research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(4-bromo­phen­yl)but-3-yn-1-one

crossmark logo

aDivision of Organic Synthesis, CSIR-National Chemical Laboratory, Dr. Homi, Bhabha Road, Pashan, Pune-411008, India, bAcademy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India, and cPhysical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
*Correspondence e-mail: rg.gonnade@ncl.res.in

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 12 May 2023; accepted 7 June 2023; online 13 June 2023)

The title compound, 1-(4-bromo­phen­yl)but-3-yn-1-one, C10H7BrO, crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit. The structure displays a planar geometry. The crystal structure is consolidated by C—H⋯O hydrogen bonding and a short C=O⋯C≡C (acetyl­ene) contacts. Hirshfeld surface analysis indicates that H⋯H, C⋯H/H⋯C and H⋯Br/Br⋯H inter­actions play a more important role in consolidating the crystal structure compared to H⋯O/O⋯H and C⋯C contacts.

1. Chemical context

The title compound 1-(4-bromo­phen­yl)but-3-yn-1-one (1) was obtained as a side product during the synthesis of 5-(4-bromo­phen­yl)isoxazole-3-carb­oxy­lic acid (2) from the NaOH-mediated hydrolysis of ethyl 5-(4-bromo­phen­yl)isoxazole-3-carboxyl­ate (3). These aryl­isoxazole carb­oxy­lic acids have been identified as potential isosteres of aryl diketo acid in the design of novel HIV-1 integrase inhibitors (Zeng et al., 2008[Zeng, L.-F., Zhang, H.-S., Wang, Y.-H., Sanchez, T., Zheng, Y.-T., Neamati, N. & Long, Y.-Q. (2008). Bioorg. Med. Chem. Lett. 18, 4521-4524.]). The presence of three distinct functional groups, viz. alkyne, bromo, and carbonyl, offers an intriguing opportunity to explore how inter­molecular inter­actions contribute to the cohesion of the crystal structure.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic P21/n centrosymmetric space group with one mol­ecule of 1 in the asymmetric unit (Fig. 1[link]). The structure displays a planar geometry [torsion angle C5—C1—C8—C9 = 175.4 (3)o, only the C5 atom of phenyl ring is considered and not the full fragment]. The phenyl ring makes a dihedral angle of 5.4 (2)° with the least-squares plane through the O1/C1/C8–C10 fragment.

[Figure 1]
Figure 1
The asymmetric unit of 1 with the atom labelling. Displacement ellipsoids represent 30% probability levels.

3. Supra­molecular features

In the crystal, the closely associated mol­ecules of 1 generate two different helical assemblies across the crystallographic 21-screw axis (b-axis). The helical assembly generated using C1=O1⋯C9i≡C10i (acetyl­ene, C=O⋯π) contacts [symmetry code: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]] (Li et al., 2019[Li, P., Vik, E. C., Maier, J. M., Karki, I., Strickland, S. M. S., Umana, J. M., Smith, M. D., Pellechia, P. J. & Shimizu, K. D. (2019). J. Am. Chem. Soc. 141, 12513-12517.]; Mooibroek, et al., 2008[Mooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501-1515.]) has a sheet structure (Fig. 2[link], Table 1[link]), while the helical assembly created using C—H⋯O (C8—H8A⋯O1ii) contacts [symmetry code: (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]] (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]) has a proper helical structure (Fig. 3[link], Table 1[link]). The helical assembly created using the short C1=O1⋯C9≡C10 contacts is further supported by marginal C—H⋯π [symmetry code: (iii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]] contacts involving the phenyl ring (C7—H7) and the π cloud of the acetyl­ene moiety. Both helices are inter­twined and form a two-dimensional sheet structure roughly along the a-axis direction. Along the longer c-axis, mol­ecules are loosely connected using weak C—H⋯Br (C10—H10⋯Br1iv contacts [symmetry code: (iv) x − [{3\over 2}], −y + [{1\over 2}], z − [{1\over 2}]] (van den Berg & Seddon, 2003[Berg, J. van den & Seddon, K. R. (2003). Cryst. Growth Des. 3, 643-661.]), generating the extended assembly (Figs. 2[link] and 3[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—O1⋯C9i   3.13 (1)   154 (1)
C8—H8A⋯O1ii 1.02 (4) 2.31 (4) 3.259 (5) 156 (3)
C7—H7⋯C10iii 1.06 (3) 2.71 (4) 3.626 (5) 144 (3)
C10—H10⋯Br1iv 0.93 2.68 3.305 (5) 126
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the mol­ecular packing of 1 along the helical b-axis showing the association of closely linked mol­ecules by C=O⋯C≡C (acetyl­ene, C=O⋯π) and marginal C—H⋯π (π-cloud of acetyl­ene mol­ecules) contacts. Neighbouring helices along the longer c axis are linked by C—H⋯Br contacts. Symmetry codes as in Table 1[link].
[Figure 3]
Figure 3
A view of the mol­ecular packing of 1 along the helical b-axis showing the association of closely linked mol­ecules by C—H⋯O contacts. Neighbouring helices along the longer c axis are linked by C—H⋯Br contacts. Symmetry codes as in Table 1[link].

In order to visualize and qu­antify inter­molecular inter­actions in 1, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed using Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated. The Hirshfeld surfaces for the mol­ecule in 1 are shown in Fig. 4[link] in which the two-dimensional fingerprint plots of the most dominant contacts are also presented. H⋯H (27.4%), H⋯C/C⋯H (22.3%) and H⋯Br/Br⋯H (22.0%) contacts are responsible for the largest contributions to the Hirshfeld surface. Besides these contacts, H⋯O/O⋯H (11.8%) and C⋯C (7.8%) inter­actions contribute significantly to the total Hirshfeld surface. The contributions of further contacts are only minor and amount to C⋯Br/Br⋯C (4.5%) and C⋯O/O⋯C (3.6%).

[Figure 4]
Figure 4
Three-dimensional Hirshfeld surfaces of compound 1 plotted over dnorm in the range −0.2760 to 0.9829 a.u., and Hirshfeld fingerprint plots for all contacts and those decomposed into H⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯O/O⋯H, C⋯C and C⋯Br/Br⋯C contacts. di and de denote the closest inter­nal and external distances (in Å) from a point on the surface.

4. Database survey

A survey of the Cambridge Structural Database (version 5.43, update 4, November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that no crystal structure of compound 1 has been reported. Moreover, no crystal structure similar to that of compound 1 has been reported. However, focusing only on the 1-phenyl­but-3-yn-1-one unit yielded 24 hits with not much similarity with the title compound. The most similar structure with respect to compound 1 is 3-phenyl-2-(phenyl­ethyn­yl)-1H-inden-1-one (FEGDOO; Kumar et al., 2022[Kumar, S., Nunewar, S., Sabbi, T. K. & Kanchupalli, V. (2022). Org. Lett. 24, 3395-3400.]).

5. Synthesis and crystallization

A solution of methyl ester 3 (100 mg, 0.35 mmol) and 1N NaOH (3 mL) and methanol (3 mL) was heated to reflux for 3 h. After completion of the reaction as indicated by TLC, the reaction mixture was cooled to room temperature and neutralized with a solution of 3N HCl and then extracted with di­chloro­methane (3 × 10 mL). The combined organic layer was washed with brine and concentrated. The resulting crude was purified by column chromatography (30% ethyl acetate in petroleum ether) to afford the acid 2 (70 mg, 74% yield) and an alkyne, the title compound 1 (8 mg, 11% yield) as colourless solids. Colourless crystals of the title compound 1 suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms (except the acetyl­ene H atom) were located in difference-Fourier map and refined isotropically. The acetyl­ene (—C≡C—H) H atom was placed in a geometrically idealized position using HFIX 163. It was constrained to ride on its parent atom, with Uiso(H) = 1.2Ueq(C) for acetyl­ene. The long C8—H8A distance [1.02 (4) Å] could be the result of its involvement in the directional C— H⋯O hydrogen-bond formation with O1.

Table 2
Experimental details

Crystal data
Chemical formula C10H7BrO
Mr 223.07
Crystal system, space group Monoclinic, P21/n
Temperature (K) 297
a, b, c (Å) 4.471 (2), 9.032 (4), 21.652 (11)
β (°) 92.252 (8)
V3) 873.7 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.65
Crystal size (mm) 0.35 × 0.28 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX
Absorption correction Multi-scan (SADABS; Bruker 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.293, 0.583
No. of measured, independent and observed [I > 2σ(I)] reflections 4994, 1965, 1397
Rint 0.043
(sin θ/λ)max−1) 0.664
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.02
No. of reflections 1965
No. of parameters 133
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.62
Computer programs: APEX3 and SAINT-Plus (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

1-(4-Bromophenyl)but-3-yn-1-one top
Crystal data top
C10H7BrOF(000) = 440
Mr = 223.07Dx = 1.696 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.471 (2) ÅCell parameters from 1876 reflections
b = 9.032 (4) Åθ = 2.4–24.9°
c = 21.652 (11) ŵ = 4.65 mm1
β = 92.252 (8)°T = 297 K
V = 873.7 (7) Å3Block, colourless
Z = 40.35 × 0.28 × 0.13 mm
Data collection top
Bruker SMART APEX
diffractometer
1965 independent reflections
Radiation source: fine-focus sealed tube1397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Phi and ω Scan scansθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker 2016)
h = 45
Tmin = 0.293, Tmax = 0.583k = 1111
4994 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.1069P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
1965 reflectionsΔρmax = 0.40 e Å3
133 parametersΔρmin = 0.62 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5990 (7)0.3666 (3)0.79382 (16)0.0508 (8)
Br11.37959 (10)0.22006 (5)1.02549 (2)0.0743 (2)
C20.7972 (7)0.3261 (3)0.84766 (16)0.0488 (7)
C30.9384 (9)0.4391 (4)0.88181 (17)0.0581 (9)
H30.887 (9)0.545 (5)0.8679 (19)0.080 (12)*
C41.1186 (9)0.4079 (4)0.93323 (18)0.0615 (9)
H41.217 (9)0.494 (5)0.9555 (19)0.077 (11)*
C51.1578 (9)0.2628 (4)0.95122 (18)0.0556 (8)
C61.0233 (9)0.1475 (4)0.91808 (18)0.0609 (9)
H61.065 (9)0.051 (5)0.9319 (19)0.070 (11)*
C70.8439 (9)0.1783 (4)0.86619 (17)0.0560 (8)
H70.752 (8)0.096 (4)0.8364 (15)0.054 (9)*
C80.4544 (9)0.2439 (4)0.7551 (2)0.0555 (9)
H8B0.342 (9)0.184 (4)0.7824 (18)0.056 (10)*
C90.2564 (10)0.3048 (4)0.7064 (2)0.0666 (11)
H8A0.617 (10)0.187 (5)0.734 (2)0.068 (12)*
C100.1011 (10)0.3516 (5)0.6698 (2)0.0783 (12)
H100.02830.39050.63930.094*
O10.5514 (7)0.4954 (2)0.77985 (13)0.0718 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0553 (18)0.0353 (15)0.0622 (19)0.0025 (13)0.0097 (15)0.0018 (14)
Br10.0827 (4)0.0702 (3)0.0688 (3)0.00322 (18)0.0116 (2)0.00504 (18)
C20.0542 (18)0.0368 (14)0.0563 (18)0.0031 (13)0.0125 (15)0.0051 (14)
C30.076 (2)0.0382 (16)0.061 (2)0.0070 (15)0.0057 (18)0.0033 (15)
C40.074 (2)0.0484 (19)0.062 (2)0.0152 (17)0.0072 (18)0.0110 (17)
C50.060 (2)0.0547 (19)0.0524 (19)0.0042 (15)0.0068 (15)0.0065 (16)
C60.077 (2)0.0415 (18)0.064 (2)0.0030 (17)0.0016 (18)0.0003 (16)
C70.069 (2)0.0386 (15)0.060 (2)0.0030 (15)0.0009 (17)0.0053 (15)
C80.057 (2)0.0396 (15)0.069 (2)0.0016 (15)0.0034 (19)0.0029 (16)
C90.067 (2)0.0464 (18)0.087 (3)0.0048 (17)0.002 (2)0.0019 (19)
C100.084 (3)0.060 (2)0.088 (3)0.005 (2)0.032 (2)0.017 (2)
O10.0875 (18)0.0377 (12)0.0895 (19)0.0002 (12)0.0066 (16)0.0024 (13)
Geometric parameters (Å, º) top
C1—O11.218 (4)C5—C61.388 (5)
C1—C21.482 (5)C6—C71.383 (5)
C1—C81.518 (5)C6—H60.93 (4)
Br1—C51.895 (4)C7—H71.06 (3)
C2—C31.397 (5)C8—C91.458 (7)
C2—C71.407 (5)C8—H8B0.96 (4)
C3—C41.378 (6)C8—H8A1.02 (4)
C3—H31.03 (5)C9—C101.117 (6)
C4—C51.377 (5)C10—H100.9300
C4—H41.01 (5)
O1—C1—C2121.6 (3)C7—C6—C5119.7 (3)
O1—C1—C8119.6 (3)C7—C6—H6123 (3)
C2—C1—C8118.8 (3)C5—C6—H6117 (3)
C3—C2—C7118.9 (3)C6—C7—C2119.8 (3)
C3—C2—C1118.7 (3)C6—C7—H7123.5 (18)
C7—C2—C1122.4 (3)C2—C7—H7116.4 (18)
C4—C3—C2121.1 (3)C9—C8—C1110.9 (3)
C4—C3—H3123 (2)C9—C8—H8B110 (2)
C2—C3—H3116 (2)C1—C8—H8B107 (2)
C5—C4—C3119.2 (3)C9—C8—H8A107 (2)
C5—C4—H4123 (2)C1—C8—H8A109 (2)
C3—C4—H4117 (3)H8B—C8—H8A113 (3)
C4—C5—C6121.3 (4)C10—C9—C8178.8 (6)
C4—C5—Br1119.4 (3)C9—C10—H10180.0
C6—C5—Br1119.2 (3)
O1—C1—C2—C31.9 (5)C3—C4—C5—Br1175.1 (3)
C8—C1—C2—C3177.7 (3)C4—C5—C6—C70.6 (6)
O1—C1—C2—C7177.0 (3)Br1—C5—C6—C7175.5 (3)
C8—C1—C2—C73.4 (5)C5—C6—C7—C20.5 (6)
C7—C2—C3—C40.7 (5)C3—C2—C7—C61.1 (6)
C1—C2—C3—C4178.3 (3)C1—C2—C7—C6177.8 (3)
C2—C3—C4—C50.4 (6)O1—C1—C8—C93.3 (6)
C3—C4—C5—C61.0 (6)C2—C1—C8—C9177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—O1···C9i3.13 (1)154 (1)
C8—H8A···O1ii1.02 (4)2.31 (4)3.259 (5)156 (3)
C7—H7···C10iii1.06 (3)2.71 (4)3.626 (5)144 (3)
C10—H10···Br1iv0.932.683.305 (5)126
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x3/2, y+1/2, z1/2.
 

Acknowledgements

SKS thanks the DST–INSPIRE program for a research fellowship.

References

First citationBerg, J. van den & Seddon, K. R. (2003). Cryst. Growth Des. 3, 643–661.  Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKumar, S., Nunewar, S., Sabbi, T. K. & Kanchupalli, V. (2022). Org. Lett. 24, 3395–3400.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, P., Vik, E. C., Maier, J. M., Karki, I., Strickland, S. M. S., Umana, J. M., Smith, M. D., Pellechia, P. J. & Shimizu, K. D. (2019). J. Am. Chem. Soc. 141, 12513–12517.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMooibroek, T. J., Gamez, P. & Reedijk, J. (2008). CrystEngComm, 10, 1501–1515.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, L.-F., Zhang, H.-S., Wang, Y.-H., Sanchez, T., Zheng, Y.-T., Neamati, N. & Long, Y.-Q. (2008). Bioorg. Med. Chem. Lett. 18, 4521–4524.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds