research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (1H-imidazole-κN3)[N-(2-oxido­benzyl­­idene)tyrosinato-κ3O,N,O′]copper(II)

crossmark logo

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu2@rs.tus.ac.jp

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 10 April 2023; accepted 30 May 2023; online 2 June 2023)

The title copper(II) complex, [Cu(C16H13NO4)(C3H4N2)], consists of a tridentate ligand synthesized from L-tyrosine and salicyl­aldehyde. One imidazole mol­ecule is additionally coordinating to the copper(II) ion. The crystal structure features N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. The Hirshfeld surface analysis indicates that the most important contributions to the packing are from H⋯H (37.9%), C⋯H (28.2%) and O⋯H/H⋯O (21.2%) contacts.

1. Chemical context

Amino acid Schiff bases, which can be easily synthesized by mixing primary amines and carbonyl components, are organic ligands having an azomethine (C=N) group. They play an important and diverse role in coordination chemistry (Qiu et al., 2008[Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745-m746.]; Li et al., 2010[Li, J., Guo, Z., Li, L. & Wang, D. (2010). Acta Cryst. E66, m516.]; Xue et al., 2009[Xue, L.-W., Li, X.-W., Zhao, G.-Q. & Peng, Q.-L. (2009). Acta Cryst. E65, m1237.]; Katsuumi et al., 2020[Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539-1542.]; Akiyama et al., 2023[Akiyama et al. (2023). Please supply missing reference.]). On the other hand, copper has various oxidation states, of which the divalent oxidation state is the most stable. Copper(II) ions readily form complexes and produce abundant coordination chemistry, while amino acid Schiff base–copper(II) complexes have been studied in terms of photoreaction with titanium dioxide (Takeshita et al., 2015[Takeshita, Y., Takakura, K. & Akitsu, T. (2015). Int. J. Mol. Sci. 16, 3955-3969.]), photocatalytic reduction of hexa­valent chromium (Nakagame et al., 2019[Nakagame, R., Tsaturyan, A., Haraguchi, T., Pimonova, Y., Lastovina, T., Akitsu, T. & Shcherbakov, I. (2019). Inorg. Chim. Acta, 486, 221-231.]), and anti­bacterial activity (Otani et al., 2022[Otani, N., Fayeulle, A., Nakane, D., Léonard, E. & Akitsu, T. (2022). Appl. Microbiol. 2, 438-448.]). The ligand forms a tridentate chelate, but the introduction of a hydroxyl group is effective in increasing solubility in aqueous solvents (Miyagawa et al., 2020[Miyagawa, Y., Tsatsuryan, A., Haraguchi, T., Shcherbakov, I. & Akitsu, T. (2020). New J. Chem. 44, 16665-16674.]). On the other hand, many similar metal complexes with an amino acid having a hydroxyl group, L-tyrosine, have been reported (Pu et al., 2011[Pu, X., Li, L., Dong, J. & Jing, B. (2011). Acta Cryst. E67, m465-m466.]; Wang et al., 2005[Wang, M. Z., Cai, G. L., Meng, Z. X. & Liu, B. L. (2005). J. Chem. Crystallogr. 35, 43-47.]; Tan et al., 2008[Tan, M.-X., Chen, Z.-F., Neng, Z. & Liang, H. (2008). Acta Cryst. E64, m599-m600.]).

[Scheme 1]

In this report we describe the crystal structure and inter­molecular inter­actions of the copper(II) complex coordinated by a tyrosine derivative and imidazole, which serves as a model for histidine residues in proteins and is effective for photoreactions with titanium dioxide. To obtain the product in higher yield than from conventional synthesis, microwave radiation was employed, although conventional synthesis may also give the same product.

2. Structural commentary

The mol­ecular structure of the title compound consists of a tridentate ligand occupying the equatorial plane synthesized from L-tyrosine, salicyl­aldehyde and one imidazole mol­ecule coordinating to the copper(II) center (Fig. 1[link]). The C10—N2 distance is 1.322 (4) Å, close to a typical C=N double-bond length for an imine (Katsuumi et al., 2020[Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539-1542.]). The Cu1—O1 and Cu1—O2 bond lengths are 1.892 (2) and 1.947 (2) Å, respectively, close to a typical Cu—O single-bond length (Katsuumi et al., 2020[Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539-1542.]). The Cu1—N2 and Cu1—N3 bonds of 1.958 (2) and 1.932 (2) Å corresponds to the typical Cu—N single-bond length (Katsuumi et al., 2020[Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539-1542.]). These four atoms coordinating to Cu1 have similar bond distances.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with ellipsoids drawn at the 50& probability level.

3. Supra­molecular features

Four inter­molecular O—H⋯O, N—H⋯O, C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]) are observed in the crystal; one hydrogen bond (O2—H11⋯N1i; symmetry code given in Table 1[link]) forms a chain structure along the b-axis direction. The other hydrogen bonds (O4—H11⋯N1ii, O3—H4A⋯O4iii and O4—H13A⋯C13iv) link the mol­ecules (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O2i 0.75 (4) 2.40 (4) 3.050 (3) 147 (3)
N1—H11⋯O4ii 0.75 (4) 2.48 (3) 3.058 (3) 136 (3)
O4—H4A⋯O3iii 0.74 1.98 2.666 (3) 154
C13—H13A⋯O4iv 0.99 2.58 3.364 (3) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view of the O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, shown as dashed lines. [Symmetry codes: (i) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (ii) −x + [{3\over 2}], −y + 1, z − [{1\over 2}]; (iii) −x, y − [{1\over 2}], −z + [{3\over 2}]; (iv) −x + 1, y + [{1\over 2}], −z + [{3\over 2}].]

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3416.]) was performed to better understand the inter­molecular inter­actions and contacts. The inter­molecular O—H⋯O hydrogen bonds are indicated by bright-red spots appearing near O3 and O4 on the Hirshfeld surfaces mapped over dnorm and by two sharp spikes of almost the same length in the region 1.6 Å < (de + di) < 2.0 Å in the 2D finger plots (Fig. 3[link]). The contributions to the packing from H⋯H, C⋯C, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts are 37.9, 0.4, 28.2, 21.2, and 5.2%, respectively. This structure is characterized by high proportions of H⋯H and C⋯H/H⋯C inter­actions, where H⋯H are van der Waals inter­actions. The force effect, C⋯H/H⋯C, is thought to arise from C—H⋯π inter­actions due to the presence of aromatic rings in the structure. The low value of C⋯C/C⋯C is the result of the low contribution of ππ stacking due to non-overlapping aromatic rings in the structure.

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over dnorm and the two-dimensional fingerprint plots.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.41, update of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures returned three relevant entries: {2-(4-hy­droxy­phen­yl)-2-[(3-meth­oxy-2-oxido­benzyl­idene)amino-κ2O2,N]- propano­ato-κO}(1,10-phenanthroline-κ2N,N)copper(II) dihydrate (UNOSIA; Pu et al., 2011[Pu, X., Li, L., Dong, J. & Jing, B. (2011). Acta Cryst. E67, m465-m466.]), 2,2-bi­pyridine N-salicylidenetyrosinatocopper(II) (QAJTAX01; Wang et al., 2005[Wang, M. Z., Cai, G. L., Meng, Z. X. & Liu, B. L. (2005). J. Chem. Crystallogr. 35, 43-47.]) and [(2S)-2-(3,5-di­chloro-2-oxidobenzyl-idene­amino)-3-(4-hy­drox­y­phen­yl)-propionato-κ3O,N,O](di­methyl­formamide-κO)copper(II) (YIXKUM; Tan et al., 2008[Tan, M.-X., Chen, Z.-F., Neng, Z. & Liang, H. (2008). Acta Cryst. E64, m599-m600.]).

5. Synthesis and crystallization

L-tyrosine (181.3 mg, 1.00 mmol) reacted with salicyl­aldehyde (125.5 mg, 1.03 mmol) in methanol (20 mL), which was treated with microwave irradiation at 358 K for 5 min to yield a yellow ligand solution. Copper(II) acetate monohydrate (200.9 mg, 1.01 mmol) was added to the ligand solution and treated with microwave irradiation at 358 K for 5 min to yield a green solution. To this green solution, imidazole (70.0 mg, 1.02 mmol) was added and treated with microwave irradiation at 358 K for 5 min to yield a dark-green solution.

For recrystallization, the solution was placed in the air at room temperature for several days, and the title complex was obtained (80.9 mg 0.195 mmol, yield 19.5%) as black needle-shaped crystals suitable for single-crystal X-ray diffraction experiments.

Elementary analysis: found: C, 54.48; H, 4.15; N, 10.11%. Calculated: C19H18CuN3O4, C, 55.00; H, 4.13; N, 10.13%. IR (KBr): 1059 cm−1 (m), 1085 cm−1 (w), 1128 cm−1 (w), 1149 cm−1 (m), 1225 cm−1 (w), 1271 cm−1 (m), 1370 cm−1 (w), 1372 cm−1 (w), 1378 cm−1 (m), 1384 cm−1 (w), 1448 cm−1 (s, C=C double bond), 1516 cm−1 (m), 1610 cm−1 (s, C=O double bond), 1625 cm−1(s, C=N double bond), 3159 cm−1 (br), 3214 cm−1 (br), 3297 cm−1 (br, O⋯H). UV–vis (MeOH): 269 nm (ɛ= 13636 L mol−1 cm−1, ππ*); 368 nm (ɛ = 5636 L mol−1 cm−1, nπ*); 618 nm (ɛ = 135 L mol−1 cm−1, dd).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed on geometrically calculated positions (C—H = 0.93–0.98 Å) and were constrained using a riding model with Uiso(H) = 1.2Ueq(C) for R2CH and R3CH H atoms and 1.5Ueq(C) for the methyl H atoms. The O-bound H14 atom was located based on a difference-Fourier map and refined freely as an isotropic atom. The N-bound H atoms were located in a difference-Fourier map. Atom H11 of the imidazole ring was refined freely as an isotropic atom.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C16H13NO4)(C3H4N2)]
Mr 414.89
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 5.5005 (2), 12.1363 (5), 26.147 (1)
V3) 1745.46 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.28
Crystal size (mm) 0.50 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.55, 0.78
No. of measured, independent and observed [I > 2σ(I)] reflections 19853, 3571, 3501
Rint 0.047
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.06
No. of reflections 3571
No. of parameters 251
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.21
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.017 (12)
Computer programs: APEX2 and SAINT V8.40B (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2019); cell refinement: SAINT V8.40B (Bruker, 2019); data reduction: SAINT V8.40B (Bruker, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle et al., 2011).

(1H-Imidazole-κN3)[N-(2-oxidobenzylidene)tyrosinato-κ3O,N,O']copper(II) top
Crystal data top
[Cu(C16H13NO4)(C3H4N2)]Dx = 1.579 Mg m3
Mr = 414.89Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9965 reflections
a = 5.5005 (2) Åθ = 2.9–26.4°
b = 12.1363 (5) ŵ = 1.28 mm1
c = 26.147 (1) ÅT = 173 K
V = 1745.46 (12) Å3Prism, black
Z = 40.50 × 0.30 × 0.20 mm
F(000) = 852
Data collection top
Bruker D8 QUEST
diffractometer
3501 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.047
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 1.9°
Tmin = 0.55, Tmax = 0.78h = 66
19853 measured reflectionsk = 1515
3571 independent reflectionsl = 3232
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.2834P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.33 e Å3
3571 reflectionsΔρmin = 0.21 e Å3
251 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.017 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.67468 (5)0.46981 (2)0.56047 (2)0.02401 (11)
O10.8939 (3)0.35005 (15)0.55615 (7)0.0334 (4)
N10.9329 (6)0.6643 (2)0.44552 (9)0.0420 (6)
H110.951 (6)0.717 (3)0.4317 (12)0.031 (8)*
C10.5421 (5)0.3165 (2)0.63934 (9)0.0263 (5)
H10.4291380.2918410.6643280.032*
O20.4294 (3)0.58526 (14)0.56409 (7)0.0287 (4)
N20.8346 (4)0.54082 (17)0.50227 (7)0.0288 (4)
C20.7397 (5)0.2446 (2)0.62716 (9)0.0266 (5)
N30.5042 (4)0.41212 (17)0.61927 (8)0.0247 (4)
O30.1144 (4)0.64649 (19)0.60736 (8)0.0437 (5)
C30.7677 (6)0.1496 (2)0.65788 (10)0.0327 (6)
H30.6543130.136020.6845590.039*
O40.3089 (4)0.22066 (16)0.85680 (7)0.0341 (4)
H4A0.191 (7)0.191 (3)0.8583 (9)0.051*
C40.9544 (6)0.0768 (2)0.65012 (11)0.0355 (6)
H40.9736980.0145870.6718280.043*
C51.1151 (5)0.0952 (2)0.60999 (11)0.0350 (6)
H51.2443080.0447860.6042820.042*
C61.0904 (5)0.1854 (2)0.57830 (11)0.0337 (6)
H61.2004190.1948460.5506350.04*
C70.9050 (5)0.2637 (2)0.58620 (9)0.0271 (5)
C81.0473 (5)0.5091 (2)0.47797 (9)0.0317 (6)
H81.1368480.4439160.4849520.038*
C91.1065 (5)0.5856 (2)0.44292 (10)0.0373 (6)
H91.2431850.5846230.4207190.045*
C100.7719 (6)0.6358 (2)0.48134 (10)0.0372 (7)
H100.6324920.6776190.4904550.045*
C110.2751 (5)0.5780 (2)0.60006 (9)0.0280 (5)
C120.2973 (5)0.4790 (2)0.63643 (8)0.0262 (5)
H120.1453760.4339060.6344810.031*
C130.3284 (5)0.5233 (2)0.69154 (8)0.0301 (5)
H13A0.4850630.5631910.6934980.036*
H13B0.1975030.5774170.6982120.036*
C140.3233 (5)0.43791 (19)0.73347 (8)0.0248 (5)
C150.5135 (5)0.4309 (2)0.76836 (10)0.0290 (6)
H150.6513260.4771540.7641860.035*
C160.5065 (5)0.3581 (2)0.80895 (10)0.0305 (5)
H160.6383410.3549330.8323660.037*
C170.3077 (5)0.28973 (19)0.81552 (8)0.0251 (5)
C180.1184 (5)0.2928 (2)0.78049 (9)0.0276 (5)
H180.0162980.2444360.7840710.033*
C190.1271 (5)0.3673 (2)0.74005 (9)0.0275 (5)
H190.0040410.369920.7164380.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03258 (17)0.02037 (15)0.01908 (14)0.00257 (12)0.00109 (11)0.00198 (11)
O10.0418 (10)0.0297 (9)0.0287 (9)0.0086 (8)0.0108 (8)0.0089 (8)
N10.0750 (19)0.0271 (12)0.0239 (11)0.0099 (12)0.0061 (12)0.0052 (10)
C10.0339 (14)0.0223 (12)0.0227 (11)0.0004 (11)0.0033 (10)0.0008 (9)
O20.0396 (9)0.0256 (8)0.0207 (8)0.0061 (7)0.0004 (8)0.0028 (7)
N20.0411 (12)0.0236 (10)0.0217 (9)0.0016 (11)0.0006 (9)0.0013 (8)
C20.0361 (14)0.0201 (11)0.0236 (11)0.0016 (10)0.0001 (9)0.0002 (9)
N30.0295 (11)0.0218 (10)0.0228 (9)0.0034 (9)0.0013 (8)0.0001 (8)
O30.0537 (14)0.0427 (11)0.0346 (10)0.0245 (11)0.0055 (9)0.0059 (9)
C30.0434 (16)0.0243 (12)0.0304 (13)0.0023 (12)0.0035 (11)0.0046 (10)
O40.0361 (10)0.0364 (10)0.0297 (9)0.0009 (9)0.0002 (9)0.0098 (8)
C40.0489 (17)0.0218 (12)0.0359 (14)0.0042 (12)0.0023 (13)0.0059 (11)
C50.0378 (15)0.0242 (13)0.0429 (15)0.0090 (12)0.0013 (12)0.0003 (11)
C60.0377 (15)0.0296 (14)0.0340 (13)0.0036 (12)0.0068 (11)0.0019 (11)
C70.0338 (13)0.0208 (12)0.0268 (12)0.0019 (10)0.0011 (10)0.0007 (10)
C80.0332 (14)0.0357 (14)0.0261 (12)0.0030 (11)0.0010 (10)0.0016 (10)
C90.0435 (15)0.0423 (15)0.0261 (12)0.0105 (13)0.0031 (12)0.0006 (12)
C100.0593 (19)0.0252 (12)0.0272 (12)0.0028 (13)0.0049 (12)0.0005 (10)
C110.0359 (14)0.0252 (12)0.0229 (11)0.0050 (11)0.0043 (10)0.0033 (9)
C120.0316 (12)0.0231 (11)0.0239 (11)0.0035 (12)0.0029 (9)0.0017 (9)
C130.0444 (14)0.0223 (11)0.0236 (11)0.0016 (13)0.0054 (11)0.0008 (10)
C140.0296 (13)0.0230 (11)0.0216 (10)0.0025 (10)0.0044 (10)0.0027 (8)
C150.0257 (13)0.0326 (13)0.0288 (12)0.0034 (11)0.0045 (10)0.0022 (10)
C160.0259 (12)0.0395 (14)0.0261 (12)0.0004 (12)0.0008 (10)0.0011 (11)
C170.0297 (12)0.0236 (11)0.0220 (10)0.0035 (11)0.0027 (10)0.0002 (9)
C180.0279 (13)0.0255 (12)0.0296 (12)0.0043 (10)0.0016 (10)0.0001 (10)
C190.0279 (14)0.0307 (13)0.0239 (11)0.0010 (11)0.0035 (9)0.0007 (10)
Geometric parameters (Å, º) top
Cu1—O11.8919 (18)C3—C41.371 (4)
Cu1—N31.932 (2)O4—C171.367 (3)
Cu1—O21.9473 (17)C4—C51.390 (4)
Cu1—N21.958 (2)C5—C61.379 (4)
O1—C71.311 (3)C6—C71.410 (4)
N1—C101.335 (4)C8—C91.345 (4)
N1—C91.352 (4)C11—C121.537 (3)
C1—N31.290 (3)C12—C131.547 (3)
C1—C21.430 (4)C13—C141.509 (3)
O2—C111.270 (3)C14—C191.389 (4)
N2—C101.322 (4)C14—C151.390 (4)
N2—C81.386 (4)C15—C161.381 (4)
C2—C31.413 (3)C16—C171.383 (4)
C2—C71.424 (4)C17—C181.388 (4)
N3—C121.468 (3)C18—C191.392 (4)
O3—C111.228 (3)
O1—Cu1—N394.49 (8)O1—C7—C6119.0 (2)
O1—Cu1—O2175.72 (8)O1—C7—C2123.5 (2)
N3—Cu1—O283.45 (8)C6—C7—C2117.5 (2)
O1—Cu1—N290.31 (8)C9—C8—N2109.0 (3)
N3—Cu1—N2174.98 (9)C8—C9—N1106.4 (3)
O2—Cu1—N291.86 (8)N2—C10—N1110.1 (3)
C7—O1—Cu1127.44 (16)O3—C11—O2123.3 (2)
C10—N1—C9108.7 (2)O3—C11—C12119.3 (2)
N3—C1—C2125.5 (2)O2—C11—C12117.3 (2)
C11—O2—Cu1116.69 (16)N3—C12—C11107.73 (19)
C10—N2—C8105.8 (2)N3—C12—C13113.0 (2)
C10—N2—Cu1126.0 (2)C11—C12—C13108.25 (19)
C8—N2—Cu1127.85 (18)C14—C13—C12115.8 (2)
C3—C2—C7119.4 (2)C19—C14—C15117.7 (2)
C3—C2—C1117.0 (2)C19—C14—C13121.9 (2)
C7—C2—C1123.6 (2)C15—C14—C13120.3 (2)
C1—N3—C12119.8 (2)C16—C15—C14121.5 (3)
C1—N3—Cu1124.84 (18)C15—C16—C17120.1 (3)
C12—N3—Cu1114.78 (15)O4—C17—C16117.5 (2)
C4—C3—C2121.6 (3)O4—C17—C18122.8 (2)
C3—C4—C5118.9 (2)C16—C17—C18119.7 (2)
C6—C5—C4121.3 (3)C17—C18—C19119.6 (2)
C5—C6—C7121.2 (2)C14—C19—C18121.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2i0.75 (4)2.40 (4)3.050 (3)147 (3)
N1—H11···O4ii0.75 (4)2.48 (3)3.058 (3)136 (3)
O4—H4A···O3iii0.741.982.666 (3)154
C13—H13A···O4iv0.992.583.364 (3)136
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+3/2, y+1, z1/2; (iii) x, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
 

Funding information

This work was supported by a Grant-in-Aid for Scientific Research (A) KAKENHI (20H00336).

References

First citationAkiyama et al. (2023). Please supply missing reference.  Google Scholar
First citationBruker (2019). APEX2 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539–1542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, J., Guo, Z., Li, L. & Wang, D. (2010). Acta Cryst. E66, m516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3416.  Web of Science CrossRef Google Scholar
First citationMiyagawa, Y., Tsatsuryan, A., Haraguchi, T., Shcherbakov, I. & Akitsu, T. (2020). New J. Chem. 44, 16665–16674.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakagame, R., Tsaturyan, A., Haraguchi, T., Pimonova, Y., Lastovina, T., Akitsu, T. & Shcherbakov, I. (2019). Inorg. Chim. Acta, 486, 221–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtani, N., Fayeulle, A., Nakane, D., Léonard, E. & Akitsu, T. (2022). Appl. Microbiol. 2, 438–448.  CrossRef Google Scholar
First citationPu, X., Li, L., Dong, J. & Jing, B. (2011). Acta Cryst. E67, m465–m466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTakeshita, Y., Takakura, K. & Akitsu, T. (2015). Int. J. Mol. Sci. 16, 3955–3969.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTan, M.-X., Chen, Z.-F., Neng, Z. & Liang, H. (2008). Acta Cryst. E64, m599–m600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, M. Z., Cai, G. L., Meng, Z. X. & Liu, B. L. (2005). J. Chem. Crystallogr. 35, 43–47.  Web of Science CSD CrossRef Google Scholar
First citationXue, L.-W., Li, X.-W., Zhao, G.-Q. & Peng, Q.-L. (2009). Acta Cryst. E65, m1237.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds