2B—C2B—C3B—F3B29.9 (6)N2E—C2E—C3E—F3E14.5 (13)
S1B—C2B—C3B—F3B150.1 (4)S1E—C2E—C3E—F3E167.9 (8)
N2B—C2B—C3B—F1B148.5 (4)N2E—C2E—C3E—F1E131.3 (8)
S1B—C2B—C3B—F1B31.5 (6)S1E—C2E—C3E—F1E51.0 (12)
N2B—C2B—C3B'—F2B'105.9 (18)N2E—C2E—C3E'—F2E'29 (3)
S1B—C2B—C3B'—F2B'79 (2)S1E—C2E—C3E'—F2E'152.8 (17)
N2B—C2B—C3B'—F3B'134.9 (15)N2E—C2E—C3E'—F3E'155 (2)
S1B—C2B—C3B'—F3B'41 (2)S1E—C2E—C3E'—F3E'27 (3)
N2B—C2B—C3B'—F1B'17 (2)N2E—C2E—C3E'—F1E'89 (2)
S1B—C2B—C3B'—F1B'158.9 (14)S1E—C2E—C3E'—F1E'89 (2)
C1C—N1C—N2C—C2C0.7 (3)C1F—N1F—N2F—C2F0.9 (3)
N2C—N1C—C1C—O1C179.06 (19)N2F—N1F—C1F—O1F179.47 (19)
N2C—N1C—C1C—S1C1.6 (2)N2F—N1F—C1F—S1F1.2 (2)
C2C—S1C—C1C—O1C179.2 (2)C2F—S1F—C1F—O1F179.82 (19)
C2C—S1C—C1C—N1C1.48 (14)C2F—S1F—C1F—N1F0.88 (14)
N1C—N2C—C2C—C3C'173.3 (12)N1F—N2F—C2F—C3F'174.3 (13)
N1C—N2C—C2C—C3C177.6 (4)N1F—N2F—C2F—C3F178.5 (2)
N1C—N2C—C2C—S1C0.6 (2)N1F—N2F—C2F—S1F0.1 (2)
C1C—S1C—C2C—N2C1.29 (17)C1F—S1F—C2F—N2F0.50 (17)
C1C—S1C—C2C—C3C'172.3 (12)C1F—S1F—C2F—C3F'174.7 (13)
C1C—S1C—C2C—C3C176.9 (4)C1F—S1F—C2F—C3F179.1 (2)
N2C—C2C—C3C—F2C105.1 (6)N2F—C2F—C3F—F1F92.2 (3)
S1C—C2C—C3C—F2C73.0 (6)S1F—C2F—C3F—F1F86.3 (3)
N2C—C2C—C3C—F3C19.6 (7)N2F—C2F—C3F—F3F29.7 (4)
S1C—C2C—C3C—F3C162.2 (4)S1F—C2F—C3F—F3F151.8 (2)
N2C—C2C—C3C—F1C136.5 (4)N2F—C2F—C3F—F2F147.8 (2)
S1C—C2C—C3C—F1C45.4 (7)S1F—C2F—C3F—F2F33.6 (3)
N2C—C2C—C3C'—F2C'82 (2)N2F—C2F—C3F'—F1F'98.9 (19)
S1C—C2C—C3C'—F2C'104.1 (19)S1F—C2F—C3F'—F1F'87 (2)
N2C—C2C—C3C'—F3C'161.8 (15)N2F—C2F—C3F'—F3F'153.2 (17)
S1C—C2C—C3C'—F3C'12 (3)S1F—C2F—C3F'—F3F'21 (3)
N2C—C2C—C3C'—F1C'37 (2)N2F—C2F—C3F'—F2F'18 (3)
S1C—C2C—C3C'—F1C'136.1 (15)S1F—C2F—C3F'—F2F'155.7 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1B0.82 (2)1.92 (2)2.726 (2)169 (2)
N1B—H1B···O1A0.83 (2)2.57 (2)3.328 (2)152 (2)
N1B—H1B···O1Ai0.83 (2)2.35 (2)2.955 (2)131 (2)
N1C—H1C···O1D0.83 (2)1.93 (2)2.7485 (19)171 (2)
N1D—H1D···O1C0.82 (2)2.61 (2)3.342 (2)150 (2)
N1D—H1D···O1F0.82 (2)2.28 (2)2.908 (2)134 (2)
N1E—H1E···O1C0.81 (2)2.26 (2)2.912 (2)137 (2)
N1E—H1E···O1F0.81 (2)2.64 (2)3.359 (2)148 (2)
N1F—H1F···O1E0.82 (2)1.95 (2)2.764 (2)171 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen bonds and other intermolecular contacts (Å, °) for 5-TMD-2-one top
D—H···AD—HH···AD···AD—H···A
N1A—H1A—O1B0.819 (16)1.918 (16)2.726 (2)169 (2)
N1B—H1B—O1A0.826 (15)2.574 (17)3.328 (2)152.3 (19)
N1B—H1B—O1Ai0.826 (15)2.347 (19)2.955 (2)131.0 (18)
N1C—H1C—O1D0.829 (15)1.927 (16)2.7485 (19)171 (2)
N1D—H1D—O1C0.821 (15)2.605 (17)3.342 (2)150 (2)
N1D—H1D—O1F0.821 (15)2.280 (19)2.908 (2)134 (2)
N1E—H1EE—O1C0.814 (15)2.262 (19)2.912 (2)137 (2)
N1E—H1E—O1F0.814 (15)2.643 (18)3.359 (2)148 (2)
N1F—H1F—O1E0.820 (16)1.952 (16)2.764 (2)171 (2)
S1B···O1Bii2.9743 (14)
O1B···O1Bii2.996 (3)
S1D···O1Eiii3.0279 (14)
O1D···O1Eiii3.0686 (18)
O1D···S1Eiii3.0093 (14)
Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z.
 

Acknowledgements

DG is grateful to the DOS in Chemistry, University of Mysore, for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1625732 to SP).

References

First citationAnthwal, T., Paliwal, S. & Nain, S. (2022). Chemistry, 4, 1654–1671.  CrossRef CAS Google Scholar
First citationBarbosa, G. A. D. & de Aguiar, A. P. (2019). Rev. Virtual Quim., 11, 806–848.  Google Scholar
First citationBoechat, N., Ferreira, S. B., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, S. M. S. V. (2006). Acta Cryst. C62, o42–o44.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrock, C. P. (2016). Acta Cryst. B72, 807–821.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇevik, U. A., Osmaniye, D., Levent, S., Sağlik, B. N., Çavuşoğlu, B. K., Özkay, Y. & Kaplancikl, Z. A. (2020). Heterocycl. Commun. 26, 6–13.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, X., Yu, Y. L., Hu, Y. S. & Liu, X. H. (2021). Curr. Top. Med. Chem. 21, 2546–2573.  CrossRef CAS PubMed Google Scholar
First citationHartung, R., Golz, G., Schlaf, S., Silvenoinen, G., Polborn, K., Mayer, P. & Pfaendler, H. R. (2009). Synthesis, pp. 495–501.  Google Scholar
First citationHoser, A. A., Kamiński, D. M., Skrzypek, A., Matwijczuk, A., Niewiadomy, A., Gagoś, M. & Woźniak, K. (2018). Cryst. Growth Des. 18, 3851–3862.  CSD CrossRef CAS Google Scholar
First citationHu, P.-Z., Wang, J.-G., Ma, L.-F., Zhao, B.-T. & Wang, L.-Y. (2006). Acta Cryst. E62, o350–o351.  CSD CrossRef IUCr Journals Google Scholar
First citationJain, A. K., Sharma, S., Vaidya, A., Ravichandran, V. & Agrawal, R. K. (2013). Chem. Biol. Drug Des. 81, 557–576.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKang, S. K., Cho, N. S. & Jang, S. (2012a). Acta Cryst. E68, o781.  CSD CrossRef IUCr Journals Google Scholar
First citationKang, S. K., Cho, N. S. & Jang, S. (2012b). Acta Cryst. E68, o1198.  CSD CrossRef IUCr Journals Google Scholar
First citationKim, N. & Kang, S. K. (2014). Acta Cryst. E70, o922.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoussa, Z., Paz, A. P., Judeh, Z. M. A., Alzamly, A., Saadeh, H. A., Asghar, B. H., Alsaedi, S., Masoud, B., Almeqbaali, S., Estwani, S., Aljaberi, A., Al-Rooqi, M. M. & Ahmed, S. A. (2023). Int. J. Mol. Sci. 24, 3759.  CrossRef PubMed Google Scholar
First citationOruç, E. E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.  Web of Science PubMed Google Scholar
First citationPanini, P., Mohan, T. P., Gangwar, U., Sankolli, R. & Chopra, D. (2013). CrystEngComm, 15, 4549–4564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSerban, G., Stanasel, O., Serban, E. & Bota, S. (2018). Drug. Des. Dev. Ther. Vol. 12, 1545–1566.  CrossRef CAS Google Scholar
First citationShamanth, S., Mantelingu, K., Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 18–24.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, X.-Q., Li, Z.-J., Zhang, H.-Y., Qiao, H.-B., Wu, Q.-A., Wang, H.-Y. & Zu, Y. (2005). J. Phys. Chem. Solids, 66, 1755–1760.  CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W.-Y., Liu, J. & Liu, Y.-J. (2012). Acta Cryst. E68, o475.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds