research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystallographic and spectroscopic characterization of two 1-phenyl-1H-imidazoles: 4-(1H-imidazol-1-yl)benzaldehyde and 1-(4-meth­­oxy­phen­yl)-1H-imidazole

crossmark logo

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 8 June 2023; accepted 21 June 2023; online 30 June 2023)

The title compounds, C10H8N2O, (I), and C10H10N2O, (II), are two 1-phenyl-1H-imidazole derivatives, which differ in the substituent para to the imidazole group on the arene ring, i.e. a benzaldehyde, (I), and an anisole, (II). Both mol­ecules pack with different motifs via similar weak C—H⋯N/O inter­actions and differ with respect to the angles between the mean planes of the imidazole and arene rings [24.58 (7)° in (I) and 43.67 (4)° in (II)].

1. Chemical context

N-Aryl­ated imidazoles are commonly found in the structures of an array of biologically active compounds (Ananthu et al., 2021[Ananthu, S., Aneeja, T. & Anilkumar, G. (2021). ChemistrySelect, 6, 9794-9805.]). They have a variety of applications in the medicinal chemistry field, such as use in anti­cancer and anti-inflammatory medications and as anti­viral agents (Shalini et al., 2010[Shalini, K., Sharma, P. K. & Kumar, N. (2010). Der Chem. Sinica, 1, 6-47.]). They are also used in agriculture as fungicides, herbicides, and plant-growth regulators (Emel'yanenko et al., 2017[Emel'yanenko, V. N., Kaliner, M., Strassner, T. & Verevkin, S. P. (2017). Fluid Phase Equilib. 433, 40-49.]). 4-(1H-Imidazol-1-yl)benzaldehyde, (I)[link], may be synthesized in high yield by treating 4-bromo­benzaldehyde with imidazole in an aprotic solvent with the addition of potassium carbonate and a copper(I) catalyst (Xi et al., 2008[Xi, Z., Liu, F., Zhou, Y. & Chen, W. (2008). Tetrahedron, 64, 4254-4259.]). The yellow solid is a common reagent in the synthesis of various targets with anti­fungal and anti­bacterial activity. It has been shown that (I)[link] could be used to synthesize a series of 3-[4-(1H-imidazol-1-yl)phen­yl]prop-2-en-1-ones with anti­fungal, antioxidant, and anti­leishmanial activities (Hussain et al., 2009[Hussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Masoom Yasinzai, M. & Parvez, M. (2009). Eur. J. Med. Chem. 44, 4654-4660.]). Cream-colored 1-(4-meth­oxy­phen­yl)-1H-imidazole, (II)[link], and other similar compounds have been found to work as catalysts in the catalytic epoxidation of olefins with moderate to good yields using mild reaction conditions (Schröder et al., 2009[Schröder, K., Enthaler, S., Bitterlich, B., Schulz, T., Spannenberg, A., Tse, M. K., Junge, K. & Beller, M. (2009). Chem. Eur. J. 15, 5471-5481.]). Compound (II)[link] can be synthesized in a 99% isolated yield by allowing imidazole and 4-iodo­anisole to react in aceto­nitrile in the presence of cesium carbonate and a copper(II) catalyst (Milenković et al., 2019[Milenković, M. R., Papastavrou, A. T., Radanović, D., Pevec, A., Jagličić, Z., Zlatar, M., Gruden, M., Vougioukalakis, G. C., Turel, I., Anđelković, K. & Čobeljić, B. (2019). Polyhedron, 165, 22-30.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the benzaldehyde derivative (I)[link] (Fig. 1[link]) and the anisole derivative (II)[link] (Fig. 2[link]) show the para nature of the substituent with respect to the imidazole group. The angle between the mean planes of the imidazole and arene rings is 24.58 (7)° in (I)[link] and 43.67 (4)° in (II)[link].

[Figure 1]
Figure 1
A view of 4-(1H-imidazol-1-yl)benzaldehyde, (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of 1-(4-meth­oxy­phen­yl)-1H-imidazole, (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The mol­ecules of benzaldehyde derivative (I)[link] are held together in the solid state via weak C—H⋯O/N inter­actions (Fig. 3[link] and Table 1[link]). Specifically, imidazole C—H groups inter­act with neighboring benzaldehyde O atoms (C8—H8A⋯O1i) and imidazole N atoms (C10—H10A⋯N2ii). The mol­ecules also stack with an offset face-to-face geometrical arrangement of the arene rings, with an inter­molecular centroid-to-centroid distance of 3.7749 (2) Å, a plane-to-centroid distance of 3.5002 (10) Å, and a ring shift of 1.414 (3) Å. Fig. 3[link] displays a di-periodic sheet with a thickness roughly equivalent to the length of the c axis, where the imidazoles inter­act in the inter­ior and the aldehyde substituents extend to the faces. The sheets then stack in the [001] direction. Notably, (I)[link] crystallizes in the space group P21 and is therefore a polar material in the solid state. Polar organic materials formed by achiral mol­ecules are of inter­est in crystal engineering, in particular for nonlinear optical materials (Merritt & Tanski, 2018[Merritt, H. & Tanski, J. M. (2018). J. Chem. Crystallogr. 48, 109-116.]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.95 2.51 3.458 (2) 176
C10—H10A⋯N2ii 0.95 2.51 3.449 (2) 173
Symmetry codes: (i) [x-1, y-1, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
A view of the mol­ecular packing in 4-(1H-imidazol-1-yl)benzaldehyde, (I)[link]. [Symmetry codes: (i) x − 1, y − 1, z; (ii) −x + 1, y + [{1\over 2}], −z + 1.]

Similarly, the mol­ecules of anisole derivative (II)[link] are held together in the solid state via weak C—H⋯O/N inter­actions (Fig. 4[link] and Table 2[link]), with the same imidazole C—H groups as (I)[link] inter­acting with a neighboring anisole O atom (C9—H9A⋯O1ii) and an imidazole N atom (C10—H10A⋯N2iii). A third weak inter­action links the remaining imidazole H atom with the imidazole N atom (C8—H8A⋯N2i). Unlike benzaldehyde derivative (I)[link], anisole derivative (II)[link] does not exhibit any π-stacking geometrical arrangement of the arene rings and the mol­ecules pack centrosymmetrically (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N2i 0.95 2.55 3.4391 (11) 157
C9—H9A⋯O1ii 0.95 2.56 3.3048 (11) 136
C10—H10A⋯N2iii 0.95 2.52 3.3004 (11) 140
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z].
[Figure 4]
Figure 4
A view of the inter­molecular inter­actions in 1-(4-meth­oxy­phen­yl)-1H-imidazole, (II)[link]. [Symmetry codes: (i) x, −y + [{3\over 2}], z + [{1\over 2}]; (ii) x − 1, −y + [{3\over 2}], z − [{1\over 2}]; (iii) −x + 1, −y + 1, −z.]
[Figure 5]
Figure 5
A view of the mol­ecular packing in 1-(4-meth­oxy­phen­yl)-1H-imidazole, (II)[link].

4. Database survey

The Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains six simple para-X-substituted 1-phenyl-1H-imidazole derivatives: X = –NH2 (CSD refcode MUFCAS; Liang et al., 2009[Liang, L., Li, Z. & Zhou, X. (2009). Org. Lett. 11, 3294-3297.]), –Br (PAJDUD; Ding et al., 2021[Ding, B., Ma, L., Huang, Z., Ma, X. & Tian, H. (2021). Sci. Adv. 7, eabf9668.]), –I (FIQFUJ; Bejan et al., 2018[Bejan, D., Bahrin, L. G., Shova, S., Sardaru, M., Clima, L., Nicolescu, A., Marangoci, N., Lozan, V. & Janiak, C. (2018). Inorg. Chim. Acta, 482, 275-283.]), –CO2H (IKAWAT; Zheng et al., 2011[Zheng, Z., Geng, W.-Q., Wu, Z.-C. & Zhou, H.-P. (2011). Acta Cryst. E67, o524.]), –CO2CH3 (BEMVUN; Khattri et al., 2016[Khattri, R. B., Morris, D. L., Davis, C. M., Bilinovich, S. M., Caras, A. J., Panzner, M. J., Debord, M. A. & Leeper, T. C. (2016). Molecules, pp. 21.]) and –COCH3 (XECDUG; Ibrahim et al., 2012[Ibrahim, H., Bala, M. D. & Omondi, B. (2012). Acta Cryst. E68, o2305.]). The amino and carb­oxy­lic acid derivatives engage in inter­molecular hydrogen bonding with the imidazole N atom and exhibit angles between the mean planes of the imidazole and arene rings of 31.17 (MUFCAS) and 14.51° (IKAWAT). The halide derivatives both contain halide to imidazole nitro­gen inter­molecular con­tacts and angles between the mean planes of the imidazole and arene rings of 35.22 (PAJDUD) and 27.10° (FIQFUJ). Similar to the title compounds (I)[link] and (II)[link], the methyl ester and methyl ketone derivatives pack via weak C—H⋯N/O inter­actions and with angles between the mean planes of the imidazole and arene rings of 24.83 (BEMVUN) and 1.04° (XECDUG). In XECDUG, a mol­ecule of water hydrogen bonds to the 1H-imidazole H and ortho-phenyl H of a neighboring mol­ecule, holding the planes of the imidazole and arene rings nearly coplanar. Inspection of the bond lengths of the imidazole ring for all eight derivatives reveals that they are remarkably similar.

5. Synthesis and crystallization

4-(1H-Imidazol-1-yl)benzaldehyde (98%), (I)[link], and 1-(4-meth­oxy­phen­yl)-1H-imidazole (98%), (II)[link], were purchased from Aldrich Chemical Company, USA, and were used as received.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms on C atoms were included in calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 3
Experimental details

Experiments were carried out at 125 K using a Bruker APEXII CCD diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruxer AXS Inc., Madison, Wisconsin, USA.]). Refinement was on 119 parameters. H-atom parameters were constrained.

  (I) (II)
Crystal data
Chemical formula C10H8N2O C10H10N2O
Mr 172.18 174.20
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c
a, b, c (Å) 3.7749 (2), 7.3711 (5), 14.4524 (9) 8.5663 (12), 11.2143 (16), 9.1635 (13)
β (°) 91.096 (2) 94.448 (2)
V3) 402.07 (4) 877.6 (2)
Z 2 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.77 0.09
Crystal size (mm) 0.37 × 0.20 × 0.05 0.40 × 0.25 × 0.15
 
Data collection
Tmin, Tmax 0.80, 0.96 0.92, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 5673, 1482, 1466 21397, 2678, 2332
Rint 0.029 0.031
(sin θ/λ)max−1) 0.615 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.079, 1.14 0.040, 0.119, 1.04
No. of reflections 1482 2678
No. of restraints 1 0
Δρmax, Δρmin (e Å−3) 0.19, −0.15 0.35, −0.29
Absolute structure Flack x determined using 652 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]); Hooft y = 0.11(6) calculated with OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.])
Absolute structure parameter 0.09 (7)
Computer programs: APEX3 and SAINT (Bruker, 2013[Bruker (2013). SAINT and APEX3. Bruxer AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

7. Analytical data

7.1. 4-(1H-Imidazol-1-yl)benzaldehyde, (I)

1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 7.26 (m, 1H, CimidH), 7.39 (m, 1H, CimidH), 7.60 (d, 2H, Car­ylH, J = 8.6 Hz), 7.99 (s, 1H, CimidH), 8.03 (d, 2H, Car­ylH, J = 8.6 Hz), 10.05 [s, 1H, C(O)H]. 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 117.54 (CimidH), 120.97 (Car­ylH), 131.23 (CimidH), 131.48 (Car­ylH), 134.84 (Car­yl), 135.28 (CimidH), 141.60 (Car­yl), 190.48 [C(O)H]. IR (Thermo Nicolet iS50, ATR, cm−1): 3138 (w, Car­yl—H str), 3109 (m, Car­yl—H str), 2818 and 2746 (m, =C—H aldehyde Fermi doublet str), 1676 (s, C=O str), 1604 (s, arom. C=C str), 1519 (s, arom. C=C str), 1481 (s, arom. C=C str), 1439 (m), 1400 (s), 1375 (s), 1310 (s), 1268 (s), 1220 (s), 1171 (s), 1120 (m), 1105 (m), 1059 (s), 971 (m), 959 (s), 902 (w), 830 (s), 752 (s), 692 (m), 752 (s), 692 (m), 648 (s), 617 (m), 530 (m), 513 (s), 447 (m), 413 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 172 amu.

7.2. 1-(4-Meth­oxy­phen­yl)-1H-imidazole, (II)

1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 3.85 (s, 3H, OCH3), 6.98 (d, 2H, Car­ylH, J = 8.9 Hz), 7.20 (m, 2H, CimidH), 7.30 (d, 2H, Car­ylH, J = 8.9 Hz), 7.78 (m, 1H, CimidH). 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 55.56 (OCH3), 114.87 (Car­ylH), 118.83 (CimidH), 123.19 (Car­ylH), 129.97 (Car­yl), 130.68 (CimidH), 135.89 (CimidH), 158.92 (Car­yl). IR (Thermo Nicolet iS50, ATR, cm−1): 3128 (m, Car­yl—H str), 3107 (m, Car­yl—H str), 2961 (w, Calk­yl—H str), 2918 (w, Calk­yl—H str), 2838 (m, Calk­yl—H str), 2052 (w), 1877 (w), 1634 (w), 1610 (m), 1591 (w), 1517 (s, arom. C=C str), 1471 (s, arom. C=C str), 1459 (m), 1447 (w), 1332 (m), 1321 (s), 1302 (m), 1267 (s), 1256 (s), 1241 (s), 1192 (s), 1173 (m), 1109 (s), 1100 (s), 1061 (s), 1029 (s), 961 (m), 910 (m), 873 (w), 840 (s), 823 (s), 798 (s), 780 (s), 762 (s), 664 (s), 649 (s), 614 (m), 539 (s), 490 (m), 434 (w). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 174 amu.

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).

4-(1H-Imidazol-1-yl)benzaldehyde (I) top
Crystal data top
C10H8N2OF(000) = 180
Mr = 172.18Dx = 1.422 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 3.7749 (2) ÅCell parameters from 5426 reflections
b = 7.3711 (5) Åθ = 3.1–71.6°
c = 14.4524 (9) ŵ = 0.77 mm1
β = 91.096 (2)°T = 125 K
V = 402.07 (4) Å3Plate, clear colourless
Z = 20.37 × 0.20 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1482 independent reflections
Radiation source: Cu IuS micro-focus source1466 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.029
φ and ω scansθmax = 71.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 44
Tmin = 0.80, Tmax = 0.96k = 87
5673 measured reflectionsl = 1716
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.0471P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.19 e Å3
1482 reflectionsΔρmin = 0.15 e Å3
119 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015b)
1 restraintExtinction coefficient: 0.021 (6)
Primary atom site location: dualAbsolute structure: Flack x determined using 652 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013); Hooft y = 0.11(6) calculated with OLEX2 (Dolomanov et al., 2009).
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8970 (4)0.9617 (2)0.09534 (10)0.0289 (4)
N10.3041 (4)0.2861 (2)0.33233 (10)0.0166 (4)
N20.2148 (4)0.1490 (2)0.46723 (11)0.0222 (4)
C10.8366 (5)0.8021 (3)0.07934 (13)0.0230 (4)
H1A0.8893780.7583910.0193260.028*
C20.6890 (5)0.6719 (3)0.14516 (12)0.0185 (4)
C30.6418 (5)0.4920 (3)0.11753 (13)0.0203 (4)
H3A0.6989270.45710.0563220.024*
C40.5120 (5)0.3631 (3)0.17851 (12)0.0192 (4)
H4A0.4805180.2407540.1594340.023*
C50.4286 (4)0.4165 (3)0.26824 (12)0.0169 (4)
C60.4704 (4)0.5971 (3)0.29652 (12)0.0183 (4)
H6A0.4091160.6325640.3573520.022*
C70.6015 (5)0.7236 (3)0.23531 (13)0.0199 (4)
H7A0.6323660.8460220.2543940.024*
C80.1451 (4)0.1207 (3)0.31214 (12)0.0191 (4)
H8A0.0864120.0737430.252580.023*
C90.0906 (5)0.0395 (3)0.39529 (13)0.0212 (4)
H9A0.0172710.0758330.4030720.025*
C100.3399 (5)0.2943 (3)0.42704 (13)0.0204 (4)
H10A0.4431640.3937020.459570.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (9)0.0225 (9)0.0249 (7)0.0053 (6)0.0026 (6)0.0022 (6)
N10.0195 (7)0.0148 (9)0.0154 (7)0.0001 (6)0.0004 (5)0.0002 (6)
N20.0268 (8)0.0210 (10)0.0188 (7)0.0002 (6)0.0009 (6)0.0014 (6)
C10.0245 (9)0.0236 (12)0.0209 (9)0.0008 (8)0.0004 (7)0.0000 (8)
C20.0179 (8)0.0201 (11)0.0175 (8)0.0005 (7)0.0013 (7)0.0002 (7)
C30.0212 (9)0.0230 (11)0.0166 (9)0.0020 (7)0.0012 (7)0.0018 (7)
C40.0230 (9)0.0166 (11)0.0180 (8)0.0005 (7)0.0001 (7)0.0021 (7)
C50.0151 (8)0.0176 (10)0.0180 (8)0.0009 (7)0.0018 (6)0.0007 (7)
C60.0212 (8)0.0175 (10)0.0164 (8)0.0015 (7)0.0006 (7)0.0021 (7)
C70.0213 (9)0.0162 (10)0.0221 (10)0.0002 (7)0.0015 (7)0.0017 (7)
C80.0202 (8)0.0168 (10)0.0203 (8)0.0005 (7)0.0009 (6)0.0027 (7)
C90.0219 (9)0.0187 (11)0.0229 (9)0.0004 (7)0.0007 (7)0.0016 (7)
C100.0243 (9)0.0207 (11)0.0163 (9)0.0005 (7)0.0013 (7)0.0012 (7)
Geometric parameters (Å, º) top
O1—C11.219 (3)C3—H3A0.9500
N1—C101.374 (2)C4—C51.397 (2)
N1—C81.388 (2)C4—H4A0.9500
N1—C51.421 (2)C5—C61.401 (3)
N2—C101.311 (2)C6—C71.383 (3)
N2—C91.391 (2)C6—H6A0.9500
C1—C21.469 (2)C7—H7A0.9500
C1—H1A0.9500C8—C91.362 (3)
C2—C31.395 (3)C8—H8A0.9500
C2—C71.403 (2)C9—H9A0.9500
C3—C41.391 (3)C10—H10A0.9500
C10—N1—C8106.39 (15)C4—C5—N1119.84 (17)
C10—N1—C5126.28 (15)C6—C5—N1119.32 (16)
C8—N1—C5127.19 (15)C7—C6—C5119.59 (17)
C10—N2—C9105.21 (15)C7—C6—H6A120.2
O1—C1—C2125.41 (17)C5—C6—H6A120.2
O1—C1—H1A117.3C6—C7—C2120.28 (18)
C2—C1—H1A117.3C6—C7—H7A119.9
C3—C2—C7119.54 (17)C2—C7—H7A119.9
C3—C2—C1118.92 (15)C9—C8—N1105.83 (16)
C7—C2—C1121.53 (17)C9—C8—H8A127.1
C4—C3—C2120.81 (16)N1—C8—H8A127.1
C4—C3—H3A119.6C8—C9—N2110.49 (18)
C2—C3—H3A119.6C8—C9—H9A124.8
C3—C4—C5118.95 (17)N2—C9—H9A124.8
C3—C4—H4A120.5N2—C10—N1112.07 (16)
C5—C4—H4A120.5N2—C10—H10A124.0
C4—C5—C6120.84 (16)N1—C10—H10A124.0
O1—C1—C2—C3178.55 (18)N1—C5—C6—C7178.08 (15)
O1—C1—C2—C70.2 (3)C5—C6—C7—C20.6 (2)
C7—C2—C3—C40.6 (3)C3—C2—C7—C60.2 (3)
C1—C2—C3—C4178.21 (16)C1—C2—C7—C6178.52 (16)
C2—C3—C4—C50.1 (3)C10—N1—C8—C90.62 (19)
C3—C4—C5—C60.7 (3)C5—N1—C8—C9176.67 (16)
C3—C4—C5—N1178.42 (15)N1—C8—C9—N20.6 (2)
C10—N1—C5—C4153.02 (17)C10—N2—C9—C80.4 (2)
C8—N1—C5—C422.3 (2)C9—N2—C10—N10.0 (2)
C10—N1—C5—C626.2 (3)C8—N1—C10—N20.4 (2)
C8—N1—C5—C6158.54 (16)C5—N1—C10—N2176.52 (16)
C4—C5—C6—C71.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.952.513.458 (2)176
C10—H10A···N2ii0.952.513.449 (2)173
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1/2, z+1.
1-(4-Methoxyphenyl)-1H-imidazole (II) top
Crystal data top
C10H10N2OF(000) = 368
Mr = 174.20Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5663 (12) ÅCell parameters from 8588 reflections
b = 11.2143 (16) Åθ = 2.4–30.4°
c = 9.1635 (13) ŵ = 0.09 mm1
β = 94.448 (2)°T = 125 K
V = 877.6 (2) Å3Plate, colourless
Z = 40.40 × 0.25 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2678 independent reflections
Radiation source: sealed X-ray tube, Bruker APEXII CCD2332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.3333 pixels mm-1θmax = 30.6°, θmin = 2.4°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1615
Tmin = 0.92, Tmax = 0.99l = 1313
21397 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1966P]
where P = (Fo2 + 2Fc2)/3
2678 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.50111 (8)0.64826 (6)0.27442 (7)0.01696 (16)
N20.35189 (9)0.60120 (7)0.07295 (8)0.02110 (17)
O10.98420 (8)0.63969 (6)0.71768 (7)0.02769 (18)
C11.02429 (11)0.53203 (10)0.79493 (10)0.0289 (2)
H1A1.1087530.5479690.870770.043*
H1B1.0592440.4723730.7264260.043*
H1C0.9324030.5018620.8406080.043*
C20.86571 (10)0.63397 (8)0.60922 (9)0.02084 (18)
C30.81994 (11)0.74301 (8)0.54587 (10)0.02479 (19)
H3A0.8707610.8143150.5793840.03*
C40.70105 (11)0.74809 (8)0.43457 (9)0.02198 (18)
H4A0.6707930.8224030.3913760.026*
C50.62626 (10)0.64337 (7)0.38651 (9)0.01708 (17)
C60.67205 (10)0.53468 (7)0.44827 (9)0.01901 (17)
H6A0.6212150.4635030.4143180.023*
C70.79220 (10)0.52919 (8)0.55986 (9)0.02071 (18)
H7A0.8235650.4546530.6017770.025*
C80.37965 (10)0.72974 (7)0.26290 (9)0.01978 (18)
H8A0.3624140.7936920.3277190.024*
C90.28976 (10)0.69928 (8)0.13921 (9)0.02107 (18)
H9A0.1971980.7398440.103490.025*
C100.47846 (10)0.57358 (7)0.15758 (9)0.01911 (18)
H10A0.5459590.5090190.1390870.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0198 (3)0.0156 (3)0.0153 (3)0.0015 (2)0.0003 (2)0.0014 (2)
N20.0226 (4)0.0219 (4)0.0183 (3)0.0020 (3)0.0011 (3)0.0016 (3)
O10.0249 (3)0.0327 (4)0.0239 (3)0.0069 (3)0.0077 (3)0.0039 (3)
C10.0249 (4)0.0389 (5)0.0222 (4)0.0024 (4)0.0028 (3)0.0082 (4)
C20.0194 (4)0.0251 (4)0.0178 (4)0.0035 (3)0.0003 (3)0.0010 (3)
C30.0271 (4)0.0204 (4)0.0260 (4)0.0055 (3)0.0037 (3)0.0010 (3)
C40.0264 (4)0.0162 (4)0.0228 (4)0.0015 (3)0.0013 (3)0.0004 (3)
C50.0188 (4)0.0176 (4)0.0148 (3)0.0004 (3)0.0009 (3)0.0006 (3)
C60.0205 (4)0.0167 (4)0.0195 (4)0.0014 (3)0.0001 (3)0.0001 (3)
C70.0214 (4)0.0205 (4)0.0200 (4)0.0013 (3)0.0001 (3)0.0031 (3)
C80.0231 (4)0.0166 (4)0.0197 (4)0.0034 (3)0.0024 (3)0.0010 (3)
C90.0211 (4)0.0209 (4)0.0211 (4)0.0037 (3)0.0005 (3)0.0011 (3)
C100.0221 (4)0.0181 (4)0.0170 (3)0.0018 (3)0.0004 (3)0.0031 (3)
Geometric parameters (Å, º) top
N1—C101.3612 (10)C3—C41.3854 (12)
N1—C81.3827 (10)C3—H3A0.9500
N1—C51.4271 (10)C4—C51.3928 (11)
N2—C101.3200 (10)C4—H4A0.9500
N2—C91.3828 (11)C5—C61.3876 (11)
O1—C21.3658 (10)C6—C71.3947 (11)
O1—C11.4279 (12)C6—H6A0.9500
C1—H1A0.9800C7—H7A0.9500
C1—H1B0.9800C8—C91.3634 (11)
C1—H1C0.9800C8—H8A0.9500
C2—C71.3920 (12)C9—H9A0.9500
C2—C31.3967 (12)C10—H10A0.9500
C10—N1—C8106.62 (7)C5—C4—H4A120.3
C10—N1—C5126.57 (7)C6—C5—C4120.21 (8)
C8—N1—C5126.81 (7)C6—C5—N1120.01 (7)
C10—N2—C9104.78 (7)C4—C5—N1119.78 (7)
C2—O1—C1117.23 (7)C5—C6—C7120.46 (7)
O1—C1—H1A109.5C5—C6—H6A119.8
O1—C1—H1B109.5C7—C6—H6A119.8
H1A—C1—H1B109.5C2—C7—C6119.38 (8)
O1—C1—H1C109.5C2—C7—H7A120.3
H1A—C1—H1C109.5C6—C7—H7A120.3
H1B—C1—H1C109.5C9—C8—N1105.73 (7)
O1—C2—C7124.61 (8)C9—C8—H8A127.1
O1—C2—C3115.48 (8)N1—C8—H8A127.1
C7—C2—C3119.91 (8)C8—C9—N2110.64 (7)
C4—C3—C2120.57 (8)C8—C9—H9A124.7
C4—C3—H3A119.7N2—C9—H9A124.7
C2—C3—H3A119.7N2—C10—N1112.23 (7)
C3—C4—C5119.47 (8)N2—C10—H10A123.9
C3—C4—H4A120.3N1—C10—H10A123.9
C1—O1—C2—C76.43 (13)N1—C5—C6—C7178.75 (7)
C1—O1—C2—C3174.10 (8)O1—C2—C7—C6179.88 (8)
O1—C2—C3—C4179.87 (8)C3—C2—C7—C60.68 (13)
C7—C2—C3—C40.38 (14)C5—C6—C7—C20.19 (13)
C2—C3—C4—C50.41 (14)C10—N1—C8—C90.16 (9)
C3—C4—C5—C60.91 (13)C5—N1—C8—C9179.98 (7)
C3—C4—C5—N1178.46 (7)N1—C8—C9—N20.15 (10)
C10—N1—C5—C644.15 (12)C10—N2—C9—C80.07 (10)
C8—N1—C5—C6136.07 (9)C9—N2—C10—N10.03 (10)
C10—N1—C5—C4136.49 (9)C8—N1—C10—N20.12 (10)
C8—N1—C5—C443.30 (12)C5—N1—C10—N2179.94 (7)
C4—C5—C6—C70.61 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N2i0.952.553.4391 (11)157
C9—H9A···O1ii0.952.563.3048 (11)136
C10—H10A···N2iii0.952.523.3004 (11)140
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y+3/2, z1/2; (iii) x+1, y+1, z.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the U.S. National Science Foundation.

Funding information

Funding for this research was provided by: National Science Foundation (grant Nos. 0521237 and 0911324 to J. M. Tanski).

References

First citationAnanthu, S., Aneeja, T. & Anilkumar, G. (2021). ChemistrySelect, 6, 9794–9805.  CrossRef CAS Google Scholar
First citationBejan, D., Bahrin, L. G., Shova, S., Sardaru, M., Clima, L., Nicolescu, A., Marangoci, N., Lozan, V. & Janiak, C. (2018). Inorg. Chim. Acta, 482, 275–283.  CrossRef CAS Google Scholar
First citationBruker (2013). SAINT and APEX3. Bruxer AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruxer AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, B., Ma, L., Huang, Z., Ma, X. & Tian, H. (2021). Sci. Adv. 7, eabf9668.  CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmel'yanenko, V. N., Kaliner, M., Strassner, T. & Verevkin, S. P. (2017). Fluid Phase Equilib. 433, 40–49.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Masoom Yasinzai, M. & Parvez, M. (2009). Eur. J. Med. Chem. 44, 4654–4660.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIbrahim, H., Bala, M. D. & Omondi, B. (2012). Acta Cryst. E68, o2305.  CSD CrossRef IUCr Journals Google Scholar
First citationKhattri, R. B., Morris, D. L., Davis, C. M., Bilinovich, S. M., Caras, A. J., Panzner, M. J., Debord, M. A. & Leeper, T. C. (2016). Molecules, pp. 21.  Google Scholar
First citationLiang, L., Li, Z. & Zhou, X. (2009). Org. Lett. 11, 3294–3297.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerritt, H. & Tanski, J. M. (2018). J. Chem. Crystallogr. 48, 109–116.  CrossRef CAS Google Scholar
First citationMilenković, M. R., Papastavrou, A. T., Radanović, D., Pevec, A., Jagličić, Z., Zlatar, M., Gruden, M., Vougioukalakis, G. C., Turel, I., Anđelković, K. & Čobeljić, B. (2019). Polyhedron, 165, 22–30.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchröder, K., Enthaler, S., Bitterlich, B., Schulz, T., Spannenberg, A., Tse, M. K., Junge, K. & Beller, M. (2009). Chem. Eur. J. 15, 5471–5481.  Web of Science PubMed Google Scholar
First citationShalini, K., Sharma, P. K. & Kumar, N. (2010). Der Chem. Sinica, 1, 6–47.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXi, Z., Liu, F., Zhou, Y. & Chen, W. (2008). Tetrahedron, 64, 4254–4259.  CrossRef CAS Google Scholar
First citationZheng, Z., Geng, W.-Q., Wu, Z.-C. & Zhou, H.-P. (2011). Acta Cryst. E67, o524.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds