research communications
Crystallographic and spectroscopic characterization of two 1-phenyl-1H-imidazoles: 4-(1H-imidazol-1-yl)benzaldehyde and 1-(4-methoxyphenyl)-1H-imidazole
aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu
The title compounds, C10H8N2O, (I), and C10H10N2O, (II), are two 1-phenyl-1H-imidazole derivatives, which differ in the substituent para to the imidazole group on the arene ring, i.e. a benzaldehyde, (I), and an anisole, (II). Both molecules pack with different motifs via similar weak C—H⋯N/O interactions and differ with respect to the angles between the mean planes of the imidazole and arene rings [24.58 (7)° in (I) and 43.67 (4)° in (II)].
1. Chemical context
N-Arylated imidazoles are commonly found in the structures of an array of biologically active compounds (Ananthu et al., 2021). They have a variety of applications in the medicinal chemistry field, such as use in anticancer and anti-inflammatory medications and as antiviral agents (Shalini et al., 2010). They are also used in agriculture as fungicides, herbicides, and plant-growth regulators (Emel'yanenko et al., 2017). 4-(1H-Imidazol-1-yl)benzaldehyde, (I), may be synthesized in high yield by treating 4-bromobenzaldehyde with imidazole in an aprotic solvent with the addition of potassium carbonate and a copper(I) catalyst (Xi et al., 2008). The yellow solid is a common reagent in the synthesis of various targets with antifungal and antibacterial activity. It has been shown that (I) could be used to synthesize a series of 3-[4-(1H-imidazol-1-yl)phenyl]prop-2-en-1-ones with antifungal, antioxidant, and antileishmanial activities (Hussain et al., 2009). Cream-colored 1-(4-methoxyphenyl)-1H-imidazole, (II), and other similar compounds have been found to work as catalysts in the catalytic epoxidation of with moderate to good yields using mild reaction conditions (Schröder et al., 2009). Compound (II) can be synthesized in a 99% isolated yield by allowing imidazole and 4-iodoanisole to react in acetonitrile in the presence of cesium carbonate and a copper(II) catalyst (Milenković et al., 2019).
2. Structural commentary
The molecular structures of the benzaldehyde derivative (I) (Fig. 1) and the anisole derivative (II) (Fig. 2) show the para nature of the substituent with respect to the imidazole group. The angle between the mean planes of the imidazole and arene rings is 24.58 (7)° in (I) and 43.67 (4)° in (II).
3. Supramolecular features
The molecules of benzaldehyde derivative (I) are held together in the solid state via weak C—H⋯O/N interactions (Fig. 3 and Table 1). Specifically, imidazole C—H groups interact with neighboring benzaldehyde O atoms (C8—H8A⋯O1i) and imidazole N atoms (C10—H10A⋯N2ii). The molecules also stack with an offset face-to-face geometrical arrangement of the arene rings, with an intermolecular centroid-to-centroid distance of 3.7749 (2) Å, a plane-to-centroid distance of 3.5002 (10) Å, and a ring shift of 1.414 (3) Å. Fig. 3 displays a di-periodic sheet with a thickness roughly equivalent to the length of the c axis, where the imidazoles interact in the interior and the aldehyde substituents extend to the faces. The sheets then stack in the [001] direction. Notably, (I) crystallizes in the P21 and is therefore a polar material in the solid state. Polar organic materials formed by achiral molecules are of interest in crystal engineering, in particular for nonlinear optical materials (Merritt & Tanski, 2018).
|
Similarly, the molecules of anisole derivative (II) are held together in the solid state via weak C—H⋯O/N interactions (Fig. 4 and Table 2), with the same imidazole C—H groups as (I) interacting with a neighboring anisole O atom (C9—H9A⋯O1ii) and an imidazole N atom (C10—H10A⋯N2iii). A third weak interaction links the remaining imidazole H atom with the imidazole N atom (C8—H8A⋯N2i). Unlike benzaldehyde derivative (I), anisole derivative (II) does not exhibit any π-stacking geometrical arrangement of the arene rings and the molecules pack centrosymmetrically (Fig. 5).
4. Database survey
The Cambridge Structural Database (CSD; Groom et al., 2016) contains six simple para-X-substituted 1-phenyl-1H-imidazole derivatives: X = –NH2 (CSD refcode MUFCAS; Liang et al., 2009), –Br (PAJDUD; Ding et al., 2021), –I (FIQFUJ; Bejan et al., 2018), –CO2H (IKAWAT; Zheng et al., 2011), –CO2CH3 (BEMVUN; Khattri et al., 2016) and –COCH3 (XECDUG; Ibrahim et al., 2012). The amino and carboxylic acid derivatives engage in intermolecular hydrogen bonding with the imidazole N atom and exhibit angles between the mean planes of the imidazole and arene rings of 31.17 (MUFCAS) and 14.51° (IKAWAT). The halide derivatives both contain halide to imidazole nitrogen intermolecular contacts and angles between the mean planes of the imidazole and arene rings of 35.22 (PAJDUD) and 27.10° (FIQFUJ). Similar to the title compounds (I) and (II), the methyl ester and methyl ketone derivatives pack via weak C—H⋯N/O interactions and with angles between the mean planes of the imidazole and arene rings of 24.83 (BEMVUN) and 1.04° (XECDUG). In XECDUG, a molecule of water hydrogen bonds to the 1H-imidazole H and ortho-phenyl H of a neighboring molecule, holding the planes of the imidazole and arene rings nearly coplanar. Inspection of the bond lengths of the imidazole ring for all eight derivatives reveals that they are remarkably similar.
5. Synthesis and crystallization
4-(1H-Imidazol-1-yl)benzaldehyde (98%), (I), and 1-(4-methoxyphenyl)-1H-imidazole (98%), (II), were purchased from Aldrich Chemical Company, USA, and were used as received.
6. Refinement
Crystal data, data collection and structure . H atoms on C atoms were included in calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 37. Analytical data
7.1. 4-(1H-Imidazol-1-yl)benzaldehyde, (I)
1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 7.26 (m, 1H, CimidH), 7.39 (m, 1H, CimidH), 7.60 (d, 2H, CarylH, J = 8.6 Hz), 7.99 (s, 1H, CimidH), 8.03 (d, 2H, CarylH, J = 8.6 Hz), 10.05 [s, 1H, C(O)H]. 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 117.54 (CimidH), 120.97 (CarylH), 131.23 (CimidH), 131.48 (CarylH), 134.84 (Caryl), 135.28 (CimidH), 141.60 (Caryl), 190.48 [C(O)H]. IR (Thermo Nicolet iS50, ATR, cm−1): 3138 (w, Caryl—H str), 3109 (m, Caryl—H str), 2818 and 2746 (m, =C—H aldehyde Fermi doublet str), 1676 (s, C=O str), 1604 (s, arom. C=C str), 1519 (s, arom. C=C str), 1481 (s, arom. C=C str), 1439 (m), 1400 (s), 1375 (s), 1310 (s), 1268 (s), 1220 (s), 1171 (s), 1120 (m), 1105 (m), 1059 (s), 971 (m), 959 (s), 902 (w), 830 (s), 752 (s), 692 (m), 752 (s), 692 (m), 648 (s), 617 (m), 530 (m), 513 (s), 447 (m), 413 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 172 amu.
7.2. 1-(4-Methoxyphenyl)-1H-imidazole, (II)
1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 3.85 (s, 3H, OCH3), 6.98 (d, 2H, CarylH, J = 8.9 Hz), 7.20 (m, 2H, CimidH), 7.30 (d, 2H, CarylH, J = 8.9 Hz), 7.78 (m, 1H, CimidH). 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 55.56 (OCH3), 114.87 (CarylH), 118.83 (CimidH), 123.19 (CarylH), 129.97 (Caryl), 130.68 (CimidH), 135.89 (CimidH), 158.92 (Caryl). IR (Thermo Nicolet iS50, ATR, cm−1): 3128 (m, Caryl—H str), 3107 (m, Caryl—H str), 2961 (w, Calkyl—H str), 2918 (w, Calkyl—H str), 2838 (m, Calkyl—H str), 2052 (w), 1877 (w), 1634 (w), 1610 (m), 1591 (w), 1517 (s, arom. C=C str), 1471 (s, arom. C=C str), 1459 (m), 1447 (w), 1332 (m), 1321 (s), 1302 (m), 1267 (s), 1256 (s), 1241 (s), 1192 (s), 1173 (m), 1109 (s), 1100 (s), 1061 (s), 1029 (s), 961 (m), 910 (m), 873 (w), 840 (s), 823 (s), 798 (s), 780 (s), 762 (s), 664 (s), 649 (s), 614 (m), 539 (s), 490 (m), 434 (w). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 174 amu.
Supporting information
https://doi.org/10.1107/S2056989023005480/jy2032sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023005480/jy2032Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023005480/jy2032IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023005480/jy2032Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023005480/jy2032IIsup5.cml
For both structures, data collection: APEX3 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).C10H8N2O | F(000) = 180 |
Mr = 172.18 | Dx = 1.422 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 3.7749 (2) Å | Cell parameters from 5426 reflections |
b = 7.3711 (5) Å | θ = 3.1–71.6° |
c = 14.4524 (9) Å | µ = 0.77 mm−1 |
β = 91.096 (2)° | T = 125 K |
V = 402.07 (4) Å3 | Plate, clear colourless |
Z = 2 | 0.37 × 0.20 × 0.05 mm |
Bruker APEXII CCD diffractometer | 1482 independent reflections |
Radiation source: Cu IuS micro-focus source | 1466 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.029 |
φ and ω scans | θmax = 71.6°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −4→4 |
Tmin = 0.80, Tmax = 0.96 | k = −8→7 |
5673 measured reflections | l = −17→16 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0495P)2 + 0.0471P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.079 | (Δ/σ)max < 0.001 |
S = 1.14 | Δρmax = 0.19 e Å−3 |
1482 reflections | Δρmin = −0.15 e Å−3 |
119 parameters | Extinction correction: SHELXL2017 (Sheldrick, 2015b) |
1 restraint | Extinction coefficient: 0.021 (6) |
Primary atom site location: dual | Absolute structure: Flack x determined using 652 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013); Hooft y = 0.11(6) calculated with OLEX2 (Dolomanov et al., 2009). |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.09 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8970 (4) | 0.9617 (2) | 0.09534 (10) | 0.0289 (4) | |
N1 | 0.3041 (4) | 0.2861 (2) | 0.33233 (10) | 0.0166 (4) | |
N2 | 0.2148 (4) | 0.1490 (2) | 0.46723 (11) | 0.0222 (4) | |
C1 | 0.8366 (5) | 0.8021 (3) | 0.07934 (13) | 0.0230 (4) | |
H1A | 0.889378 | 0.758391 | 0.019326 | 0.028* | |
C2 | 0.6890 (5) | 0.6719 (3) | 0.14516 (12) | 0.0185 (4) | |
C3 | 0.6418 (5) | 0.4920 (3) | 0.11753 (13) | 0.0203 (4) | |
H3A | 0.698927 | 0.4571 | 0.056322 | 0.024* | |
C4 | 0.5120 (5) | 0.3631 (3) | 0.17851 (12) | 0.0192 (4) | |
H4A | 0.480518 | 0.240754 | 0.159434 | 0.023* | |
C5 | 0.4286 (4) | 0.4165 (3) | 0.26824 (12) | 0.0169 (4) | |
C6 | 0.4704 (4) | 0.5971 (3) | 0.29652 (12) | 0.0183 (4) | |
H6A | 0.409116 | 0.632564 | 0.357352 | 0.022* | |
C7 | 0.6015 (5) | 0.7236 (3) | 0.23531 (13) | 0.0199 (4) | |
H7A | 0.632366 | 0.846022 | 0.254394 | 0.024* | |
C8 | 0.1451 (4) | 0.1207 (3) | 0.31214 (12) | 0.0191 (4) | |
H8A | 0.086412 | 0.073743 | 0.25258 | 0.023* | |
C9 | 0.0906 (5) | 0.0395 (3) | 0.39529 (13) | 0.0212 (4) | |
H9A | −0.017271 | −0.075833 | 0.403072 | 0.025* | |
C10 | 0.3399 (5) | 0.2943 (3) | 0.42704 (13) | 0.0204 (4) | |
H10A | 0.443164 | 0.393702 | 0.45957 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0395 (9) | 0.0225 (9) | 0.0249 (7) | −0.0053 (6) | 0.0026 (6) | 0.0022 (6) |
N1 | 0.0195 (7) | 0.0148 (9) | 0.0154 (7) | 0.0001 (6) | −0.0004 (5) | 0.0002 (6) |
N2 | 0.0268 (8) | 0.0210 (10) | 0.0188 (7) | −0.0002 (6) | 0.0009 (6) | 0.0014 (6) |
C1 | 0.0245 (9) | 0.0236 (12) | 0.0209 (9) | −0.0008 (8) | −0.0004 (7) | 0.0000 (8) |
C2 | 0.0179 (8) | 0.0201 (11) | 0.0175 (8) | 0.0005 (7) | −0.0013 (7) | 0.0002 (7) |
C3 | 0.0212 (9) | 0.0230 (11) | 0.0166 (9) | 0.0020 (7) | 0.0012 (7) | −0.0018 (7) |
C4 | 0.0230 (9) | 0.0166 (11) | 0.0180 (8) | −0.0005 (7) | −0.0001 (7) | −0.0021 (7) |
C5 | 0.0151 (8) | 0.0176 (10) | 0.0180 (8) | 0.0009 (7) | −0.0018 (6) | 0.0007 (7) |
C6 | 0.0212 (8) | 0.0175 (10) | 0.0164 (8) | 0.0015 (7) | 0.0006 (7) | −0.0021 (7) |
C7 | 0.0213 (9) | 0.0162 (10) | 0.0221 (10) | 0.0002 (7) | −0.0015 (7) | −0.0017 (7) |
C8 | 0.0202 (8) | 0.0168 (10) | 0.0203 (8) | −0.0005 (7) | −0.0009 (6) | −0.0027 (7) |
C9 | 0.0219 (9) | 0.0187 (11) | 0.0229 (9) | 0.0004 (7) | 0.0007 (7) | 0.0016 (7) |
C10 | 0.0243 (9) | 0.0207 (11) | 0.0163 (9) | 0.0005 (7) | −0.0013 (7) | −0.0012 (7) |
O1—C1 | 1.219 (3) | C3—H3A | 0.9500 |
N1—C10 | 1.374 (2) | C4—C5 | 1.397 (2) |
N1—C8 | 1.388 (2) | C4—H4A | 0.9500 |
N1—C5 | 1.421 (2) | C5—C6 | 1.401 (3) |
N2—C10 | 1.311 (2) | C6—C7 | 1.383 (3) |
N2—C9 | 1.391 (2) | C6—H6A | 0.9500 |
C1—C2 | 1.469 (2) | C7—H7A | 0.9500 |
C1—H1A | 0.9500 | C8—C9 | 1.362 (3) |
C2—C3 | 1.395 (3) | C8—H8A | 0.9500 |
C2—C7 | 1.403 (2) | C9—H9A | 0.9500 |
C3—C4 | 1.391 (3) | C10—H10A | 0.9500 |
C10—N1—C8 | 106.39 (15) | C4—C5—N1 | 119.84 (17) |
C10—N1—C5 | 126.28 (15) | C6—C5—N1 | 119.32 (16) |
C8—N1—C5 | 127.19 (15) | C7—C6—C5 | 119.59 (17) |
C10—N2—C9 | 105.21 (15) | C7—C6—H6A | 120.2 |
O1—C1—C2 | 125.41 (17) | C5—C6—H6A | 120.2 |
O1—C1—H1A | 117.3 | C6—C7—C2 | 120.28 (18) |
C2—C1—H1A | 117.3 | C6—C7—H7A | 119.9 |
C3—C2—C7 | 119.54 (17) | C2—C7—H7A | 119.9 |
C3—C2—C1 | 118.92 (15) | C9—C8—N1 | 105.83 (16) |
C7—C2—C1 | 121.53 (17) | C9—C8—H8A | 127.1 |
C4—C3—C2 | 120.81 (16) | N1—C8—H8A | 127.1 |
C4—C3—H3A | 119.6 | C8—C9—N2 | 110.49 (18) |
C2—C3—H3A | 119.6 | C8—C9—H9A | 124.8 |
C3—C4—C5 | 118.95 (17) | N2—C9—H9A | 124.8 |
C3—C4—H4A | 120.5 | N2—C10—N1 | 112.07 (16) |
C5—C4—H4A | 120.5 | N2—C10—H10A | 124.0 |
C4—C5—C6 | 120.84 (16) | N1—C10—H10A | 124.0 |
O1—C1—C2—C3 | −178.55 (18) | N1—C5—C6—C7 | 178.08 (15) |
O1—C1—C2—C7 | 0.2 (3) | C5—C6—C7—C2 | 0.6 (2) |
C7—C2—C3—C4 | −0.6 (3) | C3—C2—C7—C6 | 0.2 (3) |
C1—C2—C3—C4 | 178.21 (16) | C1—C2—C7—C6 | −178.52 (16) |
C2—C3—C4—C5 | 0.1 (3) | C10—N1—C8—C9 | 0.62 (19) |
C3—C4—C5—C6 | 0.7 (3) | C5—N1—C8—C9 | 176.67 (16) |
C3—C4—C5—N1 | −178.42 (15) | N1—C8—C9—N2 | −0.6 (2) |
C10—N1—C5—C4 | 153.02 (17) | C10—N2—C9—C8 | 0.4 (2) |
C8—N1—C5—C4 | −22.3 (2) | C9—N2—C10—N1 | 0.0 (2) |
C10—N1—C5—C6 | −26.2 (3) | C8—N1—C10—N2 | −0.4 (2) |
C8—N1—C5—C6 | 158.54 (16) | C5—N1—C10—N2 | −176.52 (16) |
C4—C5—C6—C7 | −1.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.95 | 2.51 | 3.458 (2) | 176 |
C10—H10A···N2ii | 0.95 | 2.51 | 3.449 (2) | 173 |
Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, y+1/2, −z+1. |
C10H10N2O | F(000) = 368 |
Mr = 174.20 | Dx = 1.318 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5663 (12) Å | Cell parameters from 8588 reflections |
b = 11.2143 (16) Å | θ = 2.4–30.4° |
c = 9.1635 (13) Å | µ = 0.09 mm−1 |
β = 94.448 (2)° | T = 125 K |
V = 877.6 (2) Å3 | Plate, colourless |
Z = 4 | 0.40 × 0.25 × 0.15 mm |
Bruker APEXII CCD diffractometer | 2678 independent reflections |
Radiation source: sealed X-ray tube, Bruker APEXII CCD | 2332 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.6°, θmin = 2.4° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −16→15 |
Tmin = 0.92, Tmax = 0.99 | l = −13→13 |
21397 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1966P] where P = (Fo2 + 2Fc2)/3 |
2678 reflections | (Δ/σ)max < 0.001 |
119 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.50111 (8) | 0.64826 (6) | 0.27442 (7) | 0.01696 (16) | |
N2 | 0.35189 (9) | 0.60120 (7) | 0.07295 (8) | 0.02110 (17) | |
O1 | 0.98420 (8) | 0.63969 (6) | 0.71768 (7) | 0.02769 (18) | |
C1 | 1.02429 (11) | 0.53203 (10) | 0.79493 (10) | 0.0289 (2) | |
H1A | 1.108753 | 0.547969 | 0.87077 | 0.043* | |
H1B | 1.059244 | 0.472373 | 0.726426 | 0.043* | |
H1C | 0.932403 | 0.501862 | 0.840608 | 0.043* | |
C2 | 0.86571 (10) | 0.63397 (8) | 0.60922 (9) | 0.02084 (18) | |
C3 | 0.81994 (11) | 0.74301 (8) | 0.54587 (10) | 0.02479 (19) | |
H3A | 0.870761 | 0.814315 | 0.579384 | 0.03* | |
C4 | 0.70105 (11) | 0.74809 (8) | 0.43457 (9) | 0.02198 (18) | |
H4A | 0.670793 | 0.822403 | 0.391376 | 0.026* | |
C5 | 0.62626 (10) | 0.64337 (7) | 0.38651 (9) | 0.01708 (17) | |
C6 | 0.67205 (10) | 0.53468 (7) | 0.44827 (9) | 0.01901 (17) | |
H6A | 0.621215 | 0.463503 | 0.414318 | 0.023* | |
C7 | 0.79220 (10) | 0.52919 (8) | 0.55986 (9) | 0.02071 (18) | |
H7A | 0.823565 | 0.454653 | 0.601777 | 0.025* | |
C8 | 0.37965 (10) | 0.72974 (7) | 0.26290 (9) | 0.01978 (18) | |
H8A | 0.362414 | 0.793692 | 0.327719 | 0.024* | |
C9 | 0.28976 (10) | 0.69928 (8) | 0.13921 (9) | 0.02107 (18) | |
H9A | 0.197198 | 0.739844 | 0.10349 | 0.025* | |
C10 | 0.47846 (10) | 0.57358 (7) | 0.15758 (9) | 0.01911 (18) | |
H10A | 0.545959 | 0.509019 | 0.139087 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0198 (3) | 0.0156 (3) | 0.0153 (3) | 0.0015 (2) | 0.0003 (2) | −0.0014 (2) |
N2 | 0.0226 (4) | 0.0219 (4) | 0.0183 (3) | 0.0020 (3) | −0.0011 (3) | −0.0016 (3) |
O1 | 0.0249 (3) | 0.0327 (4) | 0.0239 (3) | −0.0069 (3) | −0.0077 (3) | 0.0039 (3) |
C1 | 0.0249 (4) | 0.0389 (5) | 0.0222 (4) | −0.0024 (4) | −0.0028 (3) | 0.0082 (4) |
C2 | 0.0194 (4) | 0.0251 (4) | 0.0178 (4) | −0.0035 (3) | 0.0003 (3) | 0.0010 (3) |
C3 | 0.0271 (4) | 0.0204 (4) | 0.0260 (4) | −0.0055 (3) | −0.0037 (3) | −0.0010 (3) |
C4 | 0.0264 (4) | 0.0162 (4) | 0.0228 (4) | −0.0015 (3) | −0.0013 (3) | 0.0004 (3) |
C5 | 0.0188 (4) | 0.0176 (4) | 0.0148 (3) | −0.0004 (3) | 0.0009 (3) | −0.0006 (3) |
C6 | 0.0205 (4) | 0.0167 (4) | 0.0195 (4) | −0.0014 (3) | −0.0001 (3) | −0.0001 (3) |
C7 | 0.0214 (4) | 0.0205 (4) | 0.0200 (4) | −0.0013 (3) | −0.0001 (3) | 0.0031 (3) |
C8 | 0.0231 (4) | 0.0166 (4) | 0.0197 (4) | 0.0034 (3) | 0.0024 (3) | −0.0010 (3) |
C9 | 0.0211 (4) | 0.0209 (4) | 0.0211 (4) | 0.0037 (3) | 0.0005 (3) | 0.0011 (3) |
C10 | 0.0221 (4) | 0.0181 (4) | 0.0170 (3) | 0.0018 (3) | 0.0004 (3) | −0.0031 (3) |
N1—C10 | 1.3612 (10) | C3—C4 | 1.3854 (12) |
N1—C8 | 1.3827 (10) | C3—H3A | 0.9500 |
N1—C5 | 1.4271 (10) | C4—C5 | 1.3928 (11) |
N2—C10 | 1.3200 (10) | C4—H4A | 0.9500 |
N2—C9 | 1.3828 (11) | C5—C6 | 1.3876 (11) |
O1—C2 | 1.3658 (10) | C6—C7 | 1.3947 (11) |
O1—C1 | 1.4279 (12) | C6—H6A | 0.9500 |
C1—H1A | 0.9800 | C7—H7A | 0.9500 |
C1—H1B | 0.9800 | C8—C9 | 1.3634 (11) |
C1—H1C | 0.9800 | C8—H8A | 0.9500 |
C2—C7 | 1.3920 (12) | C9—H9A | 0.9500 |
C2—C3 | 1.3967 (12) | C10—H10A | 0.9500 |
C10—N1—C8 | 106.62 (7) | C5—C4—H4A | 120.3 |
C10—N1—C5 | 126.57 (7) | C6—C5—C4 | 120.21 (8) |
C8—N1—C5 | 126.81 (7) | C6—C5—N1 | 120.01 (7) |
C10—N2—C9 | 104.78 (7) | C4—C5—N1 | 119.78 (7) |
C2—O1—C1 | 117.23 (7) | C5—C6—C7 | 120.46 (7) |
O1—C1—H1A | 109.5 | C5—C6—H6A | 119.8 |
O1—C1—H1B | 109.5 | C7—C6—H6A | 119.8 |
H1A—C1—H1B | 109.5 | C2—C7—C6 | 119.38 (8) |
O1—C1—H1C | 109.5 | C2—C7—H7A | 120.3 |
H1A—C1—H1C | 109.5 | C6—C7—H7A | 120.3 |
H1B—C1—H1C | 109.5 | C9—C8—N1 | 105.73 (7) |
O1—C2—C7 | 124.61 (8) | C9—C8—H8A | 127.1 |
O1—C2—C3 | 115.48 (8) | N1—C8—H8A | 127.1 |
C7—C2—C3 | 119.91 (8) | C8—C9—N2 | 110.64 (7) |
C4—C3—C2 | 120.57 (8) | C8—C9—H9A | 124.7 |
C4—C3—H3A | 119.7 | N2—C9—H9A | 124.7 |
C2—C3—H3A | 119.7 | N2—C10—N1 | 112.23 (7) |
C3—C4—C5 | 119.47 (8) | N2—C10—H10A | 123.9 |
C3—C4—H4A | 120.3 | N1—C10—H10A | 123.9 |
C1—O1—C2—C7 | −6.43 (13) | N1—C5—C6—C7 | −178.75 (7) |
C1—O1—C2—C3 | 174.10 (8) | O1—C2—C7—C6 | 179.88 (8) |
O1—C2—C3—C4 | 179.87 (8) | C3—C2—C7—C6 | −0.68 (13) |
C7—C2—C3—C4 | 0.38 (14) | C5—C6—C7—C2 | 0.19 (13) |
C2—C3—C4—C5 | 0.41 (14) | C10—N1—C8—C9 | 0.16 (9) |
C3—C4—C5—C6 | −0.91 (13) | C5—N1—C8—C9 | 179.98 (7) |
C3—C4—C5—N1 | 178.46 (7) | N1—C8—C9—N2 | −0.15 (10) |
C10—N1—C5—C6 | −44.15 (12) | C10—N2—C9—C8 | 0.07 (10) |
C8—N1—C5—C6 | 136.07 (9) | C9—N2—C10—N1 | 0.03 (10) |
C10—N1—C5—C4 | 136.49 (9) | C8—N1—C10—N2 | −0.12 (10) |
C8—N1—C5—C4 | −43.30 (12) | C5—N1—C10—N2 | −179.94 (7) |
C4—C5—C6—C7 | 0.61 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···N2i | 0.95 | 2.55 | 3.4391 (11) | 157 |
C9—H9A···O1ii | 0.95 | 2.56 | 3.3048 (11) | 136 |
C10—H10A···N2iii | 0.95 | 2.52 | 3.3004 (11) | 140 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x−1, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z. |
Acknowledgements
This work was supported by Vassar College. X-ray facilities were provided by the U.S. National Science Foundation.
Funding information
Funding for this research was provided by: National Science Foundation (grant Nos. 0521237 and 0911324 to J. M. Tanski).
References
Ananthu, S., Aneeja, T. & Anilkumar, G. (2021). ChemistrySelect, 6, 9794–9805. CrossRef CAS Google Scholar
Bejan, D., Bahrin, L. G., Shova, S., Sardaru, M., Clima, L., Nicolescu, A., Marangoci, N., Lozan, V. & Janiak, C. (2018). Inorg. Chim. Acta, 482, 275–283. CrossRef CAS Google Scholar
Bruker (2013). SAINT and APEX3. Bruxer AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). SADABS. Bruxer AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ding, B., Ma, L., Huang, Z., Ma, X. & Tian, H. (2021). Sci. Adv. 7, eabf9668. CrossRef PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Emel'yanenko, V. N., Kaliner, M., Strassner, T. & Verevkin, S. P. (2017). Fluid Phase Equilib. 433, 40–49. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Masoom Yasinzai, M. & Parvez, M. (2009). Eur. J. Med. Chem. 44, 4654–4660. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ibrahim, H., Bala, M. D. & Omondi, B. (2012). Acta Cryst. E68, o2305. CSD CrossRef IUCr Journals Google Scholar
Khattri, R. B., Morris, D. L., Davis, C. M., Bilinovich, S. M., Caras, A. J., Panzner, M. J., Debord, M. A. & Leeper, T. C. (2016). Molecules, pp. 21. Google Scholar
Liang, L., Li, Z. & Zhou, X. (2009). Org. Lett. 11, 3294–3297. CrossRef PubMed CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Merritt, H. & Tanski, J. M. (2018). J. Chem. Crystallogr. 48, 109–116. CrossRef CAS Google Scholar
Milenković, M. R., Papastavrou, A. T., Radanović, D., Pevec, A., Jagličić, Z., Zlatar, M., Gruden, M., Vougioukalakis, G. C., Turel, I., Anđelković, K. & Čobeljić, B. (2019). Polyhedron, 165, 22–30. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Schröder, K., Enthaler, S., Bitterlich, B., Schulz, T., Spannenberg, A., Tse, M. K., Junge, K. & Beller, M. (2009). Chem. Eur. J. 15, 5471–5481. Web of Science PubMed Google Scholar
Shalini, K., Sharma, P. K. & Kumar, N. (2010). Der Chem. Sinica, 1, 6–47. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Xi, Z., Liu, F., Zhou, Y. & Chen, W. (2008). Tetrahedron, 64, 4254–4259. CrossRef CAS Google Scholar
Zheng, Z., Geng, W.-Q., Wu, Z.-C. & Zhou, H.-P. (2011). Acta Cryst. E67, o524. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.