research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[(4-methyl­benz­yl)­­oxy]-N′-(4-nitro­benzyl­­idene)benzohydrazide: a new hydrazone derivative

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: s1510923194@ru.ac.bd

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 April 2023; accepted 2 May 2023; online 5 May 2023)

The mol­ecular structure of the title compound, C22H19N3O4, shows a non-coplanar conformation, with dihedral angles between the phenyl rings of 73.3 (1) and 80.9 (1)°. These deformations are induced by the crystal packing that is mainly governed by N—H⋯O and C—H⋯O hydrogen bonds, forming a mono-periodic arrangement parallel to the b axis.

1. Chemical context

Hydrazones are a special class of Schiff bases, which can be obtained by condensation between an alkyl or aryl hydrazine and a carbonyl compound (aldehyde or ketone). The active pharmacophore group, —CH=N—NH—C=O—, present in a hydrazone is primarily responsible for its broad spectrum of biological aspects (Taha et al., 2013[Taha, M., Ismail, N. H., Jamil, W., Yousuf, S., Jaafar, F. M., Ali, M. I., Kashif, S. M. & Hussain, E. (2013). Molecules, 18, 10912-10929.]). The presence of tautomeric forms facilitates their coordination behavior in neutral or anionic species (Banna et al., 2022[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081-1083.]) with metal ions (Zülfikaroğlu et al., 2020[Zülfikaroğlu, A., Yüksektepe Ataol, Ç., Çelikoğlu, E., Çelikoğlu, U. & İdil, Ö. (2020). J. Mol. Struct. 1199, 127012.]). The chemical diversity and pharmacological accessibility of hydrazone and its derivatives paves the way for research exploring drug design and discovery (Verma et al., 2014[Verma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M. R. & Alam, M. M. (2014). J. Pharm. Bioallied. Sci. 6, 69-80.]).

[Scheme 1]

In this context and in a continuation of our recent work (Banna et al., 2023[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C., Ansary, M. R. H. & Zangrando, E. (2023). Acta Cryst. E79, 207-211.]), we report here on the synthesis and crystal-structure determination of another derivatized aroylhydrazone bearing an ether group.

2. Structural commentary

The mol­ecular structure of the hydrazone compound is shown in Fig. 1[link]. The ac­yl–hydrazone (—CH=N—NH—C=O—) group connects the p-nitro­phenyl group and the central phenyl ring, which in turn is bound to the p-methyl­benz­yloxy fragment. An E-configuration is observed with respect to the double bond of the hydrazone bridge N2=C16. The N1—N2 bond length of 1.376 (4) Å is slightly shorter than that of 1.397 (4) Å determined in the corresponding derivative having a thienyl ring replacing the p-nitro­phenyl group (Banna et al., 2023[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C., Ansary, M. R. H. & Zangrando, E. (2023). Acta Cryst. E79, 207-211.]). On the other hand, the O2=C15 bond of 1.237 (4) Å is close to that determined in the thienyl derivative [1.236 (4) Å], and typical of a ketonic linkage, while an equilibrium between the keto and enol forms is present in solution. The nitro­phenyl group and the benzohydrazone fragment form a dihedral angle of 73.3 (1)° while the terminal 4-methyl­benzyl group is rotated by 80.9 (1)° with respect to the central phenyl ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2[link] depicts a superimposition of the mol­ecular structure of the title compound with the thienyl derivative (Banna et al., 2023[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C., Ansary, M. R. H. & Zangrando, E. (2023). Acta Cryst. E79, 207-211.]). It is worth noting the different orientations of the carbohydrazide CO—NH—N moiety, likely induced by crystal-packing requirements.

[Figure 2]
Figure 2
Overlay plot of the mol­ecule of the title compound and the reported thienyl derivative (Banna et al., 2023[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C., Ansary, M. R. H. & Zangrando, E. (2023). Acta Cryst. E79, 207-211.]).

3. Supra­molecular features

The crystal packing is governed by hydrogen-bonding inter­actions (Table 1[link], with corresponding symmetry codes) realized between the imino group N1—H1 with carbonyl oxygen atom O2ii of a symmetry-related mol­ecule. This results in a mono-periodic arrangement parallel to the b axis. In addition, non-classical C16—H16⋯O2ii hydrogen bonds between a methine group and the carbonyl O atom and C21—H21⋯O4iii between an aromatic C—H group and one of the nitro O atoms are also present, as shown in Fig. 3[link]. The ribbons are further connected by C14—H14⋯N2i inter­actions (Table 1[link]). No significant π-stacking inter­action is found in the crystal (all centroid-to-centroid distances between phenyl rings are > 5.0 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N2i 0.95 2.68 3.524 (5) 148
C16—H16⋯O2ii 0.95 2.45 3.259 (4) 143
C21—H21⋯O4iii 0.95 2.59 3.532 (5) 171
N1—H1⋯O2ii 0.90 (4) 2.04 (4) 2.911 (4) 161 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
Crystal packing of the title compound showing the mono-periodic arrangement parallel to the b axis built by N—H⋯O and C—H⋯O hydrogen bonds (dashed lines).

4. Database survey

For a closely related structure with a thienyl moiety, see: Banna et al. (2023[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C., Ansary, M. R. H. & Zangrando, E. (2023). Acta Cryst. E79, 207-211.]); for some other aroylhydrazones, see: Ban & Li (2009[Ban, H.-Y. & Li, C.-M. (2009). Acta Cryst. E65, o3272.]); Chantrapromma et al. (2016[Chantrapromma, S., Prachumrat, P., Ruanwas, P., Boonnak, N. & Kassim, M. B. (2016). Acta Cryst. E72, 1339-1342.]); Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]); Zong & Wu (2013[Zong, Q.-S. & Wu, J.-Y. (2013). J. Struct. Chem. 54, 1151-1156.]). All these mol­ecules exhibit an E-configuration about the double bond of the hydrazone bridge, and they have comparable bond lengths and angles in the C=N—NH—C moiety, in agreement with the present geometrical parameters. For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

5. Synthesis and crystallization

The synthesis of the compound follows a procedure previously described (Banna et al., 2023[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C., Ansary, M. R. H. & Zangrando, E. (2023). Acta Cryst. E79, 207-211.]). To a solution of 4-[(4-methyl­benz­yl)­oxy]benzoyl­hydrazine (0.25 g, 0.97 mmol in 20 ml of absolute ethanol), a solution of 4-nitro­benzaldehyde (0.14 g, 0.97 mmol) in 5 ml ethanol was added and the mixture was heated and refluxed for 2 h. A colorless precipitate was obtained, filtered off, and washed several times with hot ethanol to eliminate any types of starting materials prior to being dried in a desiccator. The title compound was recrystallized from a mixture of DMF and ethanol. Colorless crystals suitable for X-ray diffraction were obtained after 60 d of keeping the sample solution undisturbed.

Yield: 0.29 g, 79%; melting point (m.p.): 531–533 K; FT–IR: 1636 ν(C=Oamide), 3315 ν(N—H), 1606 ν(C=Nazomethine). LC–MS (FAB) m/z: [M + H]+ calculated for C22H19N3O4; 390.1446; found 390.1448.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed at geometrical positions, except for the N—H hydrogen atom, the position of which was located in a difference-Fourier map and freely refined. The Flack parameter of −0.8 (9) indicates that the absolute structure cannot confidently be derived from the data based on Mo radiation.

Table 2
Experimental details

Crystal data
Chemical formula C22H19N3O4
Mr 389.40
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 8.9485 (8), 5.0612 (5), 20.949 (2)
β (°) 96.585 (7)
V3) 942.54 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.28 × 0.03
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.749, 0.997
No. of measured, independent and observed [I > 2σ(I)] reflections 9086, 3799, 2635
Rint 0.050
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.126, 1.04
No. of reflections 3799
No. of parameters 266
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.16
Absolute structure Unknown: Flack x determined using 741 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.8 (9)
Computer programs: RAPID-AUTO (Rigaku, 2018[Rigaku (2018). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2018); cell refinement: RAPID-AUTO (Rigaku, 2018); data reduction: RAPID-AUTO (Rigaku, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

4-[(4-Methylbenzyl)oxy]-N'-(4-nitrobenzylidene)benzohydrazide top
Crystal data top
C22H19N3O4F(000) = 408
Mr = 389.40Dx = 1.372 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
a = 8.9485 (8) ÅCell parameters from 5984 reflections
b = 5.0612 (5) Åθ = 2.3–27.5°
c = 20.949 (2) ŵ = 0.10 mm1
β = 96.585 (7)°T = 173 K
V = 942.54 (16) Å3Platel, colorless
Z = 20.30 × 0.28 × 0.03 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2635 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.050
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.749, Tmax = 0.997k = 56
9086 measured reflectionsl = 2727
3799 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.0221P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.19 e Å3
3799 reflectionsΔρmin = 0.16 e Å3
266 parametersAbsolute structure: Flack x determined using 741 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.8 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1477 (3)0.5424 (5)0.66816 (11)0.0476 (7)
O20.3072 (3)0.1188 (5)0.39878 (10)0.0407 (6)
O30.7195 (4)0.3955 (11)0.04333 (15)0.0967 (14)
O40.5966 (4)0.7477 (8)0.00909 (14)0.0786 (10)
N10.3611 (4)0.5542 (5)0.38830 (13)0.0369 (7)
H10.354 (4)0.724 (8)0.4011 (17)0.044*
N20.4173 (3)0.5102 (5)0.33080 (12)0.0359 (7)
N30.6379 (4)0.5860 (10)0.05105 (16)0.0632 (11)
C10.1011 (5)0.8823 (12)0.93031 (19)0.0716 (14)
H1A0.1361891.0630160.9208710.086*
H1B0.0100780.8869720.9611520.086*
H1C0.1796520.7822380.9486410.086*
C20.0660 (4)0.7506 (9)0.86904 (16)0.0472 (10)
C30.0290 (5)0.5425 (10)0.86983 (18)0.0648 (13)
H30.0741310.4767270.9099490.078*
C40.0622 (5)0.4232 (10)0.81397 (18)0.0661 (13)
H40.1300000.2782280.8162910.079*
C50.0019 (4)0.5115 (8)0.75470 (16)0.0401 (8)
C60.0974 (5)0.7189 (9)0.75353 (18)0.0554 (11)
H60.1432980.7831360.7133800.067*
C70.1295 (5)0.8387 (11)0.80936 (19)0.0655 (13)
H70.1965850.9848250.8069390.079*
C80.0349 (4)0.3846 (8)0.69368 (16)0.0462 (9)
H8A0.0729330.2030700.7024630.055*
H8B0.0564900.3745390.6622840.055*
C90.1823 (4)0.4840 (7)0.60809 (15)0.0360 (8)
C100.1222 (4)0.2735 (7)0.57052 (15)0.0387 (9)
H100.0520490.1568500.5864700.046*
C110.1652 (4)0.2362 (7)0.51033 (15)0.0382 (8)
H110.1238020.0924810.4850070.046*
C120.2679 (4)0.4034 (6)0.48530 (15)0.0311 (8)
C130.3289 (4)0.6103 (7)0.52395 (15)0.0388 (8)
H130.3994030.7270210.5082410.047*
C140.2876 (4)0.6465 (7)0.58475 (16)0.0419 (9)
H140.3321360.7850350.6109790.050*
C150.3126 (4)0.3454 (7)0.42105 (15)0.0318 (8)
C160.4317 (4)0.7143 (7)0.29601 (16)0.0410 (8)
H160.4044960.8843320.3100340.049*
C170.4910 (4)0.6807 (7)0.23383 (16)0.0405 (9)
C180.5876 (5)0.4754 (8)0.22322 (18)0.0463 (9)
H180.6206000.3566620.2570430.056*
C190.6358 (5)0.4437 (9)0.16319 (18)0.0509 (10)
H190.7027810.3048570.1553810.061*
C200.5843 (4)0.6185 (9)0.11485 (17)0.0491 (10)
C210.4894 (5)0.8217 (8)0.12357 (17)0.0545 (11)
H210.4551930.9372390.0892340.065*
C220.4445 (5)0.8546 (8)0.18362 (17)0.0526 (10)
H220.3804960.9982730.1911620.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0515 (15)0.0606 (18)0.0328 (13)0.0128 (14)0.0139 (11)0.0079 (12)
O20.0605 (16)0.0307 (12)0.0321 (12)0.0011 (13)0.0101 (11)0.0015 (11)
O30.076 (2)0.168 (4)0.0489 (19)0.040 (3)0.0199 (16)0.007 (2)
O40.113 (3)0.086 (2)0.0419 (17)0.015 (2)0.0324 (17)0.0032 (17)
N10.0571 (18)0.0288 (16)0.0259 (14)0.0000 (15)0.0105 (12)0.0017 (12)
N20.0492 (17)0.0322 (15)0.0274 (15)0.0007 (14)0.0087 (12)0.0020 (12)
N30.059 (2)0.094 (3)0.038 (2)0.011 (2)0.0142 (17)0.008 (2)
C10.065 (3)0.110 (4)0.043 (2)0.008 (3)0.023 (2)0.018 (2)
C20.0412 (19)0.068 (3)0.035 (2)0.014 (2)0.0156 (15)0.0043 (19)
C30.092 (3)0.069 (3)0.031 (2)0.011 (3)0.002 (2)0.0080 (19)
C40.083 (3)0.070 (3)0.044 (2)0.034 (3)0.001 (2)0.002 (2)
C50.0385 (19)0.049 (2)0.0337 (18)0.0054 (19)0.0090 (15)0.0003 (16)
C60.064 (2)0.065 (3)0.035 (2)0.015 (2)0.0024 (18)0.0006 (19)
C70.055 (2)0.094 (4)0.046 (2)0.025 (3)0.0002 (19)0.015 (2)
C80.048 (2)0.056 (2)0.037 (2)0.008 (2)0.0126 (16)0.0022 (18)
C90.0385 (19)0.042 (2)0.0282 (17)0.0001 (17)0.0049 (14)0.0003 (15)
C100.0410 (19)0.037 (2)0.0396 (19)0.0052 (17)0.0121 (16)0.0015 (16)
C110.0473 (19)0.0326 (17)0.0349 (19)0.0044 (17)0.0051 (15)0.0069 (15)
C120.0395 (19)0.0279 (17)0.0259 (16)0.0045 (16)0.0035 (14)0.0016 (13)
C130.0467 (19)0.039 (2)0.0311 (17)0.0066 (18)0.0073 (15)0.0001 (16)
C140.049 (2)0.043 (2)0.0333 (19)0.0072 (19)0.0019 (15)0.0074 (16)
C150.0373 (19)0.0297 (18)0.0276 (16)0.0041 (16)0.0006 (14)0.0006 (14)
C160.061 (2)0.0318 (18)0.0320 (18)0.0014 (18)0.0108 (16)0.0054 (15)
C170.056 (2)0.036 (2)0.0312 (18)0.0137 (18)0.0114 (16)0.0051 (15)
C180.054 (2)0.048 (2)0.038 (2)0.008 (2)0.0104 (17)0.0014 (17)
C190.051 (2)0.057 (2)0.047 (2)0.009 (2)0.0170 (18)0.010 (2)
C200.051 (2)0.068 (3)0.0306 (19)0.019 (2)0.0144 (16)0.007 (2)
C210.079 (3)0.054 (3)0.032 (2)0.018 (2)0.0133 (19)0.0022 (18)
C220.082 (3)0.040 (2)0.039 (2)0.006 (2)0.021 (2)0.0025 (17)
Geometric parameters (Å, º) top
O1—C91.363 (4)C8—H8A0.9900
O1—C81.437 (4)C8—H8B0.9900
O2—C151.237 (4)C9—C141.382 (5)
O3—N31.231 (6)C9—C101.395 (5)
O4—N31.227 (5)C10—C111.373 (4)
N1—C151.358 (4)C10—H100.9500
N1—N21.376 (4)C11—C121.395 (5)
N1—H10.90 (4)C11—H110.9500
N2—C161.279 (4)C12—C131.396 (5)
N3—C201.480 (5)C12—C151.477 (4)
C1—C21.511 (5)C13—C141.379 (5)
C1—H1A0.9800C13—H130.9500
C1—H1B0.9800C14—H140.9500
C1—H1C0.9800C16—C171.472 (5)
C2—C31.353 (6)C16—H160.9500
C2—C71.386 (5)C17—C181.385 (5)
C3—C41.379 (6)C17—C221.398 (5)
C3—H30.9500C18—C191.385 (5)
C4—C51.381 (5)C18—H180.9500
C4—H40.9500C19—C201.383 (6)
C5—C61.352 (6)C19—H190.9500
C5—C81.500 (5)C20—C211.360 (6)
C6—C71.377 (5)C21—C221.374 (5)
C6—H60.9500C21—H210.9500
C7—H70.9500C22—H220.9500
C9—O1—C8117.8 (3)C14—C9—C10119.3 (3)
C15—N1—N2119.1 (3)C11—C10—C9119.5 (3)
C15—N1—H1124 (2)C11—C10—H10120.2
N2—N1—H1117 (2)C9—C10—H10120.2
C16—N2—N1116.0 (3)C10—C11—C12121.9 (3)
O4—N3—O3124.3 (4)C10—C11—H11119.1
O4—N3—C20118.1 (4)C12—C11—H11119.1
O3—N3—C20117.7 (4)C11—C12—C13117.9 (3)
C2—C1—H1A109.5C11—C12—C15118.8 (3)
C2—C1—H1B109.5C13—C12—C15123.3 (3)
H1A—C1—H1B109.5C14—C13—C12120.4 (3)
C2—C1—H1C109.5C14—C13—H13119.8
H1A—C1—H1C109.5C12—C13—H13119.8
H1B—C1—H1C109.5C13—C14—C9120.9 (3)
C3—C2—C7117.0 (4)C13—C14—H14119.5
C3—C2—C1121.6 (4)C9—C14—H14119.5
C7—C2—C1121.4 (4)O2—C15—N1122.1 (3)
C2—C3—C4121.8 (4)O2—C15—C12121.7 (3)
C2—C3—H3119.1N1—C15—C12116.2 (3)
C4—C3—H3119.1N2—C16—C17118.7 (3)
C3—C4—C5120.9 (4)N2—C16—H16120.6
C3—C4—H4119.5C17—C16—H16120.6
C5—C4—H4119.5C18—C17—C22119.3 (3)
C6—C5—C4117.6 (4)C18—C17—C16121.6 (3)
C6—C5—C8121.1 (3)C22—C17—C16119.1 (3)
C4—C5—C8121.2 (4)C19—C18—C17119.8 (4)
C5—C6—C7121.3 (4)C19—C18—H18120.1
C5—C6—H6119.3C17—C18—H18120.1
C7—C6—H6119.3C20—C19—C18118.6 (4)
C6—C7—C2121.4 (4)C20—C19—H19120.7
C6—C7—H7119.3C18—C19—H19120.7
C2—C7—H7119.3C21—C20—C19123.1 (3)
O1—C8—C5108.1 (3)C21—C20—N3118.5 (4)
O1—C8—H8A110.1C19—C20—N3118.4 (4)
C5—C8—H8A110.1C20—C21—C22117.9 (4)
O1—C8—H8B110.1C20—C21—H21121.1
C5—C8—H8B110.1C22—C21—H21121.1
H8A—C8—H8B108.4C21—C22—C17121.3 (4)
O1—C9—C14115.7 (3)C21—C22—H22119.3
O1—C9—C10125.0 (3)C17—C22—H22119.3
C15—N1—N2—C16166.0 (3)C10—C9—C14—C132.9 (5)
C7—C2—C3—C40.3 (7)N2—N1—C15—O25.3 (5)
C1—C2—C3—C4179.5 (5)N2—N1—C15—C12174.1 (3)
C2—C3—C4—C50.5 (8)C11—C12—C15—O225.7 (5)
C3—C4—C5—C60.2 (7)C13—C12—C15—O2151.0 (3)
C3—C4—C5—C8179.3 (4)C11—C12—C15—N1154.8 (3)
C4—C5—C6—C70.2 (6)C13—C12—C15—N128.5 (5)
C8—C5—C6—C7178.9 (4)N1—N2—C16—C17179.9 (3)
C5—C6—C7—C20.4 (7)N2—C16—C17—C1827.8 (5)
C3—C2—C7—C60.2 (7)N2—C16—C17—C22149.9 (4)
C1—C2—C7—C6179.9 (4)C22—C17—C18—C190.4 (5)
C9—O1—C8—C5170.9 (3)C16—C17—C18—C19177.2 (4)
C6—C5—C8—O180.9 (4)C17—C18—C19—C200.6 (5)
C4—C5—C8—O198.2 (5)C18—C19—C20—C210.5 (6)
C8—O1—C9—C14177.9 (3)C18—C19—C20—N3179.1 (4)
C8—O1—C9—C103.5 (5)O4—N3—C20—C211.5 (5)
O1—C9—C10—C11179.5 (3)O3—N3—C20—C21177.5 (4)
C14—C9—C10—C112.0 (5)O4—N3—C20—C19177.2 (4)
C9—C10—C11—C120.0 (5)O3—N3—C20—C193.9 (5)
C10—C11—C12—C131.1 (5)C19—C20—C21—C220.7 (6)
C10—C11—C12—C15177.9 (3)N3—C20—C21—C22177.9 (3)
C11—C12—C13—C140.2 (5)C20—C21—C22—C171.8 (6)
C15—C12—C13—C14176.9 (3)C18—C17—C22—C211.7 (6)
C12—C13—C14—C91.8 (5)C16—C17—C22—C21176.0 (3)
O1—C9—C14—C13178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N2i0.952.683.524 (5)148
C16—H16···O2ii0.952.453.259 (4)143
C21—H21···O4iii0.952.593.532 (5)171
N1—H1···O2ii0.90 (4)2.04 (4)2.911 (4)161 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y+1/2, z.
 

Acknowledgements

The authors express their gratitude to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama for providing facilities for single-crystal X-ray analyses.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2009). Acta Cryst. E65, o3272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C., Ansary, M. R. H. & Zangrando, E. (2023). Acta Cryst. E79, 207–211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081–1083.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChantrapromma, S., Prachumrat, P., Ruanwas, P., Boonnak, N. & Kassim, M. B. (2016). Acta Cryst. E72, 1339–1342.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2018). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaha, M., Ismail, N. H., Jamil, W., Yousuf, S., Jaafar, F. M., Ali, M. I., Kashif, S. M. & Hussain, E. (2013). Molecules, 18, 10912–10929.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVerma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M. R. & Alam, M. M. (2014). J. Pharm. Bioallied. Sci. 6, 69–80.  PubMed Google Scholar
First citationZong, Q.-S. & Wu, J.-Y. (2013). J. Struct. Chem. 54, 1151–1156.  Web of Science CrossRef CAS Google Scholar
First citationZülfikaroğlu, A., Yüksektepe Ataol, Ç., Çelikoğlu, E., Çelikoğlu, U. & İdil, Ö. (2020). J. Mol. Struct. 1199, 127012.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds