research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-(1H-Benzimidazol-2-yl)prop­yl]-1H-benzimidazol-3-ium 3,4,5-tri­hy­droxy­benzoate–1,3-bis­­(1H-benzimidazol-2-yl)propane–ethyl acetate (2/1/2.94): co-crystallization between a salt, a neutral mol­ecule and a solvent

crossmark logo

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, bInstituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and cInstituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 April 2023; accepted 16 May 2023; online 23 May 2023)

The chemical formula of the title compound, 2C17H17N4+·2C7H5O5·C17H16N4·2.94C4H8O2, was established by X-ray diffraction of a single-crystal obtained by reacting 1,3-bis­(benzimidazol-2-yl)propane (L) and gallic acid (HGal) in ethyl acetate. The mol­ecular structure can be described as a salt (HL)+(Gal) co-crystallized with a mol­ecule L, with a stoichiometric relation of 2:1. Moreover, large voids in the crystal are filled with ethyl acetate, the amount of which was estimated by using a solvent mask during structure refinement, affording the chemical formula (HL+·Gal)2·L·(C4H8O2)2.94. The arrangement of components in the crystal is driven by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds rather than by ππ or C—H⋯π inter­actions. In the crystal, mol­ecules and ions shape the boundary of cylindrical tunnels parallel to [100] via R (rings) and D (discrete) supra­molecular motifs. These voids, which account for about 28% of the unit-cell volume, contain disordered solvent mol­ecules.

1. Chemical context

Bis-imidazole and bis-benzimidazole ligands are frequently used in coordination chemistry because of their chelating properties. Moreover, the size and the nature of the bridge connecting the imidazole moieties can modify the spectroscopic and physicochemical properties of the resulting complexes (Pandiyan et al., 1997[Pandiyan, T., Bernés, S. & Durán de Bazúa, C. (1997). Polyhedron, 16, 2819-2826.]). Such behaviour is useful in bioinorganic chemistry, in particular for the design of models of active centres in metalloproteins. In the specific case of 1,3-bis­(benzimidazol-2-yl)propane (C17H16N4, abbreviated L hereafter), coordination complexes with late transition metals have been reported (CoII, NiII, CuII, ZnII, AgI and CdII; see for example: van Albada et al., 1999[Albada, G. A. van, Smeets, W. J. J., Spek, A. L. & Reedijk, J. (1999). Inorg. Chim. Acta, 288, 220-225.]).

Another salient aspect for these mol­ecules is that they include both acidic protons and protonable sites, allowing the formation of cations or anions, for example by modifying the pH value of the medium. However, the symmetric character of L leads to a reasonable assumption that both benzimidazole moieties should behave similarly, so that a dicationic species H2L2+ is more readily available compared to the dissymmetric cation HL+. We report herein the crystal structure of a compound overriding this rule of thumb, since it contains both neutral L and cationic HL+ species, together with gallate anions Gal (3,4,5-tri­hydroxy­benzoate, C7H5O5, derived from gallic acid, HGal) for charge balancing. Moreover, disordered solvent mol­ecules (ethyl acetate, C4H8O2) are present in the crystal, which can then be seen as an uncommon case of a solvated co-crystal between a salt and a mol­ecule.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the compound under study contains one cation HL+ and one anion Gal in general positions, and one-half of a mol­ecule L, placed on the twofold rotation axis of space group I2/a (Fig. 1[link]). The mol­ecular formula is then (HL+·Gal)2·L. With this formula, the calculated Kitaigorodskii packing index (Kitaigorodskii, 1965[Kitaigorodskii, A. I. (1965). Acta Cryst. 18, 585-590.]), η = 0.534, is physically unreasonable, and the refinement can be greatly improved by considering the presence of disordered solvent mol­ecules in the crystal. Large voids of ca 2000 Å3 per unit cell, which equals 28% of the cell volume, are actually present in the crystal structure, forming wide tunnels running along [100], which are filled with solvent mol­ecules (Fig. 2[link]). A solvent mask was calculated with OLEX2 (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), recovering a density of 564 electrons per unit cell. Since Z = 4 for the above-mentioned formula, and considering that only ethyl acetate was used as solvent during the synthesis and crystallization, the formula of the compound was derived as (HL+·Gal)2·L·(C4H8O2)2.94. However, it must be noted that the determination of the solvent amount via a SQUEEZE-like procedure is always inaccurate (e.g. Hernández Linares et al., 2016[Hernández Linares, M.-G., Carrasco-Carballo, A., Guerrero-Luna, G., Bernès, S. & Aguirre Hernández, G. (2016). IUCrData, 1, x160622.]). The given formula is thus not meant to be precise regarding the overall solvent content. It rather points out that the crystallized compound is a solvated co-crystal between a salt, HL+·Gal, and a mol­ecule, L.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level. Non-labelled atoms in the neutral moiety (bottom mol­ecule) are generated by symmetry [{1\over 2}] − x, y, 1 − z (twofold rotation).
[Figure 2]
Figure 2
Part of the crystal structure of the title compound showing tunnels in which the disordered ethyl acetate solvent mol­ecules are located (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The projection is almost normal to unit-cell axis a and the probe radius for the voids is 1.25 Å.

The presence of voids in the crystal is a consequence of the lack of efficient stacking inter­actions between the co-crystal components, although they contain aromatic heterocycles. This feature is, in turn, related to the different conformations observed for HL+ and L. The mol­ecule L displays a transtrans conformation for the propane link bridging the benzimidazole heterocycles: torsion angles C18—C25—C26—C25i and C18i—C25i—C26i—C25 are equal by symmetry, 172.70 (12)° [symmetry code: (i) −x + [{1\over 2}], y, −z + 1]. In contrast, the cation HL+ is placed in a general position, and the propane chain displays a gauchetrans conformation, reflected in torsion angles C1—C8—C9—C10 = −63.93 (16)° and C11—C10—C9—C8 = 179.45 (11)°. Both L and HL+ have a bent shape, with dihedral angles between the benzimidazole rings of 65.07 (2) and 37.58 (3)°, respectively. These twisted components do not stack with the gallate anions, probably because, in the first place, the crystal structure is stabilized via Coulombic attractions in the ionic part HL+·Gal. Only two significant ππ inter­molecular contacts are calculated by PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), for benzimidazole rings in inversion-related L mol­ecules [separation for π-stacked N5/N6/C18/C19/C24 rings: 3.6070 (8) Å, slippage 0.644 Å] and inversion-related HL+ cations [separation for π stacking between N1/N2/C1/C2/C7 rings: 3.6672 (7) Å, slippage 0.720 Å]. The gallate anions Gal are arranged in rows parallel to [100], and do not inter­act with neighbouring aromatic rings: the angles between the Gal mean plane and surrounding benzimidazole rings are in the range 45.78 (7)–84.96 (6)°. No C—H⋯π inter­actions are observed in the crystal structure.

3. Supra­molecular features

Notwithstanding the absence of well-organized stacks in the crystal structure, all N—H, O—H and C=O functional groups are engaged in hydrogen bonds (Table 1[link]), forming a tri-periodic framework. This is confirmed in the Hirshfeld surface calculated for the expanded asymmetric unit represented in Fig. 1[link], that is (HL+·GalL. This map (Fig. 3[link]) shows typical spots for regions where inter­atomic distances are shorter than the sum of the van der Waals radii of the atoms. O⋯H and H⋯O contacts account for 16.1% of the Hirshfeld surface, while N⋯H and H⋯N contacts account for 6.0% of the surface. Both kinds of hydrogen bonds generate well-defined spikes in the 2D fingerprint plot, at short (di, de) coordinates. Apart from these stabilizing inter­actions, the map is dominated by H⋯H contacts (49.3% of the surface) related to van der Waals contacts.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.936 (16) 1.924 (17) 2.8204 (14) 159.7 (13)
N3—H3⋯O1 0.880 (16) 1.832 (16) 2.6433 (13) 152.4 (14)
N4—H4⋯O30ii 0.867 (16) 2.043 (16) 2.8509 (12) 154.6 (14)
N4—H4⋯O31ii 0.867 (16) 2.394 (16) 3.0199 (14) 129.5 (13)
N6—H6A⋯O1iii 0.893 (15) 1.955 (16) 2.8018 (12) 157.9 (13)
O30—H30⋯N1iv 0.946 (18) 1.785 (18) 2.7238 (12) 171.3 (16)
O31—H31⋯O2i 0.894 (18) 1.882 (18) 2.7314 (11) 157.8 (16)
O32—H32⋯N5 0.948 (19) 1.717 (19) 2.6515 (14) 167.9 (16)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Hirshfeld surface (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) mapped over dnorm in the range −0.5 Å (red) to 3.0 Å (blue). Labels 1–8 refer to entries in Table 1[link] for each hydrogen bond. Contact N3—H3⋯O1 (entry 2) is not visible, since it corresponds to an intra­molecular hydrogen bond in the inside pocket limited by the Hirshfeld surface. The deep-blue surface at the top of the map is the boundary with the region containing disordered solvent mol­ecules. The two-dimensional fingerprint plot including all contacts is shown in the inset.

Among the many motifs present in this supra­molecular framework, four are of particular importance for the building of the crystal structure, as they provide the cavities that are filled with disordered solvent mol­ecules. Ring motifs R12(5), R22(10) and R22(15) along with discrete motifs D(2) link four HL+ cations, six Gal anions and two L mol­ecules, forming a ring-shaped supra­molecule (Fig. 4[link]). Connecting these supra­molecular rings along [100], the remaining hydrogen bonds (entries 3, 4 and 6 in Table 1[link], i.e. those including `−x + 1' in their symmetry operator for the acceptor site) generate the tunnels depicted in Fig. 2[link]. The boundary of the cavity is formed by a sequence of twelve elements, alternating anions, cations and mol­ecules (Fig. 5[link]).

[Figure 4]
Figure 4
Supra­molecular arrangement of HL+, Gal and L, affording the boundary of the cavities containing the disordered solvent. HL+ and L are coloured red, while Gal anions are coloured green. Hydrogen bonds are shown as dashed purple lines. All rings (R) and discrete (D) motifs involved in the building of the supra­molecular ring are indicated. All C-bound H atoms are omitted for clarity.
[Figure 5]
Figure 5
The complete supra­molecular framework enclosing the disordered ethyl acetate solvent, as viewed down the symmetry axis, parallel to [100] in the crystal. The colour code is as for Fig. 4[link]. All C-bound H atoms are omitted for clarity. The inset is the same framework in a spacefill representation, and including H atoms, showing the real void space available for disordered ethyl acetate mol­ecules. The crystallographic twofold rotation axis position is also shown.

The shape of this infinite supra­molecule is close to cylindrical, and its point group is approximately C2v, which is compatible with the space group, I2/a. However, the crystallographic twofold rotation axis of I2/a is parallel to [010], and thus it does not coincide with the symmetry axis of the cylindrical supra­molecule, which is parallel to [100]. The most important feature for the crystallization of the title compound is depicted in Fig. 5[link]: hydro­phobic benzene rings of HL+ and L point towards the inside of the cylindrical supra­molecule. This arrangement prevents solvent mol­ecules filling these cavities from forming hydrogen bonds with (HL+·Gal)2·L, and, presumably, only weak C—H⋯O=C contacts are present. This explains why ethyl acetate is disordered in this solvated co-crystal.

4. Database survey

A search of the CSD (v. 5.43 with all updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that crystal-structure determinations of compounds including cations H2L2+ or HL+ are rather rare. Three salts of H2L2+ have been reported so far: H2L(SO4)·3H2O (Clifford et al., 2012[Clifford, S. E., Runowski, M., Parthasarathy, N., Besnard, C., Melich, X. & Williams, A. F. (2012). New J. Chem. 36, 823-829.]), H2L·2(Cl)·2H2O (Hu et al., 2006[Hu, B., Deng, X.-T., Wang, C.-G. & Wang, X.-Y. (2006). Acta Cryst. E62, m3477-m3478.]) and H2L(CoCl4) (Matthews et al., 2003[Matthews, C. J., Broughton, V., Bernardinelli, G., Melich, X., Brand, G., Willis, A. C. & Williams, A. F. (2003). New J. Chem. 27, 354-358.]). For HL+, three crystal structures have also been reported: HL(ClO4) (Sun et al., 2004[Sun, Y., Liu, X.-H., Zhang, X., Song, H.-B. & Liu, X.-L. (2004). Jiegou Huaxue (Chin. J. Struct. Chem.), 23, 803-807.]), one co-crystal with trimesic acid and the corresponding carboxyl­ate anion (Feng & Jiang, 2010[Feng, G. & Jiang, L. (2010). Acta Cryst. E66, o2731.]), and one CoII complex (Wen et al., 2014[Wen, Y.-H., Xu, G.-F., Yao, K., Dou, R.-T. & Guo, J.-X. (2014). Z. Anorg. Allg. Chem. 640, 2091-2096.]). However, more structures based on the neutral bis-benzimidazole L have been deposited in the CSD, with 22 hits, but all are coordination compounds. In particular, it is surprising that the crystal structure of L has never been reported.

Regarding the conformation of the cation HL+ or the neutral mol­ecule L, all possibilities are represented, with central propane bridges found in transtrans, transgauche and gauchegauche conformations, although the transgauche conformation, observed for HL+ in the present complex, is less common, being observed for only one example (Wang & An, 2016[Wang, Y. & An, L. L. (2016). Russ. J. Coord. Chem. 42, 502-508.]). With such flexibility, almost any relative position for the benzimidazole rings is possible. For the 28 hits retrieved from the CSD, the dihedral angles between benzimidazole rings span a range from 4 to 87°, and the distances between the centroids of the imidazole rings span the range from 3.33 to 5.29 Å.

5. Synthesis and crystallization

A solution of 1,3-bis­(1H-benzo[d]imidazol-2-yl)propane (L, 12.4 mg, 0.045 mmol) and gallic acid (HGal, 7.6 mg, 0.045 mmol) in 10 mL of ethyl acetate was heated at boiling temperature until dissolution of the reactants. After filtration, the solution was left at room temperature for slow evaporation of the solvent, giving purple crystals suitable for single-crystal X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link] where the solvent molecules are not considered in the given chemical formula and other crystal data. All H atoms bonded to heteroatoms were refined with free coordinates, in order to achieve an accurate hydrogen-bonding model. Other H atoms were placed in calculated positions. Atom C26 is placed on the twofold rotation axis in space group I2/a, and therefore, H atoms for this methyl­ene group were modelled with two H atoms (H26A and H26B) with occupancies of 1/2, in such a way that H26B is the image of H26A through the symmetry axis and vice versa (command HFIX 23 in SHELXL; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula 2C17H17N4+·2C7H5O5·C17H16N4
Mr 1169.25
Crystal system, space group Monoclinic, I2/a
Temperature (K) 295
a, b, c (Å) 16.82625 (15), 16.73298 (17), 26.7833 (3)
β (°) 105.2162 (11)
V3) 7276.57 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.60 × 0.48 × 0.37
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.761, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 188774, 11088, 8064
Rint 0.064
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.06
No. of reflections 11088
No. of parameters 414
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.18
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008), Mercury (Macrae et al., 2020) and CrystalExplorer (Spackman et al., 2021); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[3-(1H-Benzimidazol-2-yl)propyl]-1H-benzimidazol-3-ium 3,4,5-trihydroxybenzoate–1,3-bis(1H-benzimidazol-2-yl)propane–ethyl acetate (2/1/2.94) top
Crystal data top
2C17H17N4+·2C7H5O5·C17H16N4F(000) = 2456
Mr = 1169.25Dx = 1.067 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 16.82625 (15) ÅCell parameters from 53060 reflections
b = 16.73298 (17) Åθ = 1.5–33.7°
c = 26.7833 (3) ŵ = 0.07 mm1
β = 105.2162 (11)°T = 295 K
V = 7276.57 (14) Å3Block, purple
Z = 40.60 × 0.48 × 0.37 mm
Data collection top
Xcalibur, Atlas, Gemini
diffractometer
11088 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source8064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 10.5564 pixels mm-1θmax = 30.5°, θmin = 1.6°
ω scansh = 2424
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 2323
Tmin = 0.761, Tmax = 1.000l = 3838
188774 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0782P)2 + 1.8337P]
where P = (Fo2 + 2Fc2)/3
11088 reflections(Δ/σ)max = 0.001
414 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.18 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.62719 (6)0.20714 (6)0.69126 (4)0.0409 (2)
N20.70426 (6)0.31366 (7)0.68709 (4)0.0415 (2)
H20.7153 (9)0.3686 (10)0.6889 (6)0.050*
N30.29155 (6)0.28875 (6)0.65905 (4)0.0410 (2)
H30.2821 (9)0.3375 (10)0.6465 (6)0.049*
N40.35419 (6)0.17996 (6)0.69126 (5)0.0456 (3)
H40.3956 (10)0.1491 (10)0.7050 (6)0.055*
C10.63565 (6)0.28528 (7)0.69822 (4)0.0369 (2)
C20.69506 (7)0.18377 (8)0.67405 (5)0.0417 (3)
C30.71780 (10)0.10890 (10)0.66007 (7)0.0588 (4)
H3A0.6861610.0638380.6615910.071*
C40.78909 (12)0.10380 (12)0.64384 (8)0.0715 (5)
H4A0.8057130.0542930.6344290.086*
C50.83663 (11)0.17096 (12)0.64124 (7)0.0710 (5)
H50.8840620.1651630.6299390.085*
C60.81553 (9)0.24544 (11)0.65486 (6)0.0586 (4)
H60.8475190.2901870.6531950.070*
C70.74379 (7)0.25066 (8)0.67130 (5)0.0420 (3)
C80.58072 (7)0.34195 (8)0.71577 (6)0.0454 (3)
H8A0.5706930.3873350.6924150.055*
H8B0.6096170.3616230.7497480.055*
C90.49824 (7)0.30894 (8)0.71883 (5)0.0458 (3)
H9A0.4698900.3492720.7336910.055*
H9B0.5075610.2631060.7418080.055*
C100.44301 (7)0.28374 (8)0.66621 (6)0.0454 (3)
H10A0.4326140.3295270.6431940.055*
H10B0.4710050.2434660.6510700.055*
C110.36365 (7)0.25125 (7)0.67136 (5)0.0410 (3)
C120.23293 (7)0.24029 (7)0.67147 (5)0.0403 (3)
C130.14945 (8)0.25199 (9)0.66602 (6)0.0542 (4)
H130.1232340.2994340.6530720.065*
C140.10775 (9)0.18973 (11)0.68079 (7)0.0650 (4)
H140.0514240.1946000.6770150.078*
C150.14755 (9)0.11917 (10)0.70137 (7)0.0637 (4)
H150.1169610.0785160.7110400.076*
C160.23059 (8)0.10804 (9)0.70774 (6)0.0536 (3)
H160.2570620.0613140.7218990.064*
C170.27263 (7)0.17010 (8)0.69195 (5)0.0422 (3)
N50.45349 (6)0.41770 (7)0.53870 (4)0.0448 (3)
N60.41648 (6)0.41115 (7)0.45294 (4)0.0386 (2)
H6A0.3833 (9)0.4196 (9)0.4214 (6)0.046*
C180.39799 (6)0.43829 (7)0.49600 (4)0.0363 (2)
C190.51184 (7)0.37344 (8)0.52212 (5)0.0427 (3)
C200.58383 (9)0.33716 (11)0.55080 (6)0.0620 (4)
H200.5993170.3397690.5867430.074*
C210.63136 (10)0.29722 (12)0.52407 (7)0.0707 (5)
H210.6791050.2714360.5423600.085*
C220.60934 (9)0.29471 (11)0.47023 (7)0.0655 (4)
H220.6431550.2677770.4533950.079*
C230.53885 (8)0.33102 (10)0.44121 (6)0.0533 (3)
H230.5246280.3297510.4052390.064*
C240.48992 (6)0.36969 (8)0.46827 (5)0.0392 (3)
C250.32225 (6)0.48543 (8)0.49463 (5)0.0398 (3)
H25A0.3060670.5144980.4622080.048*
H25B0.3347420.5243150.5224630.048*
C260.2500000.43372 (11)0.5000000.0390 (3)
H26A0.2322620.3996580.4698160.047*0.5
H26B0.2677390.3996620.5301850.047*0.5
C270.24259 (6)0.48453 (6)0.66505 (4)0.0286 (2)
O10.22012 (4)0.42873 (5)0.63255 (3)0.03592 (18)
O20.19661 (4)0.51802 (5)0.68876 (4)0.0406 (2)
C280.33088 (5)0.51107 (6)0.67702 (4)0.0279 (2)
C290.36507 (6)0.55315 (6)0.72219 (4)0.0301 (2)
H290.3321420.5683110.7435530.036*
C300.44827 (6)0.57278 (6)0.73570 (4)0.0304 (2)
O300.48495 (5)0.61169 (5)0.78071 (4)0.0434 (2)
H300.4435 (11)0.6401 (11)0.7912 (6)0.065*
C310.49785 (6)0.55062 (6)0.70354 (4)0.0305 (2)
O310.57953 (4)0.56927 (6)0.71834 (4)0.0422 (2)
H310.6076 (11)0.5401 (10)0.7008 (7)0.063*
C320.46247 (6)0.51162 (7)0.65697 (4)0.0307 (2)
O320.51369 (5)0.49489 (6)0.62700 (3)0.0442 (2)
H320.4854 (11)0.4668 (11)0.5968 (7)0.066*
C330.37932 (6)0.49074 (7)0.64409 (4)0.0307 (2)
H330.3562920.4632700.6135330.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0334 (5)0.0412 (5)0.0503 (6)0.0029 (4)0.0148 (4)0.0086 (4)
N20.0328 (5)0.0429 (5)0.0490 (6)0.0068 (4)0.0112 (4)0.0071 (4)
N30.0297 (4)0.0356 (5)0.0566 (6)0.0051 (4)0.0091 (4)0.0087 (4)
N40.0278 (4)0.0397 (5)0.0654 (7)0.0072 (4)0.0054 (4)0.0122 (5)
C10.0278 (5)0.0421 (6)0.0392 (6)0.0040 (4)0.0059 (4)0.0085 (5)
C20.0363 (6)0.0467 (6)0.0437 (6)0.0009 (5)0.0132 (5)0.0077 (5)
C30.0602 (9)0.0508 (8)0.0708 (10)0.0004 (7)0.0269 (8)0.0013 (7)
C40.0716 (11)0.0710 (11)0.0812 (12)0.0131 (9)0.0368 (9)0.0051 (9)
C50.0561 (9)0.0932 (13)0.0751 (11)0.0046 (9)0.0373 (8)0.0008 (10)
C60.0445 (7)0.0755 (10)0.0628 (9)0.0070 (7)0.0264 (7)0.0043 (8)
C70.0346 (5)0.0511 (7)0.0410 (6)0.0033 (5)0.0112 (5)0.0090 (5)
C80.0349 (6)0.0421 (6)0.0598 (8)0.0039 (5)0.0132 (5)0.0001 (6)
C90.0343 (6)0.0468 (7)0.0581 (8)0.0011 (5)0.0155 (5)0.0017 (6)
C100.0303 (5)0.0464 (7)0.0587 (8)0.0019 (5)0.0101 (5)0.0086 (6)
C110.0274 (5)0.0401 (6)0.0524 (7)0.0047 (4)0.0051 (5)0.0052 (5)
C120.0293 (5)0.0403 (6)0.0501 (7)0.0040 (4)0.0084 (5)0.0056 (5)
C130.0334 (6)0.0585 (8)0.0719 (9)0.0114 (6)0.0159 (6)0.0165 (7)
C140.0340 (6)0.0784 (11)0.0854 (11)0.0052 (6)0.0205 (7)0.0242 (9)
C150.0445 (7)0.0668 (10)0.0807 (11)0.0059 (7)0.0181 (7)0.0238 (8)
C160.0434 (7)0.0478 (7)0.0665 (9)0.0008 (6)0.0093 (6)0.0170 (6)
C170.0304 (5)0.0422 (6)0.0505 (7)0.0031 (4)0.0047 (5)0.0062 (5)
N50.0292 (4)0.0697 (7)0.0353 (5)0.0067 (4)0.0078 (4)0.0058 (5)
N60.0260 (4)0.0542 (6)0.0341 (5)0.0023 (4)0.0056 (4)0.0030 (4)
C180.0233 (4)0.0482 (6)0.0383 (6)0.0028 (4)0.0096 (4)0.0035 (5)
C190.0271 (5)0.0609 (8)0.0392 (6)0.0048 (5)0.0074 (4)0.0040 (5)
C200.0398 (7)0.0968 (12)0.0447 (7)0.0201 (7)0.0025 (6)0.0013 (8)
C210.0443 (7)0.0944 (13)0.0682 (10)0.0301 (8)0.0057 (7)0.0013 (9)
C220.0461 (7)0.0837 (11)0.0679 (10)0.0210 (7)0.0172 (7)0.0135 (8)
C230.0434 (7)0.0711 (9)0.0458 (7)0.0088 (6)0.0126 (5)0.0130 (6)
C240.0274 (5)0.0507 (7)0.0384 (6)0.0014 (4)0.0066 (4)0.0054 (5)
C250.0251 (5)0.0489 (7)0.0473 (7)0.0008 (4)0.0130 (4)0.0009 (5)
C260.0233 (6)0.0469 (9)0.0475 (9)0.0000.0106 (6)0.000
C270.0185 (4)0.0291 (5)0.0372 (5)0.0008 (3)0.0053 (4)0.0035 (4)
O10.0221 (3)0.0364 (4)0.0450 (4)0.0009 (3)0.0012 (3)0.0033 (3)
O20.0209 (3)0.0428 (4)0.0608 (5)0.0012 (3)0.0156 (3)0.0077 (4)
C280.0174 (4)0.0298 (5)0.0366 (5)0.0004 (3)0.0070 (3)0.0014 (4)
C290.0203 (4)0.0318 (5)0.0403 (5)0.0004 (3)0.0116 (4)0.0040 (4)
C300.0217 (4)0.0303 (5)0.0391 (5)0.0007 (3)0.0078 (4)0.0061 (4)
O300.0251 (4)0.0513 (5)0.0539 (5)0.0036 (3)0.0104 (3)0.0250 (4)
C310.0180 (4)0.0323 (5)0.0418 (6)0.0009 (3)0.0086 (4)0.0024 (4)
O310.0183 (3)0.0525 (5)0.0571 (5)0.0054 (3)0.0124 (3)0.0179 (4)
C320.0202 (4)0.0394 (5)0.0340 (5)0.0008 (4)0.0096 (4)0.0001 (4)
O320.0231 (3)0.0740 (6)0.0385 (4)0.0028 (4)0.0137 (3)0.0109 (4)
C330.0210 (4)0.0388 (5)0.0317 (5)0.0007 (4)0.0057 (4)0.0024 (4)
Geometric parameters (Å, º) top
N1—C11.3230 (16)C16—H160.9300
N1—C21.3950 (15)N5—C181.3184 (15)
N2—C11.3520 (14)N5—C191.3922 (15)
N2—C71.3712 (17)N6—C181.3496 (15)
N2—H20.936 (16)N6—C241.3822 (14)
N3—C111.3282 (14)N6—H6A0.893 (15)
N3—C121.3831 (15)C18—C251.4910 (15)
N3—H30.880 (16)C19—C201.3920 (18)
N4—C111.3330 (16)C19—C241.3933 (17)
N4—C171.3872 (15)C20—C211.378 (2)
N4—H40.867 (16)C20—H200.9300
C1—C81.4841 (18)C21—C221.392 (2)
C2—C31.390 (2)C21—H210.9300
C2—C71.4007 (17)C22—C231.377 (2)
C3—C41.382 (2)C22—H220.9300
C3—H3A0.9300C23—C241.3909 (17)
C4—C51.392 (3)C23—H230.9300
C4—H4A0.9300C25—C261.5293 (15)
C5—C61.371 (3)C25—H25A0.9700
C5—H50.9300C25—H25B0.9700
C6—C71.3921 (18)C26—H26A0.9700
C6—H60.9300C26—H26B0.9700
C8—C91.5158 (16)C27—O21.2545 (12)
C8—H8A0.9700C27—O11.2648 (13)
C8—H8B0.9700C27—C281.5024 (13)
C9—C101.5298 (19)C28—C291.3876 (14)
C9—H9A0.9700C28—C331.3910 (14)
C9—H9B0.9700C29—C301.3903 (13)
C10—C111.4814 (16)C29—H290.9300
C10—H10A0.9700C30—O301.3665 (13)
C10—H10B0.9700C30—C311.3973 (14)
C12—C131.3874 (16)O30—H300.946 (18)
C12—C171.3909 (16)C31—O311.3629 (11)
C13—C141.371 (2)C31—C321.3953 (15)
C13—H130.9300O31—H310.894 (18)
C14—C151.397 (2)C32—O321.3521 (12)
C14—H140.9300C32—C331.3946 (13)
C15—C161.375 (2)O32—H320.948 (19)
C15—H150.9300C33—H330.9300
C16—C171.3838 (18)
C1—N1—C2104.86 (10)C17—C16—H16121.8
C1—N2—C7108.02 (10)C16—C17—N4132.87 (11)
C1—N2—H2120.2 (9)C16—C17—C12121.54 (11)
C7—N2—H2131.7 (9)N4—C17—C12105.59 (10)
C11—N3—C12109.02 (10)C18—N5—C19105.11 (10)
C11—N3—H3126.4 (10)C18—N6—C24107.69 (10)
C12—N3—H3124.5 (10)C18—N6—H6A121.8 (9)
C11—N4—C17109.51 (10)C24—N6—H6A130.4 (9)
C11—N4—H4122.3 (11)N5—C18—N6112.55 (10)
C17—N4—H4127.7 (11)N5—C18—C25124.47 (10)
N1—C1—N2112.50 (11)N6—C18—C25122.98 (10)
N1—C1—C8128.54 (10)C20—C19—N5129.82 (12)
N2—C1—C8118.96 (11)C20—C19—C24120.47 (12)
C3—C2—N1130.46 (12)N5—C19—C24109.69 (10)
C3—C2—C7119.99 (12)C21—C20—C19117.68 (13)
N1—C2—C7109.55 (11)C21—C20—H20121.2
C4—C3—C2117.62 (15)C19—C20—H20121.2
C4—C3—H3A121.2C20—C21—C22121.31 (14)
C2—C3—H3A121.2C20—C21—H21119.3
C3—C4—C5121.58 (16)C22—C21—H21119.3
C3—C4—H4A119.2C23—C22—C21121.81 (14)
C5—C4—H4A119.2C23—C22—H22119.1
C6—C5—C4121.89 (14)C21—C22—H22119.1
C6—C5—H5119.1C22—C23—C24116.82 (13)
C4—C5—H5119.1C22—C23—H23121.6
C5—C6—C7116.60 (15)C24—C23—H23121.6
C5—C6—H6121.7N6—C24—C23133.16 (11)
C7—C6—H6121.7N6—C24—C19104.94 (10)
N2—C7—C6132.60 (13)C23—C24—C19121.89 (11)
N2—C7—C2105.08 (10)C18—C25—C26113.19 (11)
C6—C7—C2122.32 (13)C18—C25—H25A108.9
C1—C8—C9116.07 (11)C26—C25—H25A108.9
C1—C8—H8A108.3C18—C25—H25B108.9
C9—C8—H8A108.3C26—C25—H25B108.9
C1—C8—H8B108.3H25A—C25—H25B107.8
C9—C8—H8B108.3C25i—C26—C25111.10 (14)
H8A—C8—H8B107.4C25i—C26—H26A109.4
C8—C9—C10113.20 (11)C25—C26—H26A109.4
C8—C9—H9A108.9C25i—C26—H26B109.4
C10—C9—H9A108.9C25—C26—H26B109.4
C8—C9—H9B108.9H26A—C26—H26B108.0
C10—C9—H9B108.9O2—C27—O1124.43 (9)
H9A—C9—H9B107.8O2—C27—C28117.82 (9)
C11—C10—C9111.09 (11)O1—C27—C28117.73 (9)
C11—C10—H10A109.4C29—C28—C33119.94 (9)
C9—C10—H10A109.4C29—C28—C27119.76 (9)
C11—C10—H10B109.4C33—C28—C27120.24 (9)
C9—C10—H10B109.4C28—C29—C30120.36 (9)
H10A—C10—H10B108.0C28—C29—H29119.8
N3—C11—N4108.96 (10)C30—C29—H29119.8
N3—C11—C10126.19 (11)O30—C30—C29122.21 (9)
N4—C11—C10124.80 (10)O30—C30—C31117.75 (8)
N3—C12—C13131.16 (12)C29—C30—C31120.02 (9)
N3—C12—C17106.91 (10)C30—O30—H30107.7 (11)
C13—C12—C17121.92 (12)O31—C31—C32121.88 (9)
C14—C13—C12116.31 (13)O31—C31—C30118.67 (9)
C14—C13—H13121.8C32—C31—C30119.44 (9)
C12—C13—H13121.8C31—O31—H31110.8 (11)
C13—C14—C15121.82 (13)O32—C32—C33123.76 (10)
C13—C14—H14119.1O32—C32—C31116.02 (9)
C15—C14—H14119.1C33—C32—C31120.21 (9)
C16—C15—C14121.98 (14)C32—O32—H32110.7 (11)
C16—C15—H15119.0C28—C33—C32119.91 (10)
C14—C15—H15119.0C28—C33—H33120.0
C15—C16—C17116.41 (13)C32—C33—H33120.0
C15—C16—H16121.8
C2—N1—C1—N20.44 (14)C13—C12—C17—N4179.89 (13)
C2—N1—C1—C8179.31 (12)C19—N5—C18—N60.52 (15)
C7—N2—C1—N10.51 (14)C19—N5—C18—C25178.77 (11)
C7—N2—C1—C8179.26 (11)C24—N6—C18—N50.21 (14)
C1—N1—C2—C3179.18 (15)C24—N6—C18—C25179.51 (11)
C1—N1—C2—C70.21 (14)C18—N5—C19—C20179.82 (16)
N1—C2—C3—C4179.44 (15)C18—N5—C19—C241.06 (15)
C7—C2—C3—C40.1 (2)N5—C19—C20—C21179.31 (16)
C2—C3—C4—C50.3 (3)C24—C19—C20—C210.7 (2)
C3—C4—C5—C60.3 (3)C19—C20—C21—C221.5 (3)
C4—C5—C6—C70.2 (3)C20—C21—C22—C230.8 (3)
C1—N2—C7—C6179.15 (14)C21—C22—C23—C240.7 (3)
C1—N2—C7—C20.35 (13)C18—N6—C24—C23178.24 (15)
C5—C6—C7—N2179.35 (15)C18—N6—C24—C190.84 (14)
C5—C6—C7—C20.1 (2)C22—C23—C24—N6179.50 (15)
C3—C2—C7—N2179.55 (13)C22—C23—C24—C191.5 (2)
N1—C2—C7—N20.09 (14)C20—C19—C24—N6179.93 (14)
C3—C2—C7—C60.0 (2)N5—C19—C24—N61.18 (15)
N1—C2—C7—C6179.47 (12)C20—C19—C24—C230.9 (2)
N1—C1—C8—C99.7 (2)N5—C19—C24—C23178.03 (13)
N2—C1—C8—C9170.03 (11)N5—C18—C25—C2686.02 (14)
C1—C8—C9—C1063.93 (16)N6—C18—C25—C2693.19 (13)
C8—C9—C10—C11179.45 (11)C18—C25—C26—C25i172.70 (12)
C12—N3—C11—N40.14 (15)O2—C27—C28—C2918.00 (15)
C12—N3—C11—C10177.42 (13)O1—C27—C28—C29160.52 (10)
C17—N4—C11—N30.16 (16)O2—C27—C28—C33164.68 (10)
C17—N4—C11—C10177.76 (13)O1—C27—C28—C3316.80 (15)
C9—C10—C11—N3103.86 (15)C33—C28—C29—C302.24 (16)
C9—C10—C11—N473.33 (17)C27—C28—C29—C30175.09 (9)
C11—N3—C12—C13179.73 (15)C28—C29—C30—O30177.66 (10)
C11—N3—C12—C170.38 (15)C28—C29—C30—C310.45 (16)
N3—C12—C13—C14177.75 (15)O30—C30—C31—O310.48 (16)
C17—C12—C13—C141.5 (2)C29—C30—C31—O31178.67 (10)
C12—C13—C14—C151.5 (3)O30—C30—C31—C32179.25 (10)
C13—C14—C15—C160.3 (3)C29—C30—C31—C322.55 (16)
C14—C15—C16—C170.9 (3)O31—C31—C32—O321.24 (16)
C15—C16—C17—N4178.51 (16)C30—C31—C32—O32177.49 (10)
C15—C16—C17—C120.9 (2)O31—C31—C32—C33177.48 (10)
C11—N4—C17—C16179.11 (16)C30—C31—C32—C333.78 (16)
C11—N4—C17—C120.39 (15)C29—C28—C33—C321.01 (16)
N3—C12—C17—C16179.11 (13)C27—C28—C33—C32176.32 (9)
C13—C12—C17—C160.3 (2)O32—C32—C33—C28179.36 (10)
N3—C12—C17—N40.46 (15)C31—C32—C33—C282.02 (16)
Symmetry code: (i) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.936 (16)1.924 (17)2.8204 (14)159.7 (13)
N3—H3···O10.880 (16)1.832 (16)2.6433 (13)152.4 (14)
N4—H4···O30iii0.867 (16)2.043 (16)2.8509 (12)154.6 (14)
N4—H4···O31iii0.867 (16)2.394 (16)3.0199 (14)129.5 (13)
N6—H6A···O1i0.893 (15)1.955 (16)2.8018 (12)157.9 (13)
O30—H30···N1iv0.946 (18)1.785 (18)2.7238 (12)171.3 (16)
O31—H31···O2ii0.894 (18)1.882 (18)2.7314 (11)157.8 (16)
O32—H32···N50.948 (19)1.717 (19)2.6515 (14)167.9 (16)
C8—H8A···O320.972.523.4736 (17)168
C10—H10B···N10.972.643.2566 (16)122
Symmetry codes: (i) x+1/2, y, z+1; (ii) x+1/2, y+1, z; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (scholarship No. 737995 to JCPR).

References

First citationAlbada, G. A. van, Smeets, W. J. J., Spek, A. L. & Reedijk, J. (1999). Inorg. Chim. Acta, 288, 220–225.  Google Scholar
First citationClifford, S. E., Runowski, M., Parthasarathy, N., Besnard, C., Melich, X. & Williams, A. F. (2012). New J. Chem. 36, 823–829.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, G. & Jiang, L. (2010). Acta Cryst. E66, o2731.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHernández Linares, M.-G., Carrasco-Carballo, A., Guerrero-Luna, G., Bernès, S. & Aguirre Hernández, G. (2016). IUCrData, 1, x160622.  Google Scholar
First citationHu, B., Deng, X.-T., Wang, C.-G. & Wang, X.-Y. (2006). Acta Cryst. E62, m3477–m3478.  CSD CrossRef IUCr Journals Google Scholar
First citationKitaigorodskii, A. I. (1965). Acta Cryst. 18, 585–590.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatthews, C. J., Broughton, V., Bernardinelli, G., Melich, X., Brand, G., Willis, A. C. & Williams, A. F. (2003). New J. Chem. 27, 354–358.  Web of Science CSD CrossRef CAS Google Scholar
First citationPandiyan, T., Bernés, S. & Durán de Bazúa, C. (1997). Polyhedron, 16, 2819–2826.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Y., Liu, X.-H., Zhang, X., Song, H.-B. & Liu, X.-L. (2004). Jiegou Huaxue (Chin. J. Struct. Chem.), 23, 803–807.  CAS Google Scholar
First citationWang, Y. & An, L. L. (2016). Russ. J. Coord. Chem. 42, 502–508.  CSD CrossRef CAS Google Scholar
First citationWen, Y.-H., Xu, G.-F., Yao, K., Dou, R.-T. & Guo, J.-X. (2014). Z. Anorg. Allg. Chem. 640, 2091–2096.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds