research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of bis­­{(Z)-N′-[(E)-(furan-2-yl)methyl­­idene]carbamo­hydrazono­thio­ato}nickel(II) methanol disolvate

crossmark logo

aDepartment of Synthesis of Biologically Active Compounds, Scientific Research Center, Azerbaijan Medical University, Samed Vurgun St. 167, Az 1022 Baku, Azerbaijan, bOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by J. Reibenspies, Texas A & M University, USA (Received 22 May 2023; accepted 10 June 2023; online 30 June 2023)

In the title complex, [Ni(C6H6N3OS)2]·2CH3OH, the NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methyl­idene]carbamohydrazono­thioic acid ligands in a distorted square-planar geometry. The two mutual ligands bound to NiII are also connected by C—H⋯S inter­actions, while the H atoms of the NH2 group of the ligands form R44(8) motifs with the O atoms of the solvent ethyl alcohol mol­ecules. At the same time, the OH groups of the solvent ethyl alcohol mol­ecules form parallel layers to the (011) plane by the O—H⋯N inter­actions with the ligand N atom that is not bonded to the NiII atom.. The layers are connected by van der Waals inter­actions. A Hirshfeld surface analysis indicates that the most important contacts are H⋯H (37.7%), C⋯H/H⋯C (14.6%), O⋯H/H⋯O (11.5%) and S⋯H/H⋯S (10.6%).

1. Chemical context

Hydrazones have been used extensively as substrates in organic synthesis (Polyanskii et al., 2019[Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769-779.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]) and multidentate ligands (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Gurbanov et al., 2022[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019-1031.]) while their complexes have been found to possess a wide variety of useful properties. Thus, they can be used as sensor or analytical reagents, catalysts and building blocks in crystal engineering (Ma et al., 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]). Not only because of their coordination ability, but also the attached substituents, the inter­molecular non-covalent inter­actions direct the functional properties as well as the supra­molecular chemistry of hydrazones (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764-773.]; Mahmudov et al., 2015[Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979-25987.];). In fact, hydrogen and chalcogen bonds and other types of weak inter­actions have been well employed in the decoration of the secondary coordination sphere of transition-metal complexes (Mahmoudi et al., 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Mahmudov et al., 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2022[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.]). We have synthesized a new NiII complex of a (E)-2-(furan-2-yl­methyl­ene)hydrazine-1-carbo­thio­amide ligand and studied its crystal structure.

2. Structural commentary

Fig. 1[link] shows the arrangement of the complex mol­ecules in the unit cell. The NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methyl­idene]carbamohydrazono­thioic acid ligands in a distorted square-planar geometry. The ligands assume a trans arrangement with respect to each other around the NiII ion, which lies on a crystallographic inversion centre at (−x + 1, −y, −z + 1). The Ni—S [2.1818 (6) Å] and Ni—N [1.9055 (17) Å] bond lengths lie within the range of those found in related structures.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the two mutual ligands bound to NiII are also linked by C—H⋯S inter­actions, while the H atoms of the NH2 group of the ligands form R44(8) motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Tables 1[link] and 2[link]; Fig. 2[link]) with the O atoms of the solvent ethyl alcohol mol­ecules. At the same time, the OH groups of the solvent ethyl alcohol mol­ecules form parallel layers to the (011) plane by the O—H⋯N inter­actions with the ligand N atom that is not bonded to the NiII atom (Figs. 2[link], 3[link] and 4[link]). These layers are connected by van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N2 0.90 1.94 2.788 (3) 156
N3—H3A⋯O2i 0.90 2.07 2.964 (3) 173
N3—H3B⋯O2ii 0.90 2.12 3.009 (3) 171
C5—H5⋯S1iii 0.93 2.51 3.102 (3) 121
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x-1, y, z]; (iii) [-x+1, -y, -z+1].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
S1⋯C5 3.55 −1 + x, y, z
H2⋯O1 2.78 2 − x, 1 − y, 1 − z
N2⋯H2O 1.94 x, y, z
H3B⋯O2 2.12 −1 + x, y, z
H3A⋯O2 2.07 1 − x, 1 − y, 1 − z
C1⋯C1 3.51 1 − x, 1 − y, 1 − z
H3B⋯H3A 2.55 x, 1 − y, −z
H7C⋯H7C 2.38 2 − x, −y, −z
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The O—H⋯N, N—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound, with hydrogen bonds indicated by dashed lines.
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of the title compound, with hydrogen bonds indicated by dashed lines.

A Hirshfeld surface analysis was carried out using CrystalExplorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to analyse the inter­molecular inter­actions. The three-dimensional Hirshfeld surface mapped over the normalized contact distance (dnorm) is shown in Fig. 5[link]. The bright-red spots indicate shortened contacts, and correspond to the O—H⋯N and N—H⋯O inter­molecular hydrogen bonds.

[Figure 5]
Figure 5
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm.

The two-dimensional fingerprint plots show the H⋯H (Fig. 6[link]b; 37.7%) contacts to be the most common, followed by C⋯H/H⋯C (Fig. 6[link]c; 14.6%), O⋯H/H⋯O (Fig. 6[link]d; 11.5%) and S⋯H/H⋯S (Fig. 6[link]e; 10.6%) contacts. The N⋯H/H⋯N (8.5%), O⋯C/C⋯O (4.9%), Ni⋯H/H⋯Ni (3.2%), O⋯N/N⋯O (2.2%), N⋯C/C⋯N (1.9%), C⋯C (1.8%), S⋯C/C⋯S (1.1%), S⋯S (0.7%), O⋯O (0.7%),S⋯O/O⋯S (0.5%) and Ni⋯C/C⋯Ni (0.2%) contacts have little directional influence on the mol­ecular packing.

[Figure 6]
Figure 6
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) S⋯H/H⋯S inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (ConQUEST version 2022 3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for one of the Ni atoms plus ligands in the title compound yielded 14 structures that have the same framework as the title compound. FUTRAN (Puranik et al., 1987[Puranik, V. G., Tavale, S. S., Guru Row, T. N., Umapathy, P. & Budhkar, A. P. (1987). Acta Cryst. C43, 2303-2304.]) appears to be the same structure, without any solvent, and NOQCUS (Rodríguez-Argüelles et al., 2009[Rodríguez-Argüelles, M. C., Tourón-Touceda, P., Cao, R., García-Deibe, A. M., Pelagatti, P., Pelizzi, C. & Zani, F. (2009). J. Inorg. Biochem. 103, 35-42.]) is the same with a dimethyl sulfoxide solvent mol­ecule; the other 12 have alkyl or phenyl groups attached.

In the crystal of FUTRAN, Ni II is in the distorted square planar ligand field of the N2S2 chromophore. The thio­semicarbazonato group is planar with Ni—S = 2.149 (1) Å and Ni—N(2) = 1.921 (2) Å. The coordination around Ni is trans planar with respect to the two S and two N atoms. The furan ring plane is at an angle of 3(1)° to the coordination plane. In the crystal of NOQCUS, the coordination environment around the nickel(II) ion is totally planar, as the NiN2S2 chromophore lies on its least-squares calculated plane and the four angles formed by the metal centre with the four donor atoms add up to exactly 360°. The Ni—N and Ni—S distances are within the usual range. This plane forms a 18° angle with the uncoordinated furan ring, which is also highly planar.

5. Synthesis and crystallization

17 mg (0.1 mmol) of (E)-2-(furan-2-yl­methyl­ene)hydrazine-1-carbo­thio­amide were dissolved in 30 mL of methanol then 13 mg (0.05 mmol) of Ni(OOCCH3)2·4H2O were added. The reaction mixture was kept in air at room temperature for slow evaporation. After ca 2–3 d, orange crystals, suitable for X-ray analysis, were formed.

Yield 81%, soluble in DMSO, ethanol and di­methyl­formamide and insoluble in non-polar solvents. Elemental analysis: C14H20N6NiO4S2 (M = 459.17); C 36.61 (calc. 36.62); H 4.35 (4.39); N 18.26 (18.30) %. IR (KBr): 3372 ν(OH), 2965 and 2854 ν(NH), 1643 ν(C=N) cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). O- and N-bound H atoms were located in difference Fourier maps [O2—H2O = 0.90 Å, N3—H3A = 0.90 Å, N3—H3B = 0.90 Å] and refined with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O), with their positions fixed. Two reflections (001) and (010), affected by the beam stop, were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C6H6N3OS)2]·2CH4O
Mr 459.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.5394 (11), 8.9611 (15), 10.2020 (15)
α, β, γ (°) 67.965 (5), 79.666 (6), 70.349 (6)
V3) 520.92 (15)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.16
Crystal size (mm) 0.26 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.735, 0.861
No. of measured, independent and observed [I > 2σ(I)] reflections 8497, 2134, 1633
Rint 0.046
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.04
No. of reflections 2134
No. of parameters 125
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.21
Computer programs: APEX4 (Bruker, 2008[Bruker (2008). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.], ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

Bis{(Z)-N'-[(E)-(furan-2-yl)methylidene]carbamohydrazonothioato}nickel(II) methanol disolvate top
Crystal data top
[Ni(C6H6N3OS)2]·2CH4OZ = 1
Mr = 459.19F(000) = 238
Triclinic, P1Dx = 1.464 Mg m3
a = 6.5394 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9611 (15) ÅCell parameters from 2724 reflections
c = 10.2020 (15) Åθ = 2.7–26.4°
α = 67.965 (5)°µ = 1.16 mm1
β = 79.666 (6)°T = 296 K
γ = 70.349 (6)°Prism, orange
V = 520.92 (15) Å30.26 × 0.21 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
1633 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 26.4°, θmin = 3.3°
Tmin = 0.735, Tmax = 0.861h = 88
8497 measured reflectionsk = 1111
2134 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2134 reflectionsΔρmax = 0.25 e Å3
125 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.0000000.5000000.03949 (16)
S10.21552 (9)0.08780 (8)0.37725 (6)0.0544 (2)
O10.8206 (3)0.4874 (2)0.41926 (18)0.0592 (5)
O20.7620 (3)0.3261 (2)0.05737 (16)0.0534 (4)
H2O0.6349390.3500500.1083890.080*
N10.5375 (3)0.2167 (2)0.39689 (17)0.0403 (4)
N20.4320 (3)0.3178 (2)0.27263 (18)0.0428 (4)
N30.1595 (3)0.3562 (2)0.1429 (2)0.0558 (6)
H3A0.1957180.4483050.0833600.067*
H3B0.0326480.3495150.1265100.067*
C10.6747 (4)0.4539 (3)0.3592 (2)0.0446 (5)
C20.8207 (5)0.6480 (3)0.3424 (3)0.0688 (8)
H20.9053320.7030980.3596170.083*
C30.6847 (5)0.7162 (3)0.2396 (3)0.0679 (8)
H30.6580180.8245890.1735860.082*
C40.5872 (4)0.5926 (3)0.2494 (3)0.0544 (6)
H40.4835630.6044910.1916460.065*
C50.6538 (3)0.2881 (3)0.4311 (2)0.0440 (5)
H50.7322230.2239020.5115290.053*
C60.2750 (3)0.2665 (3)0.2568 (2)0.0415 (5)
C70.8122 (6)0.1616 (4)0.0563 (3)0.0883 (10)
H7A0.6839800.1436640.0394680.132*
H7B0.8646400.0825160.1460890.132*
H7C0.9224120.1461010.0174940.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0337 (2)0.0371 (3)0.0388 (2)0.01571 (17)0.00740 (15)0.00392 (17)
S10.0428 (3)0.0477 (4)0.0586 (4)0.0248 (3)0.0200 (3)0.0150 (3)
O10.0688 (12)0.0533 (11)0.0615 (11)0.0308 (9)0.0191 (8)0.0081 (8)
O20.0559 (10)0.0439 (10)0.0575 (10)0.0225 (8)0.0064 (8)0.0116 (7)
N10.0346 (9)0.0423 (10)0.0352 (9)0.0157 (8)0.0070 (7)0.0024 (8)
N20.0419 (10)0.0435 (11)0.0368 (10)0.0213 (8)0.0095 (8)0.0040 (8)
N30.0505 (12)0.0567 (13)0.0511 (11)0.0293 (10)0.0223 (9)0.0121 (10)
C10.0482 (13)0.0444 (13)0.0435 (12)0.0202 (10)0.0031 (10)0.0114 (11)
C20.087 (2)0.0537 (17)0.078 (2)0.0385 (15)0.0121 (16)0.0171 (15)
C30.095 (2)0.0426 (15)0.0671 (18)0.0308 (15)0.0135 (16)0.0068 (13)
C40.0675 (16)0.0402 (14)0.0540 (15)0.0191 (12)0.0152 (12)0.0063 (12)
C50.0457 (12)0.0435 (13)0.0366 (12)0.0171 (10)0.0090 (9)0.0005 (10)
C60.0350 (11)0.0408 (12)0.0391 (12)0.0152 (9)0.0050 (9)0.0017 (10)
C70.101 (3)0.0552 (19)0.111 (3)0.0192 (17)0.003 (2)0.0358 (19)
Geometric parameters (Å, º) top
Ni1—N11.9055 (17)N3—H3A0.8997
Ni1—N1i1.9055 (17)N3—H3B0.9000
Ni1—S12.1818 (6)C1—C41.354 (3)
Ni1—S1i2.1818 (6)C1—C51.431 (3)
S1—C61.731 (2)C2—C31.323 (4)
O1—C21.357 (3)C2—H20.9300
O1—C11.384 (3)C3—C41.419 (3)
O2—C71.402 (3)C3—H30.9300
O2—H2O0.9032C4—H40.9300
N1—C51.305 (3)C5—H50.9300
N1—N21.391 (2)C7—H7A0.9600
N2—C61.313 (3)C7—H7B0.9600
N3—C61.332 (3)C7—H7C0.9600
N1—Ni1—N1i180.0C3—C2—H2124.4
N1—Ni1—S185.69 (5)O1—C2—H2124.4
N1i—Ni1—S194.31 (5)C2—C3—C4107.0 (2)
N1—Ni1—S1i94.31 (5)C2—C3—H3126.5
N1i—Ni1—S1i85.69 (5)C4—C3—H3126.5
S1—Ni1—S1i180.0C1—C4—C3106.5 (2)
C6—S1—Ni195.83 (7)C1—C4—H4126.7
C2—O1—C1106.13 (18)C3—C4—H4126.7
C7—O2—H2O109.2N1—C5—C1127.45 (19)
C5—N1—N2112.86 (16)N1—C5—H5116.3
C5—N1—Ni1126.69 (14)C1—C5—H5116.3
N2—N1—Ni1120.44 (13)N2—C6—N3117.99 (17)
C6—N2—N1112.74 (15)N2—C6—S1122.47 (15)
C6—N3—H3A116.5N3—C6—S1119.54 (16)
C6—N3—H3B127.8O2—C7—H7A109.5
H3A—N3—H3B114.4O2—C7—H7B109.5
C4—C1—O1109.12 (19)H7A—C7—H7B109.5
C4—C1—C5138.1 (2)O2—C7—H7C109.5
O1—C1—C5112.71 (19)H7A—C7—H7C109.5
C3—C2—O1111.2 (2)H7B—C7—H7C109.5
C5—N1—N2—C6163.93 (19)N2—N1—C5—C12.4 (3)
Ni1—N1—N2—C615.0 (2)Ni1—N1—C5—C1176.40 (17)
C2—O1—C1—C40.7 (3)C4—C1—C5—N15.6 (5)
C2—O1—C1—C5179.0 (2)O1—C1—C5—N1176.8 (2)
C1—O1—C2—C30.3 (3)N1—N2—C6—N3178.56 (19)
O1—C2—C3—C40.2 (3)N1—N2—C6—S11.8 (3)
O1—C1—C4—C30.8 (3)Ni1—S1—C6—N28.9 (2)
C5—C1—C4—C3178.5 (3)Ni1—S1—C6—N3170.73 (18)
C2—C3—C4—C10.6 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N20.901.942.788 (3)156
N3—H3A···O2ii0.902.072.964 (3)173
N3—H3B···O2iii0.902.123.009 (3)171
C4—H4···N20.932.512.882 (3)104
C5—H5···S1i0.932.513.102 (3)121
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x1, y, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
S1···C53.55-1 + x, y, z
H2···O12.782 - x, 1 - y, 1 - z
N2···H2O1.94x, y, z
H3B···O22.12-1 + x, y, z
H3A···O22.071 - x, 1 - y, 1 - z
C1···C13.511 - x, 1 - y, 1 - z
H3B···H3A2.55-x, 1 - y, -z
H7C···H7C2.382 - x, -y, -z
 

Acknowledgements

The author's contributions are as follows. Conceptualization, MA and AB; synthesis, ANA and GZM; X-ray analysis, ANA, GZM, STÇ and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, ANA and GZM; supervision, MA and AB.

Funding information

This work was supported partially by Azerbaijan Medical University and Baku State University.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773.  CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987.  Web of Science CSD CrossRef CAS Google Scholar
First citationPolyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPuranik, V. G., Tavale, S. S., Guru Row, T. N., Umapathy, P. & Budhkar, A. P. (1987). Acta Cryst. C43, 2303–2304.  CrossRef CAS IUCr Journals Google Scholar
First citationRodríguez-Argüelles, M. C., Tourón-Touceda, P., Cao, R., García-Deibe, A. M., Pelagatti, P., Pelizzi, C. & Zani, F. (2009). J. Inorg. Biochem. 103, 35–42.  PubMed Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds