research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The synthesis, crystal structure and Hirshfeld surface analysis of the thio­phene derivatives 5-(phenyl­sulfon­yl)-5,6-di­hydro­benzo[4,5]thieno[3,2-j]phenanthridine and (E)-N-{2-[2-(benzo[b]thiophen-2-yl)ethenyl]phen­yl}-N-(prop-2-yn-1-yl)benzene­sulfonamide

crossmark logo

aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 3 April 2023; accepted 28 April 2023; online 5 May 2023)

In both of the title compounds, C26H19NO2S2, (I), and C25H19NO2S2, (II), the benzo­thio­phene rings are essentially planar with maximum deviations of 0.026 (1) and −0.016 (1) Å for the carbon and sulfur atoms in compounds (I) and (II), respectively. In (I), the thio­phene ring system is almost orthogonal to the phenyl ring attached to the sulfonyl group, subtending a dihedral angle of 88.1 (1)°, and the di­hydro­pyridine ring adopts a screw–boat conformation. In both compounds, the mol­ecular structure is consolidated by weak C—H⋯O intra­molecular inter­actions formed by the sulfone oxygen atoms, which generate S(5) ring motifs. In the crystal of II, mol­ecules are linked via C—H⋯O hydrogen bonds, generating C(7) chains running along the [100] direction. No significant inter­molecular inter­actions are observed in I.

1. Chemical context

Thio­phene, C4H4S, belongs to a class of aromatic five-membered heterocycles comprising one S heteroatom. Thio­phene derivatives possess pharmacological and biological activities including anti­bacterial (Mishra et al., 2012[Mishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332-336.]), anti­allergic (Gillespie et al.,1985[Gillespie, E., Dungan, K. M., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655-660.]), anti-cancer and anti-toxic (Gewald et al., 1966[Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 99-100.]), analgesic (Laddi et al., 1998[Laddi, U. V., Talwar, M. B., Desai, S. R., Somannavar, Y. S., Bennur, R. S. & Bennur, S. C. (1998). Indian Drugs, 35, 509-513.]; Chen et al., 2008[Chen, H. J., Wang, W., l Wang, G. F., Shi, L. P., Gu, M., Ren, Y. D. & Hou, L. F. (2008). Med. Chem. 3, 1316-1321.]), anti-inflammatory (Ferreira et al., 2006[Ferreira, C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384-1387.]), anti­oxidant (Jarak et al., 2005[Jarak, I., Kralj, M. S., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I. Z., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346-2360.]), anti­tumor (Gadad et al., 1994[Gadad, A. K., Kumar, H., Shishoo, C. J., Mkhazi, I. & Mahajanshetti, C. S. (1994). Ind. J. Chem. Soc. 33, 298-301.]), anti­microbial (Abdel-Rahman et al., 2003[Abdel-Rahman, A. E., Bakhite, A. E. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372-377.]), anti­hypertensive (Monge Vega et al., 1980[Monge Vega, A., Aldana, I., Rabbani, M. M. & Fernandez-Alvarez, E. (1980). Heterocycl. Chem. 17, 77-80.]), anti-diabetes mellitus (Abdelhamid et al., 2009[Abdelhamid, A. O. (2009). J. Heterocycl. Chem. 46, 680-686.]), gonadotropin releasing hormone antagonist (Sabins et al., 1944[Sabins, R. W. (1944). Sulfur Rep. 16, 1.]) and are building blocks in many agrochemicals (Ansary & Omar, 2001[Ansary, A. K. & Omar, H. A. (2001). Bull. Faculty Pharm. 39, 17.]). Thio­phene possesses promising pharmacological activities, such as anti-HIV PR inhibitor (Bonini et al., 2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580-6589.]) and anti-breast cancer (Brault et al., 2005[Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-763.]). Benzo­thio­phenes are biologically energetic mol­ecules. One of the most significant drugs based on the benzo­thio­phene structure is Raloxifine, used for the stoppage and cure of osteoporosis in postmenopausal women (Jordan, 2003[Jordan, V. C. (2003). J. Med. Chem. 46, 1081-1111.]). Benzo­thio­phenes are also present in luminescent components used in organic materials (Russell & Press, 1996[Russell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679-729. Oxford: Pergamon Press.]). Thio­phene derivatives have a wide variety of applications in optical and electronic systems (Gather et al., 2008[Gather, M. C., Heeney, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). Chem. Commun. pp. 1079-1081.]; He et al., 2009[He, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930-11938.]) and are used extensively in solar cells (Justin Thomas et al., 2008[Justin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830-1840.]), organic light-emitting diodes (OLEDs) (Mazzeo et al., 2003[Mazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060-2063.]), organic field-effect transistors (OFETs) (Zhan et al., 2007[Zhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246-7247.]) and as NLO devices (Bedworth et al., 1996[Bedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, 2242-2246.]; Raposo et al., 2011[Raposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigments, 91, 62-73.]). Thieno-pyridine products are used in medicine as allosteric adenosine receptors and in the treatment of adenosine-sensitive cardiac arrhythmias (Tumey et al., 2008[Tumey, N. L., Boschelli, D. H., Lee, J. & Chaudhary, D. (2008). Bioorg. Med. Chem. Lett. 18, 4420-4423.]; Grunewald et al., 2008[Grunewald, G. L., Seim, M. R., Bhat, S. R., Wilson, M. E. & Criscione, K. R. (2008). Bioorg. Med. Chem. 16, 542-559.]). Herein we report the crystal structure and Hirshfeld surface analysis of the title thio­phene derivatives.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound I (Fig. 1[link]) comprises a benzo­thio­phene ring system (S1/C1–C8) attached to a 4-methyl 5-(phenyl­sulfon­yl)-5,6-di­hydro­phenanthridine unit (C7–C26/N1/S2/O1/O2), while compound II comprises a benzo­thio­phene ring system (S1/C1–C8) attached to an N-(2-allyl­phen­yl)-N-prop-2-yn-1-yl benzene­sulfonamide group (C9–C15/N1/S2/O1/O2) (Fig. 2[link]). In both compounds, the benzo­thio­phene ring system (S1/C1–C8) is essentially planar with maximum deviations of 0.026 (1) and 0.016 (1) Å for atom C6 and S1 in compounds I and II, respectively. The mean planes of the thio­phene ring systems make dihedral angles of 2.1 (1), 19.0 (1) and 33.9 (1), respectively, in compound I and 0.7 (2), 38.1 (2) and 87.6 (2)°, respectively, in compound II with the C1–C6, C11–C16 and C17–C22 phenyl rings. The benzo­thio­phene ring system is almost orthogonal to the C17–C22 phenyl ring attached to the sulfonyl group in I, subtending a dihedral angle of 88.1 (1)°, while the di­hydro­pyridine ring (C10/C11/C16/C23/C24) adopts a screw–boat conformation, as is evident from the Cremer–Pople puckering analysis of the six-membered heterocyclic ring [Q = 0.4451 (13) Å, θ = 111.5 (2) and φ = 146.9 (2)°]

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular contacts are shown as dashed lines (Table 1[link]).
[Figure 2]
Figure 2
The mol­ecular structure of compound II, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular contacts are shown as dashed lines (Table 2[link]).

In both compounds, the tetra­hedral configuration is distorted around the atom S2. The increase in the O2—S2—O1 angle [120.0 (1)° in I and 119.9 (2)° in II], with a simultaneous decrease in the N1—S2—C17 angle [108.5 (1)° in I and 107.6 (1)° in II] from the ideal tetra­hedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds. The N1—C23 [1.477 (2) Å in I and 1.477 (3) Å in II] and N1—C16 [1.433 (2) Å in I and 1.444 (3) Å in (II] bond lengths in the mol­ecule are longer than the mean Nsp2—Csp2 bond length value of 1.355 (14) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]; Cambridge Structural Database (CSD) Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The elongation observed may be due to the electron-withdrawing character of the phenyl­sulfonyl group. The sum of the bond angles around N1 [350.2° in I and 357.6° in II]] indicate the sp2 hybridization. The geometric parameters of compounds I and II agree well with those reported for related structures (Madhan et al., 2022[Madhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana­Krishnan, A. K. (2022). Acta Cryst. E78, 1198-1203.]).

In both compounds, the mol­ecular structure is stabilized by weak C23—H23⋯O1 intra­molecular inter­actions (Tables 1[link] and 2[link]) formed by the sulfone oxygen atoms, which generate S(5) ring motifs (Figs. 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O1 0.97 2.41 2.8935 (17) 111

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O1 0.97 2.35 2.860 (3) 112
C25—H25⋯O2i 0.93 2.38 3.285 (4) 166
C21—H21⋯Cg1ii 0.93 2.97 3.772 (2) 139
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, -y+1, -z+1].

3. Supra­molecular features

In the crystal of I, weak ππ inter­actions are present [Cg1⋯Cg2i = 3.766 (2) Å where Cg1 and Cg2 are the centroids of rings S1/C1/C6–C8 and C7–C10/C24/C25, respectively; symmetry code: (i) 1 - x, 1 - y, 1 - z]. No significant inter­molecular inter­actions or C—H⋯π inter­actions with centroid distances of less than 4 Å are observed in the structure.

In the crystal of II, mol­ecules are linked via C25—H25⋯O1 hydrogen bonding, generating C(7) chains (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running along the [100] direction. Weak ππ [Cg3⋯Cg3ii = 3.649 (2) Å where Cg3 is the centroid of the S1/C1/C6–C8 ring; symmetry code: (ii) −x, 2 − y, 1 − z] and C—H⋯π inter­actions [C21—H21⋯Cg4iii where Cg4 is the centroid of the C1—C6 ring; symmetry code: (iii) 1 − x, 1 − y, 1 − z]. are also present. Packing view of the title compound are shown in Figs. 3[link] and 4[link].

[Figure 3]
Figure 3
A view along the b-axis of the crystal packing of compound I. The hydrogen bonds are shown as dashed lines (Table 1[link]), and H atoms not involved in hydrogen bonding have been omitted.
[Figure 4]
Figure 4
A view along the a-axis of the crystal packing of compound II. The hydrogen bonds are shown as dashed lines (Table 2[link]), and H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

A recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3416.]) to analyse inter­molecular contacts in crystals. The various calculations (dnorm, curvedness and shape index and 2D fingerprint plots) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]).

The Hirshfeld surfaces of compounds I and II mapped over dnorm are shown in Fig. 5[link]. They are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The dnorm surface was mapped over a fixed colour scale of −0.085 (red) to 1.564 (blue) for compound I and −0.286 (red) to 1.374 (blue) for compound II. The red spots indicate inter­molecular contacts involved in hydrogen bonding.

[Figure 5]
Figure 5
The Hirshfeld surfaces of compounds I and II, mapped over dnorm

The fingerprint plots are illustrated in Figs. 6[link] and 7[link]. For compound I, they reveal that the principal inter­molecular contacts are H⋯H (47.2%, Fig. 6[link]b), H⋯C/C⋯H (20.7%, Fig. 6[link]c), O⋯H/H⋯O (14.1%, Fig. 6[link]d), C⋯C (7.8%, Fig. 6[link]e), S⋯H/H⋯S (7.4%, Fig. 6[link]f), S⋯C/C⋯S (1.8%, Fig. 6[link]g) and N⋯H/H⋯N (0.7%, Fig. 6[link]h). For compound II, they reveal a similar trend, with the principal inter­molecular contacts being H⋯H/H⋯H (44.6%, Fig. 7[link]b), H⋯C/C⋯H (29.1%, Fig. 7[link]c), O⋯H/H⋯O (13.6%, Fig. 7[link]d), C⋯C (4.6%, Fig. 7[link]e), S⋯H/H⋯S (4.3%, Fig. 7[link]f), S⋯C/C⋯S (3.3%, Fig. 7[link]g), C⋯O/O⋯C (0.4%, Fig. 7[link]h) and S⋯O/O⋯S (0.1%, Fig. 7[link]i). In both compounds, the H⋯H inter­molecular contacts predominate, followed by C⋯H/H⋯C and O⋯H/H⋯O contacts.

[Figure 6]
Figure 6
The full two-dimensional fingerprint plot for compound I, and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯C and (f) N⋯H/H⋯N contacts.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plot for compound II, and fingerprint plots delineated into (b) C⋯C, (c) C⋯H/H⋯C, (d) C⋯·N/N⋯C, (e) C⋯O/O⋯C, (f) H⋯H, (g) N⋯H/H⋯N, (h) O⋯H/H⋯O and (I)[link] S⋯H/H⋯S contacts.

5. Synthesis and crystallization

Compound I: A solution of N-propargyl­benzene­sulfonamide (0.50 g) in xylenes (20 mL), MnO2 (0.50 g) was added and the reaction mixture was refluxed for 24 h. It was then filtered through a celite pad and washed with hot xylenes (2 × 10 mL). The combined filtrate was concentrated under vacuum and then triturated with MeOH to afford dibenzo[b]thio­phene (0.38 g, 92%) as a dull white solid. Finally, compound I was crystallized using ethanol.

Compound II: To a solution of (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)ethenyl]phen­yl}benzenesulfonamide (1.2 g, 3.069 mmol) in CH3CN (10 mL), K2CO3 (0.63 g, 4.603 mmol) and propargyl bromide (0.54 mL, 4.603 mmol) were added and the mixture was stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (50 g) containing conc. HCl (5 mL), extracted with ethyl acetate (2 × 20 mL) then washed with water (2 × 20 mL) and dried (Na2SO4). Removal of the solvent in vacuo followed by crystallization from methanol (4 mL) afforded compound II as a white solid.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were found difference electron-density maps and positioned geometrically. They were refined as riding, with C—H = 0.93–0.94 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 3
Experimental details

  I II
Crystal data
Chemical formula C26H19NO2S2 C25H19NO2S2
Mr 441.54 429.53
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 298 298
a, b, c (Å) 10.3378 (4), 19.4299 (7), 10.5128 (4) 10.0085 (4), 8.6474 (3), 24.9024 (10)
β (°) 91.666 (1) 91.560 (2)
V3) 2110.73 (14) 2154.44 (14)
Z 4 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.28 2.41
Crystal size (mm) 0.28 × 0.21 × 0.11 0.55 × 0.16 × 0.09
 
Data collection
Diffractometer Bruker D8 VENTURE with PHOTON II detector Bruker D8 VENTURE with PHOTON II detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.913, 0.952 0.473, 0.752
No. of measured, independent and observed [I > 2σ(I)] reflections 102594, 6426, 5503 51958, 4099, 3475
Rint 0.049 0.062
(sin θ/λ)max−1) 0.714 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.08 0.053, 0.176, 1.08
No. of reflections 6426 4099
No. of parameters 281 272
No. of restraints 0 79
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.41 0.48, −0.44
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), pubCIF (Westrip, 2010) and PLATON (Spek, 2020).

5-(Phenylsulfonyl)-5,6-dihydrobenzo[4,5]thieno[3,2-j]phenanthridine (I) top
Crystal data top
C26H19NO2S2F(000) = 920
Mr = 441.54Dx = 1.389 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.3378 (4) ÅCell parameters from 9927 reflections
b = 19.4299 (7) Åθ = 2.7–30.5°
c = 10.5128 (4) ŵ = 0.28 mm1
β = 91.666 (1)°T = 298 K
V = 2110.73 (14) Å3Solid, white
Z = 40.28 × 0.21 × 0.11 mm
Data collection top
Bruker D8 VENTURE
diffractometer with PHOTON II detector
6426 independent reflections
Radiation source: fine-focus sealed tube5503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω and φ scanθmax = 30.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.913, Tmax = 0.952k = 2727
102594 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.647P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
6426 reflectionsΔρmax = 0.28 e Å3
281 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18150 (12)0.54394 (7)0.49074 (12)0.0357 (2)
C20.07837 (14)0.57488 (8)0.42365 (15)0.0456 (3)
H20.0435850.6162860.4509220.055*
C30.02956 (15)0.54248 (9)0.31610 (16)0.0509 (4)
H30.0385130.5624000.2695100.061*
C40.08113 (15)0.48034 (9)0.27666 (15)0.0486 (3)
H40.0469420.4591280.2038450.058*
C50.18211 (13)0.44951 (7)0.34353 (13)0.0411 (3)
H50.2144670.4075560.3161500.049*
C60.23642 (11)0.48106 (6)0.45270 (11)0.0323 (2)
C70.34011 (11)0.45888 (6)0.54103 (11)0.0304 (2)
C80.35613 (12)0.50602 (6)0.64208 (12)0.0326 (2)
C90.44637 (12)0.49656 (6)0.74072 (12)0.0345 (2)
H90.4545190.5286410.8061220.041*
C100.52436 (11)0.43836 (6)0.74018 (11)0.0314 (2)
C110.62210 (12)0.42551 (6)0.84265 (11)0.0335 (2)
C120.66959 (14)0.47761 (8)0.92326 (13)0.0421 (3)
H120.6395860.5224060.9123260.051*
C130.76051 (15)0.46350 (9)1.01902 (14)0.0484 (3)
H130.7901760.4987001.0722300.058*
C140.80733 (15)0.39763 (9)1.03599 (15)0.0504 (3)
H140.8681100.3884231.1007040.060*
C150.76402 (14)0.34548 (8)0.95703 (14)0.0460 (3)
H150.7966690.3011740.9673940.055*
C160.67120 (12)0.35912 (7)0.86155 (12)0.0356 (2)
C170.38346 (13)0.27810 (7)0.86487 (13)0.0395 (3)
C180.36218 (19)0.30659 (9)0.98291 (17)0.0586 (4)
H180.4279370.3078641.0451380.070*
C190.2403 (2)0.33334 (11)1.0068 (2)0.0768 (6)
H190.2244070.3529371.0855000.092*
C200.1442 (2)0.33097 (11)0.9155 (3)0.0786 (7)
H200.0629800.3486230.9327990.094*
C210.16574 (18)0.30305 (12)0.7993 (2)0.0745 (6)
H210.0994530.3020770.7375960.089*
C220.28611 (16)0.27605 (9)0.77249 (17)0.0548 (4)
H220.3009570.2568100.6932410.066*
C230.60124 (13)0.32934 (7)0.64517 (12)0.0373 (3)
H23A0.5629930.2919240.5959340.045*
H23B0.6822200.3416780.6067760.045*
C240.51108 (11)0.39059 (6)0.63939 (11)0.0308 (2)
C250.42157 (11)0.40052 (6)0.53871 (11)0.0310 (2)
C260.41359 (15)0.35107 (7)0.42818 (14)0.0442 (3)
H26A0.4832150.3184910.4356050.066*
H26B0.4200760.3761390.3499370.066*
H26C0.3323970.3271050.4286480.066*
N10.62789 (10)0.30555 (5)0.77677 (11)0.0366 (2)
O10.52000 (12)0.19506 (5)0.73109 (12)0.0559 (3)
O20.59493 (12)0.22243 (6)0.95103 (12)0.0598 (3)
S10.25152 (3)0.57621 (2)0.63062 (3)0.04119 (9)
S20.53669 (3)0.24354 (2)0.83244 (3)0.03996 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0340 (6)0.0350 (6)0.0382 (6)0.0006 (5)0.0008 (5)0.0048 (5)
C20.0410 (7)0.0425 (7)0.0529 (8)0.0062 (6)0.0040 (6)0.0076 (6)
C30.0417 (7)0.0546 (9)0.0556 (9)0.0016 (6)0.0110 (6)0.0124 (7)
C40.0447 (7)0.0553 (8)0.0450 (7)0.0054 (6)0.0110 (6)0.0019 (6)
C50.0399 (6)0.0429 (7)0.0401 (6)0.0030 (5)0.0039 (5)0.0014 (5)
C60.0304 (5)0.0324 (5)0.0341 (5)0.0035 (4)0.0018 (4)0.0042 (4)
C70.0312 (5)0.0291 (5)0.0308 (5)0.0025 (4)0.0022 (4)0.0026 (4)
C80.0345 (5)0.0291 (5)0.0341 (6)0.0018 (4)0.0016 (4)0.0003 (4)
C90.0392 (6)0.0324 (5)0.0317 (5)0.0008 (5)0.0001 (5)0.0019 (4)
C100.0335 (5)0.0310 (5)0.0299 (5)0.0013 (4)0.0016 (4)0.0027 (4)
C110.0328 (5)0.0360 (6)0.0318 (5)0.0019 (4)0.0010 (4)0.0033 (4)
C120.0459 (7)0.0422 (7)0.0380 (6)0.0018 (6)0.0037 (5)0.0010 (5)
C130.0462 (7)0.0593 (9)0.0392 (7)0.0046 (6)0.0062 (6)0.0048 (6)
C140.0412 (7)0.0665 (10)0.0428 (7)0.0025 (7)0.0098 (6)0.0050 (7)
C150.0396 (7)0.0506 (8)0.0475 (7)0.0050 (6)0.0056 (6)0.0087 (6)
C160.0313 (5)0.0381 (6)0.0375 (6)0.0012 (5)0.0013 (4)0.0065 (5)
C170.0397 (6)0.0320 (6)0.0473 (7)0.0015 (5)0.0079 (5)0.0045 (5)
C180.0632 (10)0.0598 (10)0.0535 (9)0.0070 (8)0.0155 (8)0.0043 (7)
C190.0836 (14)0.0679 (12)0.0814 (14)0.0007 (10)0.0436 (12)0.0087 (10)
C200.0536 (10)0.0634 (11)0.1207 (19)0.0110 (9)0.0367 (12)0.0130 (12)
C210.0432 (9)0.0744 (13)0.1058 (17)0.0080 (9)0.0021 (10)0.0128 (12)
C220.0463 (8)0.0574 (9)0.0607 (9)0.0047 (7)0.0002 (7)0.0022 (8)
C230.0416 (6)0.0341 (6)0.0363 (6)0.0052 (5)0.0036 (5)0.0023 (5)
C240.0329 (5)0.0276 (5)0.0319 (5)0.0006 (4)0.0029 (4)0.0025 (4)
C250.0325 (5)0.0278 (5)0.0327 (5)0.0025 (4)0.0023 (4)0.0000 (4)
C260.0489 (7)0.0383 (7)0.0449 (7)0.0040 (6)0.0072 (6)0.0102 (5)
N10.0359 (5)0.0325 (5)0.0412 (6)0.0013 (4)0.0004 (4)0.0062 (4)
O10.0604 (7)0.0323 (5)0.0755 (8)0.0006 (5)0.0138 (6)0.0093 (5)
O20.0557 (6)0.0548 (6)0.0683 (7)0.0017 (5)0.0060 (5)0.0319 (6)
S10.04479 (18)0.03577 (16)0.04275 (18)0.00946 (13)0.00302 (13)0.00405 (12)
S20.03959 (17)0.02892 (14)0.05148 (19)0.00299 (11)0.00343 (13)0.00800 (12)
Geometric parameters (Å, º) top
C1—C21.3970 (18)C15—C161.3937 (18)
C1—C61.4100 (18)C15—H150.9300
C1—S11.7372 (14)C16—N11.4334 (17)
C2—C31.377 (2)C17—C221.379 (2)
C2—H20.9300C17—C181.382 (2)
C3—C41.388 (2)C17—S21.7629 (14)
C3—H30.9300C18—C191.393 (3)
C4—C51.378 (2)C18—H180.9300
C4—H40.9300C19—C201.361 (3)
C5—C61.4038 (17)C19—H190.9300
C5—H50.9300C20—C211.361 (3)
C6—C71.4625 (16)C20—H200.9300
C7—C81.4088 (16)C21—C221.387 (2)
C7—C251.4132 (16)C21—H210.9300
C8—C91.3868 (17)C22—H220.9300
C8—S11.7426 (12)C23—N11.4770 (16)
C9—C101.3890 (17)C23—C241.5117 (16)
C9—H90.9300C23—H23A0.9700
C10—C241.4123 (16)C23—H23B0.9700
C10—C111.4767 (17)C24—C251.3988 (16)
C11—C161.3984 (17)C25—C261.5081 (17)
C11—C121.3998 (18)C26—H26A0.9600
C12—C131.385 (2)C26—H26B0.9600
C12—H120.9300C26—H26C0.9600
C13—C141.378 (2)N1—S21.6478 (11)
C13—H130.9300O1—S21.4289 (12)
C14—C151.376 (2)O2—S21.4288 (11)
C14—H140.9300
C2—C1—C6122.51 (13)C11—C16—N1118.42 (11)
C2—C1—S1124.41 (11)C22—C17—C18120.79 (15)
C6—C1—S1113.05 (9)C22—C17—S2119.63 (12)
C3—C2—C1118.29 (14)C18—C17—S2119.57 (13)
C3—C2—H2120.9C17—C18—C19118.66 (19)
C1—C2—H2120.9C17—C18—H18120.7
C2—C3—C4120.54 (13)C19—C18—H18120.7
C2—C3—H3119.7C20—C19—C18120.39 (19)
C4—C3—H3119.7C20—C19—H19119.8
C5—C4—C3121.15 (14)C18—C19—H19119.8
C5—C4—H4119.4C21—C20—C19120.74 (18)
C3—C4—H4119.4C21—C20—H20119.6
C4—C5—C6120.41 (14)C19—C20—H20119.6
C4—C5—H5119.8C20—C21—C22120.3 (2)
C6—C5—H5119.8C20—C21—H21119.9
C5—C6—C1117.09 (12)C22—C21—H21119.9
C5—C6—C7131.20 (12)C17—C22—C21119.13 (18)
C1—C6—C7111.65 (11)C17—C22—H22120.4
C8—C7—C25118.53 (10)C21—C22—H22120.4
C8—C7—C6110.80 (10)N1—C23—C24112.46 (10)
C25—C7—C6130.66 (11)N1—C23—H23A109.1
C9—C8—C7122.65 (11)C24—C23—H23A109.1
C9—C8—S1123.92 (9)N1—C23—H23B109.1
C7—C8—S1113.43 (9)C24—C23—H23B109.1
C8—C9—C10118.87 (11)H23A—C23—H23B107.8
C8—C9—H9120.6C25—C24—C10121.66 (11)
C10—C9—H9120.6C25—C24—C23122.17 (11)
C9—C10—C24119.63 (11)C10—C24—C23116.16 (10)
C9—C10—C11121.31 (11)C24—C25—C7118.62 (10)
C24—C10—C11119.06 (11)C24—C25—C26121.02 (11)
C16—C11—C12117.50 (12)C7—C25—C26120.34 (11)
C16—C11—C10119.83 (11)C25—C26—H26A109.5
C12—C11—C10122.67 (11)C25—C26—H26B109.5
C13—C12—C11121.04 (14)H26A—C26—H26B109.5
C13—C12—H12119.5C25—C26—H26C109.5
C11—C12—H12119.5H26A—C26—H26C109.5
C14—C13—C12120.43 (14)H26B—C26—H26C109.5
C14—C13—H13119.8C16—N1—C23113.68 (10)
C12—C13—H13119.8C16—N1—S2118.79 (9)
C15—C14—C13119.92 (13)C23—N1—S2117.93 (9)
C15—C14—H14120.0C1—S1—C891.06 (6)
C13—C14—H14120.0O2—S2—O1120.00 (8)
C14—C15—C16119.97 (14)O2—S2—N1106.79 (6)
C14—C15—H15120.0O1—S2—N1105.97 (7)
C16—C15—H15120.0O2—S2—C17107.39 (7)
C15—C16—C11121.13 (13)O1—S2—C17107.80 (7)
C15—C16—N1120.39 (12)N1—S2—C17108.47 (6)
C6—C1—C2—C30.3 (2)C18—C19—C20—C210.6 (3)
S1—C1—C2—C3177.95 (11)C19—C20—C21—C220.5 (3)
C1—C2—C3—C40.6 (2)C18—C17—C22—C210.0 (3)
C2—C3—C4—C50.1 (2)S2—C17—C22—C21179.65 (14)
C3—C4—C5—C60.9 (2)C20—C21—C22—C170.2 (3)
C4—C5—C6—C11.19 (19)C9—C10—C24—C250.50 (17)
C4—C5—C6—C7178.32 (13)C11—C10—C24—C25179.03 (11)
C2—C1—C6—C50.62 (19)C9—C10—C24—C23179.03 (11)
S1—C1—C6—C5177.28 (10)C11—C10—C24—C230.50 (16)
C2—C1—C6—C7178.29 (12)N1—C23—C24—C25146.17 (11)
S1—C1—C6—C70.39 (13)N1—C23—C24—C1035.31 (15)
C5—C6—C7—C8176.35 (13)C10—C24—C25—C72.03 (17)
C1—C6—C7—C80.90 (14)C23—C24—C25—C7179.53 (11)
C5—C6—C7—C253.9 (2)C10—C24—C25—C26176.61 (12)
C1—C6—C7—C25178.82 (12)C23—C24—C25—C261.83 (18)
C25—C7—C8—C91.59 (18)C8—C7—C25—C242.51 (16)
C6—C7—C8—C9178.66 (11)C6—C7—C25—C24177.79 (11)
C25—C7—C8—S1178.72 (9)C8—C7—C25—C26176.14 (11)
C6—C7—C8—S11.03 (13)C6—C7—C25—C263.56 (19)
C7—C8—C9—C100.05 (19)C15—C16—N1—C23143.71 (12)
S1—C8—C9—C10179.71 (9)C11—C16—N1—C2333.72 (16)
C8—C9—C10—C240.51 (18)C15—C16—N1—S270.73 (15)
C8—C9—C10—C11179.97 (11)C11—C16—N1—S2111.84 (11)
C9—C10—C11—C16160.90 (12)C24—C23—N1—C1652.19 (14)
C24—C10—C11—C1619.59 (17)C24—C23—N1—S293.69 (12)
C9—C10—C11—C1219.40 (19)C2—C1—S1—C8177.69 (12)
C24—C10—C11—C12160.12 (12)C6—C1—S1—C80.16 (10)
C16—C11—C12—C130.8 (2)C9—C8—S1—C1178.99 (11)
C10—C11—C12—C13179.48 (13)C7—C8—S1—C10.70 (10)
C11—C12—C13—C140.7 (2)C16—N1—S2—O245.38 (11)
C12—C13—C14—C150.3 (2)C23—N1—S2—O2170.52 (10)
C13—C14—C15—C161.2 (2)C16—N1—S2—O1174.40 (10)
C14—C15—C16—C111.1 (2)C23—N1—S2—O141.49 (11)
C14—C15—C16—N1178.41 (13)C16—N1—S2—C1770.08 (11)
C12—C11—C16—C150.07 (19)C23—N1—S2—C1774.03 (11)
C10—C11—C16—C15179.65 (12)C22—C17—S2—O2152.99 (13)
C12—C11—C16—N1177.47 (11)C18—C17—S2—O226.65 (14)
C10—C11—C16—N12.25 (17)C22—C17—S2—O122.39 (14)
C22—C17—C18—C190.1 (3)C18—C17—S2—O1157.25 (12)
S2—C17—C18—C19179.73 (14)C22—C17—S2—N191.93 (13)
C17—C18—C19—C200.4 (3)C18—C17—S2—N188.43 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O10.972.412.8935 (17)111
(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]phenyl}-\ N-(prop-2-yn-1-yl)benzenesulfonamide (II) top
Crystal data top
C25H19NO2S2F(000) = 896
Mr = 429.53Dx = 1.324 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 10.0085 (4) ÅCell parameters from 9879 reflections
b = 8.6474 (3) Åθ = 3.6–70.0°
c = 24.9024 (10) ŵ = 2.41 mm1
β = 91.560 (2)°T = 298 K
V = 2154.44 (14) Å3Solid, white
Z = 40.55 × 0.16 × 0.09 mm
Data collection top
Bruker D8 VENTURE
diffractometer with PHOTON II detector
4099 independent reflections
Radiation source: micro-focus sealed tube3475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω and φ scanθmax = 70.2°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.473, Tmax = 0.752k = 109
51958 measured reflectionsl = 3030
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.1029P)2 + 0.5764P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.176(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.48 e Å3
4099 reflectionsΔρmin = 0.44 e Å3
272 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
79 restraintsExtinction coefficient: 0.0022 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1532 (3)0.9693 (3)0.56842 (11)0.0684 (6)
C20.2089 (3)1.0879 (3)0.59929 (13)0.0840 (7)
H20.2944401.1243100.5928670.101*
C30.1350 (4)1.1498 (4)0.63931 (13)0.0920 (9)
H30.1709441.2290100.6604090.110*
C40.0074 (4)1.0964 (4)0.64899 (13)0.0936 (9)
H40.0407721.1396980.6766370.112*
C50.0482 (3)0.9815 (4)0.61851 (12)0.0855 (8)
H50.1342200.9470890.6252620.103*
C60.0238 (3)0.9148 (3)0.57697 (10)0.0682 (6)
C70.0194 (3)0.7911 (3)0.54011 (10)0.0716 (6)
H70.1015980.7410050.5398350.086*
C80.0883 (2)0.7615 (3)0.50449 (10)0.0668 (5)
C90.0850 (3)0.6508 (3)0.46095 (11)0.0714 (6)
H90.0030020.6062090.4516300.086*
C100.1907 (3)0.6081 (3)0.43325 (11)0.0702 (6)
H100.2735280.6457050.4449640.084*
C110.1883 (3)0.5069 (3)0.38578 (10)0.0674 (6)
C120.0736 (3)0.4882 (4)0.35331 (12)0.0824 (7)
H120.0048150.5377830.3627530.099*
C130.0734 (4)0.3992 (4)0.30808 (13)0.0926 (9)
H130.0041210.3906720.2868570.111*
C140.1880 (3)0.3213 (4)0.29349 (12)0.0899 (8)
H140.1875890.2610280.2625620.108*
C150.3024 (3)0.3341 (3)0.32527 (11)0.0745 (6)
H150.3789790.2800310.3163570.089*
C160.3032 (3)0.4275 (3)0.37049 (9)0.0642 (5)
C170.6191 (2)0.4432 (3)0.33097 (10)0.0648 (6)
C180.5938 (3)0.4956 (4)0.27912 (12)0.0847 (8)
H180.5458500.5863570.2730750.102*
C190.6404 (4)0.4114 (4)0.23677 (13)0.0974 (9)
H190.6244730.4462640.2018530.117*
C200.7100 (3)0.2772 (4)0.24517 (14)0.0903 (8)
H200.7395500.2204870.2160610.108*
C210.7358 (3)0.2265 (4)0.29602 (14)0.0920 (9)
H210.7834810.1353270.3015810.110*
C220.6919 (3)0.3095 (3)0.33956 (12)0.0793 (7)
H220.7112030.2755870.3743430.095*
C230.4365 (3)0.3176 (3)0.44743 (10)0.0693 (6)
H23A0.5185610.3375770.4678690.083*
H23B0.3628920.3278250.4717350.083*
C240.4395 (3)0.1591 (3)0.42754 (11)0.0708 (6)
C250.4400 (3)0.0303 (3)0.41334 (13)0.0878 (8)
H250.4404380.0722120.4020390.105*
N10.4216 (2)0.4356 (2)0.40484 (8)0.0625 (5)
O10.6444 (2)0.5370 (2)0.42964 (8)0.0864 (6)
O20.4958 (2)0.6818 (2)0.36649 (9)0.0859 (6)
S10.22906 (7)0.87417 (8)0.51653 (3)0.0780 (3)
S20.54870 (6)0.53848 (6)0.38576 (3)0.0679 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0725 (14)0.0600 (13)0.0728 (14)0.0080 (10)0.0014 (11)0.0061 (10)
C20.0822 (17)0.0739 (16)0.0956 (19)0.0037 (13)0.0014 (14)0.0053 (14)
C30.104 (2)0.0820 (19)0.090 (2)0.0154 (16)0.0054 (16)0.0158 (15)
C40.113 (2)0.090 (2)0.0791 (18)0.0294 (18)0.0150 (16)0.0007 (15)
C50.0834 (18)0.0852 (19)0.0888 (19)0.0133 (14)0.0187 (15)0.0150 (14)
C60.0710 (13)0.0624 (13)0.0713 (13)0.0079 (10)0.0056 (11)0.0115 (9)
C70.0822 (15)0.0609 (13)0.0713 (14)0.0129 (11)0.0028 (10)0.0017 (10)
C80.0695 (13)0.0599 (13)0.0707 (13)0.0046 (10)0.0010 (10)0.0069 (10)
C90.0721 (14)0.0657 (14)0.0761 (15)0.0010 (11)0.0025 (11)0.0040 (11)
C100.0737 (14)0.0618 (13)0.0747 (15)0.0051 (11)0.0055 (11)0.0006 (11)
C110.0758 (14)0.0581 (12)0.0679 (14)0.0008 (11)0.0039 (11)0.0035 (10)
C120.0791 (17)0.0826 (18)0.0847 (18)0.0014 (14)0.0116 (14)0.0015 (14)
C130.094 (2)0.098 (2)0.0850 (19)0.0117 (17)0.0227 (16)0.0017 (16)
C140.108 (2)0.0894 (19)0.0717 (16)0.0138 (17)0.0103 (15)0.0140 (14)
C150.0880 (16)0.0663 (14)0.0691 (14)0.0072 (12)0.0006 (12)0.0074 (11)
C160.0757 (14)0.0539 (11)0.0626 (12)0.0039 (10)0.0037 (10)0.0008 (9)
C170.0708 (13)0.0551 (12)0.0687 (13)0.0066 (10)0.0020 (10)0.0013 (10)
C180.109 (2)0.0689 (15)0.0761 (16)0.0056 (15)0.0015 (15)0.0091 (13)
C190.123 (3)0.102 (2)0.0677 (17)0.003 (2)0.0072 (16)0.0004 (15)
C200.0948 (19)0.086 (2)0.0911 (19)0.0089 (16)0.0239 (16)0.0161 (16)
C210.094 (2)0.0775 (18)0.105 (2)0.0143 (15)0.0232 (17)0.0014 (15)
C220.0834 (17)0.0761 (16)0.0788 (16)0.0148 (13)0.0079 (13)0.0071 (13)
C230.0798 (15)0.0680 (14)0.0601 (13)0.0038 (11)0.0001 (11)0.0001 (10)
C240.0745 (14)0.0642 (14)0.0737 (15)0.0011 (11)0.0010 (11)0.0082 (11)
C250.102 (2)0.0614 (16)0.099 (2)0.0030 (14)0.0069 (17)0.0033 (14)
N10.0703 (11)0.0545 (10)0.0625 (11)0.0011 (8)0.0004 (8)0.0017 (8)
O10.0862 (12)0.0927 (14)0.0794 (12)0.0152 (10)0.0116 (9)0.0167 (10)
O20.1087 (14)0.0464 (9)0.1030 (14)0.0004 (9)0.0092 (11)0.0023 (9)
S10.0729 (4)0.0769 (5)0.0842 (5)0.0002 (3)0.0065 (3)0.0032 (3)
S20.0782 (4)0.0514 (3)0.0740 (4)0.0057 (2)0.0004 (3)0.0089 (2)
Geometric parameters (Å, º) top
C1—C21.389 (4)C14—C151.379 (4)
C1—C61.400 (4)C14—H140.9300
C1—S11.725 (3)C15—C161.386 (3)
C2—C31.366 (5)C15—H150.9300
C2—H20.9300C16—N11.444 (3)
C3—C41.385 (5)C17—C221.380 (4)
C3—H30.9300C17—C181.385 (4)
C4—C51.361 (5)C17—S21.758 (3)
C4—H40.9300C18—C191.374 (5)
C5—C61.401 (4)C18—H180.9300
C5—H50.9300C19—C201.366 (5)
C6—C71.467 (4)C19—H190.9300
C7—C81.437 (4)C20—C211.358 (5)
C7—H70.9300C20—H200.9300
C8—C91.446 (4)C21—C221.382 (4)
C8—S11.733 (3)C21—H210.9300
C9—C101.331 (4)C22—H220.9300
C9—H90.9300C23—C241.457 (4)
C10—C111.471 (4)C23—N11.477 (3)
C10—H100.9300C23—H23A0.9700
C11—C121.396 (4)C23—H23B0.9700
C11—C161.401 (4)C24—C251.169 (4)
C12—C131.364 (5)C25—H250.9300
C12—H120.9300N1—S21.634 (2)
C13—C141.386 (5)O1—S21.433 (2)
C13—H130.9300O2—S21.426 (2)
C2—C1—C6121.6 (3)C14—C15—C16120.0 (3)
C2—C1—S1126.0 (2)C14—C15—H15120.0
C6—C1—S1112.4 (2)C16—C15—H15120.0
C3—C2—C1118.4 (3)C15—C16—C11121.3 (2)
C3—C2—H2120.8C15—C16—N1119.8 (2)
C1—C2—H2120.8C11—C16—N1118.8 (2)
C2—C3—C4121.1 (3)C22—C17—C18120.1 (3)
C2—C3—H3119.4C22—C17—S2119.6 (2)
C4—C3—H3119.4C18—C17—S2120.2 (2)
C5—C4—C3120.8 (3)C19—C18—C17119.0 (3)
C5—C4—H4119.6C19—C18—H18120.5
C3—C4—H4119.6C17—C18—H18120.5
C4—C5—C6120.1 (3)C20—C19—C18121.0 (3)
C4—C5—H5120.0C20—C19—H19119.5
C6—C5—H5120.0C18—C19—H19119.5
C1—C6—C5118.1 (3)C21—C20—C19120.0 (3)
C1—C6—C7114.1 (2)C21—C20—H20120.0
C5—C6—C7127.8 (3)C19—C20—H20120.0
C8—C7—C6107.7 (2)C20—C21—C22120.5 (3)
C8—C7—H7126.2C20—C21—H21119.8
C6—C7—H7126.2C22—C21—H21119.8
C7—C8—C9125.3 (2)C17—C22—C21119.4 (3)
C7—C8—S1114.4 (2)C17—C22—H22120.3
C9—C8—S1120.28 (19)C21—C22—H22120.3
C10—C9—C8124.7 (3)C24—C23—N1114.1 (2)
C10—C9—H9117.6C24—C23—H23A108.7
C8—C9—H9117.6N1—C23—H23A108.7
C9—C10—C11125.9 (3)C24—C23—H23B108.7
C9—C10—H10117.1N1—C23—H23B108.7
C11—C10—H10117.1H23A—C23—H23B107.6
C12—C11—C16117.0 (2)C25—C24—C23177.5 (3)
C12—C11—C10122.0 (2)C24—C25—H25180.0
C16—C11—C10121.0 (2)C16—N1—C23117.24 (19)
C13—C12—C11121.7 (3)C16—N1—S2119.12 (16)
C13—C12—H12119.1C23—N1—S2121.40 (17)
C11—C12—H12119.1C1—S1—C891.47 (13)
C12—C13—C14120.5 (3)O2—S2—O1119.89 (13)
C12—C13—H13119.7O2—S2—N1106.65 (11)
C14—C13—H13119.7O1—S2—N1106.44 (12)
C15—C14—C13119.4 (3)O2—S2—C17107.41 (12)
C15—C14—H14120.3O1—S2—C17108.30 (13)
C13—C14—H14120.3N1—S2—C17107.60 (11)
C6—C1—C2—C31.0 (4)C22—C17—C18—C190.9 (5)
S1—C1—C2—C3179.4 (2)S2—C17—C18—C19174.4 (3)
C1—C2—C3—C40.2 (5)C17—C18—C19—C200.6 (5)
C2—C3—C4—C50.5 (5)C18—C19—C20—C211.1 (5)
C3—C4—C5—C60.4 (5)C19—C20—C21—C220.2 (5)
C2—C1—C6—C51.1 (4)C18—C17—C22—C211.8 (4)
S1—C1—C6—C5179.3 (2)S2—C17—C22—C21173.6 (2)
C2—C1—C6—C7179.0 (2)C20—C21—C22—C171.2 (5)
S1—C1—C6—C70.6 (3)C15—C16—N1—C2386.4 (3)
C4—C5—C6—C10.4 (4)C11—C16—N1—C2389.3 (3)
C4—C5—C6—C7179.8 (3)C15—C16—N1—S276.8 (3)
C1—C6—C7—C80.1 (3)C11—C16—N1—S2107.4 (2)
C5—C6—C7—C8180.0 (2)C24—C23—N1—C1659.7 (3)
C6—C7—C8—C9178.1 (2)C24—C23—N1—S2103.1 (2)
C6—C7—C8—S10.8 (3)C2—C1—S1—C8178.7 (3)
C7—C8—C9—C10169.8 (3)C6—C1—S1—C80.87 (19)
S1—C8—C9—C1011.4 (4)C7—C8—S1—C11.0 (2)
C8—C9—C10—C11174.1 (2)C9—C8—S1—C1178.0 (2)
C9—C10—C11—C1223.3 (4)C16—N1—S2—O245.4 (2)
C9—C10—C11—C16158.3 (3)C23—N1—S2—O2152.10 (18)
C16—C11—C12—C131.2 (4)C16—N1—S2—O1174.46 (17)
C10—C11—C12—C13177.2 (3)C23—N1—S2—O123.0 (2)
C11—C12—C13—C141.3 (5)C16—N1—S2—C1769.6 (2)
C12—C13—C14—C150.2 (5)C23—N1—S2—C1792.91 (19)
C13—C14—C15—C161.8 (5)C22—C17—S2—O2172.2 (2)
C14—C15—C16—C111.9 (4)C18—C17—S2—O212.4 (3)
C14—C15—C16—N1177.5 (2)C22—C17—S2—O141.4 (2)
C12—C11—C16—C150.4 (4)C18—C17—S2—O1143.2 (2)
C10—C11—C16—C15178.8 (2)C22—C17—S2—N173.3 (2)
C12—C11—C16—N1176.0 (2)C18—C17—S2—N1102.1 (2)
C10—C11—C16—N15.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23A···O10.972.352.860 (3)112
C25—H25···O2i0.932.383.285 (4)166
C21—H21···Cg1ii0.932.973.772 (2)139
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, India, for the data collection.

References

First citationAbdelhamid, A. O. (2009). J. Heterocycl. Chem. 46, 680–686.  Web of Science CrossRef CAS Google Scholar
First citationAbdel-Rahman, A. E., Bakhite, A. E. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372–377.  Web of Science PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAnsary, A. K. & Omar, H. A. (2001). Bull. Faculty Pharm. 39, 17.  Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, 2242–2246.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6589.  Web of Science CrossRef CAS Google Scholar
First citationBrault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. J., Wang, W., l Wang, G. F., Shi, L. P., Gu, M., Ren, Y. D. & Hou, L. F. (2008). Med. Chem. 3, 1316–1321.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384–1387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGadad, A. K., Kumar, H., Shishoo, C. J., Mkhazi, I. & Mahajanshetti, C. S. (1994). Ind. J. Chem. Soc. 33, 298–301.  Google Scholar
First citationGather, M. C., Heeney, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). Chem. Commun. pp. 1079–1081.  Web of Science CrossRef Google Scholar
First citationGewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 99–100.  Google Scholar
First citationGillespie, E., Dungan, K. M., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655–660.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrunewald, G. L., Seim, M. R., Bhat, S. R., Wilson, M. E. & Criscione, K. R. (2008). Bioorg. Med. Chem. 16, 542–559.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHe, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930–11938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarak, I., Kralj, M. S., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I. Z., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346–2360.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJordan, V. C. (2003). J. Med. Chem. 46, 1081–1111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJustin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830–1840.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLaddi, U. V., Talwar, M. B., Desai, S. R., Somannavar, Y. S., Bennur, R. S. & Bennur, S. C. (1998). Indian Drugs, 35, 509–513.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana­Krishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060–2063.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3416.  Web of Science CrossRef Google Scholar
First citationMishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332–336.  CAS Google Scholar
First citationMonge Vega, A., Aldana, I., Rabbani, M. M. & Fernandez-Alvarez, E. (1980). Heterocycl. Chem. 17, 77–80.  CrossRef CAS Web of Science Google Scholar
First citationRaposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigments, 91, 62–73.  Web of Science CrossRef CAS Google Scholar
First citationRussell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679–729. Oxford: Pergamon Press.  Google Scholar
First citationSabins, R. W. (1944). Sulfur Rep. 16, 1.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTumey, N. L., Boschelli, D. H., Lee, J. & Chaudhary, D. (2008). Bioorg. Med. Chem. Lett. 18, 4420–4423.  Web of Science PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246–7247.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds