research communications
Z)-N′-[(E)-(furan-2-yl)methylidene]carbamohydrazonothioato}nickel(II) methanol disolvate
and Hirshfeld surface analysis of bis{(aDepartment of Synthesis of Biologically Active Compounds, Scientific Research Center, Azerbaijan Medical University, Samed Vurgun St. 167, Az 1022 Baku, Azerbaijan, bOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title complex, [Ni(C6H6N3OS)2]·2CH3OH, the NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methylidene]carbamohydrazonothioic acid ligands in a distorted square-planar geometry. The two mutual ligands bound to NiII are also connected by C—H⋯S interactions, while the H atoms of the NH2 group of the ligands form R44(8) motifs with the O atoms of the solvent ethyl alcohol molecules. At the same time, the OH groups of the solvent ethyl alcohol molecules form parallel layers to the (011) plane by the O—H⋯N interactions with the ligand N atom that is not bonded to the NiII atom.. The layers are connected by van der Waals interactions. A Hirshfeld surface analysis indicates that the most important contacts are H⋯H (37.7%), C⋯H/H⋯C (14.6%), O⋯H/H⋯O (11.5%) and S⋯H/H⋯S (10.6%).
Keywords: crystal structure; ligands; distorted square-planar geometry; hydrogen bonds; Hirshfeld surface analysis.
CCDC reference: 2269284
1. Chemical context
et al., 2019; Shikhaliyev et al., 2019; Safavora et al., 2019; Zubkov et al., 2018) and multidentate ligands (Gurbanov et al., 2020a,b; Gurbanov et al., 2022) while their complexes have been found to possess a wide variety of useful properties. Thus, they can be used as sensor or analytical reagents, catalysts and building blocks in crystal engineering (Ma et al., 2021; Mahmudov et al., 2010; Mahmoudi et al., 2017a,b). Not only because of their coordination ability, but also the attached substituents, the intermolecular non-covalent interactions direct the functional properties as well as the supramolecular chemistry of (Abdelhamid et al., 2011; Khalilov et al., 2021; Kopylovich et al., 2011; Mahmudov et al., 2015;). In fact, hydrogen and chalcogen bonds and other types of weak interactions have been well employed in the decoration of the secondary coordination sphere of transition-metal complexes (Mahmoudi et al., 2019; Mahmudov et al., 2012, 2022). We have synthesized a new NiII complex of a (E)-2-(furan-2-ylmethylene)hydrazine-1-carbothioamide ligand and studied its crystal structure.
have been used extensively as substrates in organic synthesis (Polyanskii2. Structural commentary
Fig. 1 shows the arrangement of the complex molecules in the The NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methylidene]carbamohydrazonothioic acid ligands in a distorted square-planar geometry. The ligands assume a trans arrangement with respect to each other around the NiII ion, which lies on a crystallographic inversion centre at (−x + 1, −y, −z + 1). The Ni—S [2.1818 (6) Å] and Ni—N [1.9055 (17) Å] bond lengths lie within the range of those found in related structures.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the two mutual ligands bound to NiII are also linked by C—H⋯S interactions, while the H atoms of the NH2 group of the ligands form R44(8) motifs (Bernstein et al., 1995; Tables 1 and 2; Fig. 2) with the O atoms of the solvent ethyl alcohol molecules. At the same time, the OH groups of the solvent ethyl alcohol molecules form parallel layers to the (011) plane by the O—H⋯N interactions with the ligand N atom that is not bonded to the NiII atom (Figs. 2, 3 and 4). These layers are connected by van der Waals interactions.
|
A Hirshfeld surface analysis was carried out using CrystalExplorer 17.5 (Spackman et al., 2021) to analyse the intermolecular interactions. The three-dimensional Hirshfeld surface mapped over the normalized contact distance (dnorm) is shown in Fig. 5. The bright-red spots indicate shortened contacts, and correspond to the O—H⋯N and N—H⋯O intermolecular hydrogen bonds.
The two-dimensional fingerprint plots show the H⋯H (Fig. 6b; 37.7%) contacts to be the most common, followed by C⋯H/H⋯C (Fig. 6c; 14.6%), O⋯H/H⋯O (Fig. 6d; 11.5%) and S⋯H/H⋯S (Fig. 6e; 10.6%) contacts. The N⋯H/H⋯N (8.5%), O⋯C/C⋯O (4.9%), Ni⋯H/H⋯Ni (3.2%), O⋯N/N⋯O (2.2%), N⋯C/C⋯N (1.9%), C⋯C (1.8%), S⋯C/C⋯S (1.1%), S⋯S (0.7%), O⋯O (0.7%),S⋯O/O⋯S (0.5%) and Ni⋯C/C⋯Ni (0.2%) contacts have little directional influence on the molecular packing.
4. Database survey
A search of the Cambridge Structural Database (ConQUEST version 2022 3.0; Groom et al., 2016) for one of the Ni atoms plus ligands in the title compound yielded 14 structures that have the same framework as the title compound. FUTRAN (Puranik et al., 1987) appears to be the same structure, without any solvent, and NOQCUS (Rodríguez-Argüelles et al., 2009) is the same with a dimethyl sulfoxide solvent molecule; the other 12 have alkyl or phenyl groups attached.
In the crystal of FUTRAN, Ni II is in the distorted square planar of the N2S2 chromophore. The thiosemicarbazonato group is planar with Ni—S = 2.149 (1) Å and Ni—N(2) = 1.921 (2) Å. The coordination around Ni is trans planar with respect to the two S and two N atoms. The furan ring plane is at an angle of 3(1)° to the coordination plane. In the crystal of NOQCUS, the coordination environment around the nickel(II) ion is totally planar, as the NiN2S2 chromophore lies on its least-squares calculated plane and the four angles formed by the metal centre with the four donor atoms add up to exactly 360°. The Ni—N and Ni—S distances are within the usual range. This plane forms a 18° angle with the uncoordinated furan ring, which is also highly planar.
5. Synthesis and crystallization
17 mg (0.1 mmol) of (E)-2-(furan-2-ylmethylene)hydrazine-1-carbothioamide were dissolved in 30 mL of methanol then 13 mg (0.05 mmol) of Ni(OOCCH3)2·4H2O were added. The reaction mixture was kept in air at room temperature for slow evaporation. After ca 2–3 d, orange crystals, suitable for X-ray analysis, were formed.
Yield 81%, soluble in DMSO, ethanol and dimethylformamide and insoluble in non-polar solvents. Elemental analysis: C14H20N6NiO4S2 (M = 459.17); C 36.61 (calc. 36.62); H 4.35 (4.39); N 18.26 (18.30) %. IR (KBr): 3372 ν(OH), 2965 and 2854 ν(NH), 1643 ν(C=N) cm−1.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). O- and N-bound H atoms were located in difference Fourier maps [O2—H2O = 0.90 Å, N3—H3A = 0.90 Å, N3—H3B = 0.90 Å] and refined with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O), with their positions fixed. Two reflections (001) and (010), affected by the beam stop, were omitted in the final cycles of refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2269284
https://doi.org/10.1107/S2056989023005182/jy2031sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023005182/jy2031Isup2.hkl
Data collection: APEX4 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).[Ni(C6H6N3OS)2]·2CH4O | Z = 1 |
Mr = 459.19 | F(000) = 238 |
Triclinic, P1 | Dx = 1.464 Mg m−3 |
a = 6.5394 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.9611 (15) Å | Cell parameters from 2724 reflections |
c = 10.2020 (15) Å | θ = 2.7–26.4° |
α = 67.965 (5)° | µ = 1.16 mm−1 |
β = 79.666 (6)° | T = 296 K |
γ = 70.349 (6)° | Prism, orange |
V = 520.92 (15) Å3 | 0.26 × 0.21 × 0.12 mm |
Bruker APEXII CCD diffractometer | 1633 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 26.4°, θmin = 3.3° |
Tmin = 0.735, Tmax = 0.861 | h = −8→8 |
8497 measured reflections | k = −11→11 |
2134 independent reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0459P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2134 reflections | Δρmax = 0.25 e Å−3 |
125 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.000000 | 0.500000 | 0.03949 (16) | |
S1 | 0.21552 (9) | 0.08780 (8) | 0.37725 (6) | 0.0544 (2) | |
O1 | 0.8206 (3) | 0.4874 (2) | 0.41926 (18) | 0.0592 (5) | |
O2 | 0.7620 (3) | 0.3261 (2) | 0.05737 (16) | 0.0534 (4) | |
H2O | 0.634939 | 0.350050 | 0.108389 | 0.080* | |
N1 | 0.5375 (3) | 0.2167 (2) | 0.39689 (17) | 0.0403 (4) | |
N2 | 0.4320 (3) | 0.3178 (2) | 0.27263 (18) | 0.0428 (4) | |
N3 | 0.1595 (3) | 0.3562 (2) | 0.1429 (2) | 0.0558 (6) | |
H3A | 0.195718 | 0.448305 | 0.083360 | 0.067* | |
H3B | 0.032648 | 0.349515 | 0.126510 | 0.067* | |
C1 | 0.6747 (4) | 0.4539 (3) | 0.3592 (2) | 0.0446 (5) | |
C2 | 0.8207 (5) | 0.6480 (3) | 0.3424 (3) | 0.0688 (8) | |
H2 | 0.905332 | 0.703098 | 0.359617 | 0.083* | |
C3 | 0.6847 (5) | 0.7162 (3) | 0.2396 (3) | 0.0679 (8) | |
H3 | 0.658018 | 0.824589 | 0.173586 | 0.082* | |
C4 | 0.5872 (4) | 0.5926 (3) | 0.2494 (3) | 0.0544 (6) | |
H4 | 0.483563 | 0.604491 | 0.191646 | 0.065* | |
C5 | 0.6538 (3) | 0.2881 (3) | 0.4311 (2) | 0.0440 (5) | |
H5 | 0.732223 | 0.223902 | 0.511529 | 0.053* | |
C6 | 0.2750 (3) | 0.2665 (3) | 0.2568 (2) | 0.0415 (5) | |
C7 | 0.8122 (6) | 0.1616 (4) | 0.0563 (3) | 0.0883 (10) | |
H7A | 0.683980 | 0.143664 | 0.039468 | 0.132* | |
H7B | 0.864640 | 0.082516 | 0.146089 | 0.132* | |
H7C | 0.922412 | 0.146101 | −0.017494 | 0.132* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0337 (2) | 0.0371 (3) | 0.0388 (2) | −0.01571 (17) | −0.00740 (15) | 0.00392 (17) |
S1 | 0.0428 (3) | 0.0477 (4) | 0.0586 (4) | −0.0248 (3) | −0.0200 (3) | 0.0150 (3) |
O1 | 0.0688 (12) | 0.0533 (11) | 0.0615 (11) | −0.0308 (9) | −0.0191 (8) | −0.0081 (8) |
O2 | 0.0559 (10) | 0.0439 (10) | 0.0575 (10) | −0.0225 (8) | 0.0064 (8) | −0.0116 (7) |
N1 | 0.0346 (9) | 0.0423 (10) | 0.0352 (9) | −0.0157 (8) | −0.0070 (7) | 0.0024 (8) |
N2 | 0.0419 (10) | 0.0435 (11) | 0.0368 (10) | −0.0213 (8) | −0.0095 (8) | 0.0040 (8) |
N3 | 0.0505 (12) | 0.0567 (13) | 0.0511 (11) | −0.0293 (10) | −0.0223 (9) | 0.0121 (10) |
C1 | 0.0482 (13) | 0.0444 (13) | 0.0435 (12) | −0.0202 (10) | −0.0031 (10) | −0.0114 (11) |
C2 | 0.087 (2) | 0.0537 (17) | 0.078 (2) | −0.0385 (15) | −0.0121 (16) | −0.0171 (15) |
C3 | 0.095 (2) | 0.0426 (15) | 0.0671 (18) | −0.0308 (15) | −0.0135 (16) | −0.0068 (13) |
C4 | 0.0675 (16) | 0.0402 (14) | 0.0540 (15) | −0.0191 (12) | −0.0152 (12) | −0.0063 (12) |
C5 | 0.0457 (12) | 0.0435 (13) | 0.0366 (12) | −0.0171 (10) | −0.0090 (9) | −0.0005 (10) |
C6 | 0.0350 (11) | 0.0408 (12) | 0.0391 (12) | −0.0152 (9) | −0.0050 (9) | 0.0017 (10) |
C7 | 0.101 (3) | 0.0552 (19) | 0.111 (3) | −0.0192 (17) | −0.003 (2) | −0.0358 (19) |
Ni1—N1 | 1.9055 (17) | N3—H3A | 0.8997 |
Ni1—N1i | 1.9055 (17) | N3—H3B | 0.9000 |
Ni1—S1 | 2.1818 (6) | C1—C4 | 1.354 (3) |
Ni1—S1i | 2.1818 (6) | C1—C5 | 1.431 (3) |
S1—C6 | 1.731 (2) | C2—C3 | 1.323 (4) |
O1—C2 | 1.357 (3) | C2—H2 | 0.9300 |
O1—C1 | 1.384 (3) | C3—C4 | 1.419 (3) |
O2—C7 | 1.402 (3) | C3—H3 | 0.9300 |
O2—H2O | 0.9032 | C4—H4 | 0.9300 |
N1—C5 | 1.305 (3) | C5—H5 | 0.9300 |
N1—N2 | 1.391 (2) | C7—H7A | 0.9600 |
N2—C6 | 1.313 (3) | C7—H7B | 0.9600 |
N3—C6 | 1.332 (3) | C7—H7C | 0.9600 |
N1—Ni1—N1i | 180.0 | C3—C2—H2 | 124.4 |
N1—Ni1—S1 | 85.69 (5) | O1—C2—H2 | 124.4 |
N1i—Ni1—S1 | 94.31 (5) | C2—C3—C4 | 107.0 (2) |
N1—Ni1—S1i | 94.31 (5) | C2—C3—H3 | 126.5 |
N1i—Ni1—S1i | 85.69 (5) | C4—C3—H3 | 126.5 |
S1—Ni1—S1i | 180.0 | C1—C4—C3 | 106.5 (2) |
C6—S1—Ni1 | 95.83 (7) | C1—C4—H4 | 126.7 |
C2—O1—C1 | 106.13 (18) | C3—C4—H4 | 126.7 |
C7—O2—H2O | 109.2 | N1—C5—C1 | 127.45 (19) |
C5—N1—N2 | 112.86 (16) | N1—C5—H5 | 116.3 |
C5—N1—Ni1 | 126.69 (14) | C1—C5—H5 | 116.3 |
N2—N1—Ni1 | 120.44 (13) | N2—C6—N3 | 117.99 (17) |
C6—N2—N1 | 112.74 (15) | N2—C6—S1 | 122.47 (15) |
C6—N3—H3A | 116.5 | N3—C6—S1 | 119.54 (16) |
C6—N3—H3B | 127.8 | O2—C7—H7A | 109.5 |
H3A—N3—H3B | 114.4 | O2—C7—H7B | 109.5 |
C4—C1—O1 | 109.12 (19) | H7A—C7—H7B | 109.5 |
C4—C1—C5 | 138.1 (2) | O2—C7—H7C | 109.5 |
O1—C1—C5 | 112.71 (19) | H7A—C7—H7C | 109.5 |
C3—C2—O1 | 111.2 (2) | H7B—C7—H7C | 109.5 |
C5—N1—N2—C6 | −163.93 (19) | N2—N1—C5—C1 | 2.4 (3) |
Ni1—N1—N2—C6 | 15.0 (2) | Ni1—N1—C5—C1 | −176.40 (17) |
C2—O1—C1—C4 | −0.7 (3) | C4—C1—C5—N1 | 5.6 (5) |
C2—O1—C1—C5 | −179.0 (2) | O1—C1—C5—N1 | −176.8 (2) |
C1—O1—C2—C3 | 0.3 (3) | N1—N2—C6—N3 | 178.56 (19) |
O1—C2—C3—C4 | 0.2 (3) | N1—N2—C6—S1 | −1.8 (3) |
O1—C1—C4—C3 | 0.8 (3) | Ni1—S1—C6—N2 | −8.9 (2) |
C5—C1—C4—C3 | 178.5 (3) | Ni1—S1—C6—N3 | 170.73 (18) |
C2—C3—C4—C1 | −0.6 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···N2 | 0.90 | 1.94 | 2.788 (3) | 156 |
N3—H3A···O2ii | 0.90 | 2.07 | 2.964 (3) | 173 |
N3—H3B···O2iii | 0.90 | 2.12 | 3.009 (3) | 171 |
C4—H4···N2 | 0.93 | 2.51 | 2.882 (3) | 104 |
C5—H5···S1i | 0.93 | 2.51 | 3.102 (3) | 121 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, y, z. |
Contact | Distance | Symmetry operation |
S1···C5 | 3.55 | -1 + x, y, z |
H2···O1 | 2.78 | 2 - x, 1 - y, 1 - z |
N2···H2O | 1.94 | x, y, z |
H3B···O2 | 2.12 | -1 + x, y, z |
H3A···O2 | 2.07 | 1 - x, 1 - y, 1 - z |
C1···C1 | 3.51 | 1 - x, 1 - y, 1 - z |
H3B···H3A | 2.55 | -x, 1 - y, -z |
H7C···H7C | 2.38 | 2 - x, -y, -z |
Acknowledgements
The author's contributions are as follows. Conceptualization, MA and AB; synthesis, ANA and GZM; X-ray analysis, ANA, GZM, STÇ and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, ANA and GZM; supervision, MA and AB.
Funding information
This work was supported partially by Azerbaijan Medical University and Baku State University.
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773. CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987. Web of Science CSD CrossRef CAS Google Scholar
Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779. Web of Science CSD CrossRef CAS PubMed Google Scholar
Puranik, V. G., Tavale, S. S., Guru Row, T. N., Umapathy, P. & Budhkar, A. P. (1987). Acta Cryst. C43, 2303–2304. CrossRef CAS IUCr Journals Google Scholar
Rodríguez-Argüelles, M. C., Tourón-Touceda, P., Cao, R., García-Deibe, A. M., Pelagatti, P., Pelizzi, C. & Zani, F. (2009). J. Inorg. Biochem. 103, 35–42. PubMed Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.