research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld-surface analysis of a monoclinic polymorph of 2-amino-5-chloro­benzo­phenone oxime at 90 K

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Government Science College, Hassan-573 201, India, cT. John Institute of Technology, Bengaluru-560 083, India, and dDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 19 May 2023; accepted 26 May 2023; online 6 June 2023)

The synthesis and crystal structure of a monoclinic polymorph of 2-amino-5-chloro­benzo­phenone oxime, C13H11ClN2O, are presented. The mol­ecular conformation results from twisting of the phenyl and 2-amino-5-chloro benzene rings attached to the oxime group, which subtend a dihedral angle of 80.53 (4)°. In the crystal, centrosymmetric dimers are formed as a result of pairs of strong O—H⋯N hydrogen bonds. A comparison is made to a previously known triclinic polymorph, including differences in atom–atom contacts obtained via a Hirshfeld-surface analysis.

1. Chemical context

2-Amino-5-chloro­benzo­phenone is an ecologically friendly cross-linking agent. Benzo­phenone and related compounds have been reported to act as anti-allergic, anti-inflammatory, anti-asthmatic, and anti-anaphylactic agents (Evans et al., 1987[Evans, D., Cracknell, M. E., Saunders, J. C., Smith, C. E., Williamson, W. R. N., Dawson, W. & Sweatman, W. J. F. (1987). J. Med. Chem. 30, 1321-1327.]; Wiesner et al., 2002[Wiesner, J., Kettler, K., Jomaa, H. & Schlitzer, M. (2002). Bioorg. Med. Chem. Lett. 12, 543-545.]; Sieron et al., 2004[Sieroń, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). Acta Cryst. E60, o1889-o1891.]). Benzo­phenone derivatives are widely used in sunscreen lotions, offering UV-A and UV-B protection (Deleu et al., 1992[Deleu, H., Maes, M. & Roelandts, R. (1992). Photodermatol. Photoimmunol. Photomed. 9, 29-32.]). 2-Amino-5-chloro­benzo­phenone is used to produce inter­mediates for the synthesis of oxazolam drugs and inter­mediates for psychotherapeutic agents, such as chloro­diazepoxide and diazepam (Sternbach & Reeder, 1961a[Sternbach, L. H. & Reeder, E. (1961a). J. Org. Chem. 26, 1111-1118.],b[Sternbach, L. H. & Reeder, E. (1961b). J. Org. Chem. 26, 4936-4941.]). 2-Amino­benzo­phenone and its derivatives have importance because of their applications in heterocyclic synthesis and medicines (Walsh, 1980[Walsh, D. A. (1980). Synthesis, pp. 677-688.]) and are also used as anti-mitotic agents (Liou et al., 2002[Liou, J. P., Chang, C. W., Song, J. S., Yang, Y. N., Yeh, C. F., Tseng, H. Y., Lo, Y. K., Chang, Y. L., Chang, C. M. & Hsieh, H. P. (2002). J. Med. Chem. 45, 2556-2562.]). The growth and characterization of 2-amino-5-chloro­benzo­phenone single crystals was reported by Mohamed et al. (2007[Gulam Mohamed, M., Rajarajan, K., Mani, G., Vimalan, M., Prabha, K., Madhavan, J. & Sagayaraj, P. (2007). J. Cryst. Growth, 300, 409-414.]). Synthesis, herbicidal evaluation and structure–activity relationships of some benzo­phenone oxime ether derivatives was reported by Ma et al. (2015[Ma, J., Ma, M., Sun, L., Zeng, Z. & Jiang, H. (2015). J. Chem. 2015 Article ID 435219.]). The synthesis, physicochemical, and bio­logical evaluation of 2-amino-5-chloro­benzo­phenone derivatives as potent skeletal muscle relaxants was reported by Singh et al. (2015[Singh, R. K., Devi, S. & Prasad, D. N. (2015). Arab. J. Chem. 8, 307-312.]). Details of synthetic methodologies and the pharmacological significance of 2-amino­benzo­phenones as versatile building blocks was published by Chaudhary et al. (2018[Chaudhary, S., Sharda, S., Prasad, D. N., Kumar, S. & Singh, R. K. (2018). Asia. J. Org. Med. Chem. 3, 107-115.]). The reactivity of oximes for diverse methodologies and synthetic applications was recently reported by Rykaczewski et al. (2022[Rykaczewski, K. A., Wearing, E. R., Blackmun, D. E. & Schindler, C. S. (2022). Nat. Synth. 1, 24-36.]). In view of the general importance of benzo­phenone derivatives and those of 2-amino-5-chloro­benzo­phenone in particular, this paper reports the 90 K crystal structure and Hirshfeld-surface studies of a monoclinic form of 2-amino-5-chloro­benzo­phenone oxime, C13H11ClN2O, mon-2A-5CBO. A triclinic polymorph was recently published as a CSD communication (refcode REZSIB) by Lanzilotto, Housecroft et al. (2018[Lanzilotto, A., Housecroft, C. E., Constable, E. C. & Prescimone, A. (2018). CSD Communication (refcode REZSIB). CCDC, Cambridge, England.]). Some comparisons between the two crystal structures are presented.

[Scheme 1]

2. Structural commentary

The overall conformation of the mon-2A-5CBO mol­ecule (Fig. 1[link]) is determined by torsion angles about the C6—C7 and C7—C8 bonds that connect the chloro­aniline and phenyl rings to the oxime carbon, C7. These are held in check by an intra-mol­ecular hydrogen bond, N1—H1NA⋯O1 [dD⋯A = 2.8875 (19) Å, Table 1[link]]. These torsion angles result in a dihedral angle between the two rings of 80.53 (4)°. The conformation defining torsion and dihedral angles are gathered in Table 2[link] along with those of the triclinic polymorph, REZSIB (Lanzilotto, Housecroft et al., 2018[Lanzilotto, A., Housecroft, C. E., Constable, E. C. & Prescimone, A. (2018). CSD Communication (refcode REZSIB). CCDC, Cambridge, England.]). The conformations of the 2A-5CBO mol­ecules in the two polymorphs are quite similar, as shown by the overlay plot in Fig. 2[link]. The r.m.s. deviation obtained from a weighted least-squares fit of all non-hydrogen atoms using OFIT in SHELXTL-XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) is only 0.1315 Å, with the largest deviation being 0.267 Å for C12.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O1 0.91 (2) 2.23 (2) 2.8875 (19) 128.7 (16)
O1—H1O⋯N2i 0.95 (2) 1.84 (2) 2.7411 (16) 156.4 (19)
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 2
Comparison of conformation-defining torsion and dihedral angles (°) in mon-2A-5CBO and CSD entry REZSIB

  mon-2A-5CBO REZSIBa,b
Torsion angle    
N1—C1—C6—C7 −1.3 (2) −5.6
C1—C6—C7—N2 60.8 (2) 56.7
C6—C7—N2—O1 0.5 (2) 7.8
Dihedral angle    
C1–C6/C8–C13 80.53 (4) 75.82
Notes: (a) The numbering scheme in REZSIB is different from mon-2A-5CBO; (b) Values from Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), therefore there are no SUs.
[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of mon-2A-5CBO. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line.
[Figure 2]
Figure 2
A least-squares fit overlay of mon-2A-5CBO and the triclinic polymorph REZSIB (red).

3. Supra­molecular features

The main supra­molecular constructs in the mon-2A-5CBO crystal structure are R22(6) centrosymmetric dimers that result from pairs (O1—H1O⋯N2inv and O1inv—H1Oinv⋯N2, inv = 1 − x, 1 − y, 1 − z) of strong hydrogen bonds [dD⋯A = 2.7411 (16) Å, Table 1[link]]. These are shown as dashed lines in Fig. 3[link] along with a representation of the Hirshfeld surface, as generated by CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), on which the hydrogen bonds are responsible for the prominent red spots. Similar dimer motifs are present in REZSIB. The most striking difference in packing between the two polymorphs is that REZSIB exhibits slip-stacked ππ overlap [inter­planar separation = 3.340 (2) Å, centroid–centroid distance = 3.897 (2) Å] of inversion-related (1 − x, −y, 1 − z) chloro­aniline rings, whereas mon-2A-5CBO does not. Hirshfeld surface 2D-fingerprint plots for mon-2A-5CBO are shown in Fig. 4[link] and the differences in contacts between the polymorphs are summarized in Table 3[link].

Table 3
Atom–atom contact coverages (%) for polymorphs mon-2A-5CBO and REZSIB

Atom contactsa mon-2A-5CBO REZSIB
H⋯H 38.6 43.6
H⋯C 27.1 17.6
H⋯Cl 15.8 13.6
H⋯N 7.8 8.8
H⋯O 5.1 6.4
C⋯Cl 4.4 6.0
C⋯C 0.0 3.9
Note: (a) Includes reciprocal contacts. All other contact percentages are negligible.
[Figure 3]
Figure 3
A partial packing plot of mon-2A-5CBO viewed approximately down the b-axis showing the Hirshfeld surface (left) and the R22(6) centrosymmetric dimer formed by pairs of O—H⋯N hydrogen bonds (dashed lines and prominent red spots).
[Figure 4]
Figure 4
Hirshfeld surface two-dimensional fingerprint plots of mon-2A-5CBO showing (a) H⋯H, (b) H⋯C, (c) H⋯Cl, (d) H⋯N, (e) H⋯O, and (f) C⋯Cl close contacts.

4. Database survey

A survey of the Cambridge Structural Database (CSD: v5.43 including all updates through November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned 5507 hits for a search fragment consisting of unsubstituted benzo­phenone. A search using benzo­phenone oxime as the probe, however, returned only 35 entries. Of these, ten have a nitro­gen-bound functional group at the ortho-position of one of the benzene rings, while six have `any halogen' attached at one of the meta-positions. In only two structures is this halogen a chlorine atom: YIFCIC (Lanzilotto, Prescimone et al., 2018[Lanzilotto, A., Prescimone, A., Constable, E. C. & Housecroft, C. E. (2018). CSD Communication (refcode YIFCIC). CCDC, Cambridge, England.]), C15H11Cl2FN2O2, systematic name 2-chloro-N-{4-chloro-2-[(2-fluoro­phen­yl)(hy­droxy­imino)­meth­yl]phen­yl}acetamide and REZSIB (Lanzilotto, Housecroft et al., 2018[Lanzilotto, A., Housecroft, C. E., Constable, E. C. & Prescimone, A. (2018). CSD Communication (refcode REZSIB). CCDC, Cambridge, England.]), the triclinic (P[\overline{1}]) polymorph of the monoclinic (P21/n) 2A-5CBO crystal structure described herein.

Some other related crystal structures include 2-amino-5-chloro­benzo­phenone as monoclinic (NUVFAL; Vasco-Mendez et al., 1996[Vasco-Mendez, N. L., Panneerselvam, K., Rudino-Pinera, E. & Soriano-Garcia, M. (1996). Anal. Sci. 12, 677-678.]) and triclinic (NUVFAL02; Javed et al., 2018[Javed, S., Faizi, M. S. H., Nazia, S. & Iskenderov, T. (2018). IUCrData, 3, x181444.]) polymorphs, benzo­phenone oxime (XULKUK; Sharutin et al., 2002[Sharutin, V. V., Sharutina, O. K., Molokova, O. V., Ettenko, E. N., Krivolapov, D. B., Gubaidullin, A. T. & Litvinov, I. A. (2002). Zh. Obshch. Khim. 72, 893-898.]), and 2-benzo­yloxy-5-methyl­benzo­phenone (OCAMOV; Sieron et al., 2004[Sieroń, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). Acta Cryst. E60, o1889-o1891.]).

5. Synthesis and crystallization

The synthesis of 2A-5CBO (Fig. 5[link]) was by a modification of Beckmann's conversion of benzo­phenone to benzo­phenone oxime (Beckmann, 1886[Beckmann, E. (1886). Ber. Dtsch. Chem. Ges. 19, 988-993.]). In a 100 ml round-bottom flask fitted with a magnetic stirrer was placed a mixture of 100 mmol (23.2 g) of 2-amino-5-chloro­benzo­phenone, 120 mmol (7 g) of hydroxyl­amine hydro­chloride in 10 ml of ethanol. To this stirred mixture, 0.5 g of sodium hydroxide pellets was added in small portions. When the reaction became vigorous, the flask was placed in an ice bath. A condenser was attached to the flask and the mixture was refluxed for 5 minutes on a steam bath. The solution was cooled and poured into a beaker containing 5 ml of hydro­chloric acid and crushed ice. This was stirred until a precipitate formed. After filtering the precipitate with suction and washing with cold distilled water, the product was spread out on filter paper and air dried. The yield was 87%. X-ray quality crystals were obtained from methanol by slow evaporation (m.p.: 390–393 K).

[Figure 5]
Figure 5
A general reaction scheme for the formation of 2A-5CBO.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All hydrogen atoms were found in difference-Fourier maps. Those bound to carbon were subsequently included in the refinement using a riding model, with constrained distances fixed at 0.95 Å and Uiso(H) values set to 1.2Ueq of the attached atom. The amine and oxime hydrogen atoms were refined freely.

Table 4
Experimental details

Crystal data
Chemical formula C13H11ClN2O
Mr 246.69
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 12.8264 (3), 5.5423 (1), 17.4082 (4)
β (°) 109.522 (1)
V3) 1166.37 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.30 × 0.24 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.924, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 26003, 2680, 2294
Rint 0.042
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.05
No. of reflections 2680
No. of parameters 166
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.27
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.])'.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010)'.

4-Chloro-2-[(hydroxyimino)(phenyl)methyl]aniline top
Crystal data top
C13H11ClN2OF(000) = 512
Mr = 246.69Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.8264 (3) ÅCell parameters from 9975 reflections
b = 5.5423 (1) Åθ = 2.5–27.5°
c = 17.4082 (4) ŵ = 0.31 mm1
β = 109.522 (1)°T = 90 K
V = 1166.37 (4) Å3Semi-regular block, pale yellow
Z = 40.30 × 0.24 × 0.02 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
2680 independent reflections
Radiation source: microsource2294 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.042
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.924, Tmax = 0.971k = 77
26003 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.6832P]
where P = (Fo2 + 2Fc2)/3
2680 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63274 (3)0.54249 (7)0.94134 (2)0.03072 (12)
O10.58250 (8)0.6496 (2)0.57328 (6)0.0249 (2)
H1O0.5830 (17)0.572 (4)0.5245 (14)0.055 (6)*
N10.58120 (12)1.1196 (3)0.64451 (9)0.0292 (3)
H1NA0.5690 (15)1.042 (4)0.5962 (12)0.037 (5)*
H1NB0.6301 (17)1.238 (4)0.6523 (12)0.045 (6)*
N20.47023 (9)0.6201 (2)0.56650 (7)0.0198 (3)
C10.59550 (11)0.9785 (3)0.71326 (9)0.0203 (3)
C20.66473 (11)1.0555 (3)0.79012 (9)0.0235 (3)
H20.7055571.2008300.7942900.028*
C30.67496 (11)0.9256 (3)0.85971 (9)0.0223 (3)
H30.7209220.9830380.9113370.027*
C40.61783 (11)0.7109 (3)0.85389 (8)0.0197 (3)
C50.54751 (10)0.6311 (3)0.77926 (8)0.0172 (3)
H50.5073910.4851900.7760170.021*
C60.53533 (10)0.7638 (3)0.70891 (8)0.0165 (3)
C70.45154 (10)0.6753 (2)0.63216 (8)0.0165 (3)
C80.33591 (10)0.6438 (2)0.63101 (7)0.0156 (3)
C90.29101 (11)0.8182 (3)0.66846 (8)0.0189 (3)
H90.3352500.9500140.6958880.023*
C100.18202 (11)0.8003 (3)0.66587 (9)0.0226 (3)
H100.1513950.9209690.6907120.027*
C110.11782 (11)0.6062 (3)0.62701 (9)0.0229 (3)
H110.0430420.5944350.6249670.028*
C120.16249 (12)0.4292 (3)0.59117 (9)0.0226 (3)
H120.1186680.2949620.5653750.027*
C130.27141 (11)0.4477 (3)0.59285 (8)0.0189 (3)
H130.3017680.3265850.5679640.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0381 (2)0.0335 (2)0.01636 (17)0.00308 (17)0.00354 (14)0.00155 (15)
O10.0139 (5)0.0399 (7)0.0236 (5)0.0007 (4)0.0097 (4)0.0040 (5)
N10.0323 (7)0.0244 (7)0.0325 (7)0.0064 (6)0.0128 (6)0.0057 (6)
N20.0127 (5)0.0282 (7)0.0205 (6)0.0008 (5)0.0081 (4)0.0002 (5)
C10.0172 (6)0.0191 (7)0.0269 (7)0.0009 (5)0.0105 (5)0.0007 (6)
C20.0178 (6)0.0199 (7)0.0342 (8)0.0042 (6)0.0107 (6)0.0058 (6)
C30.0149 (6)0.0262 (8)0.0247 (7)0.0012 (5)0.0051 (5)0.0081 (6)
C40.0177 (6)0.0235 (7)0.0176 (6)0.0017 (5)0.0057 (5)0.0005 (5)
C50.0142 (6)0.0178 (7)0.0200 (6)0.0010 (5)0.0063 (5)0.0023 (5)
C60.0132 (6)0.0182 (7)0.0192 (6)0.0009 (5)0.0069 (5)0.0019 (5)
C70.0158 (6)0.0167 (7)0.0172 (6)0.0018 (5)0.0060 (5)0.0020 (5)
C80.0153 (6)0.0188 (7)0.0135 (6)0.0016 (5)0.0057 (5)0.0029 (5)
C90.0194 (6)0.0191 (7)0.0191 (6)0.0007 (5)0.0077 (5)0.0010 (5)
C100.0209 (7)0.0246 (8)0.0260 (7)0.0029 (6)0.0128 (6)0.0001 (6)
C110.0158 (6)0.0295 (8)0.0248 (7)0.0003 (6)0.0086 (5)0.0053 (6)
C120.0211 (7)0.0240 (8)0.0216 (7)0.0059 (6)0.0055 (5)0.0002 (6)
C130.0207 (6)0.0197 (7)0.0171 (6)0.0003 (5)0.0073 (5)0.0001 (5)
Geometric parameters (Å, º) top
Cl1—C41.7409 (14)C5—H50.9500
O1—N21.4145 (14)C6—C71.4903 (18)
O1—H1O0.95 (2)C7—C81.4869 (17)
N1—C11.3894 (19)C8—C131.3927 (19)
N1—H1NA0.91 (2)C8—C91.3937 (19)
N1—H1NB0.89 (2)C9—C101.3871 (18)
N2—C71.2809 (17)C9—H90.9500
C1—C21.402 (2)C10—C111.386 (2)
C1—C61.4065 (19)C10—H100.9500
C2—C31.377 (2)C11—C121.385 (2)
C2—H20.9500C11—H110.9500
C3—C41.383 (2)C12—C131.3913 (19)
C3—H30.9500C12—H120.9500
C4—C51.3834 (18)C13—H130.9500
C5—C61.3920 (19)
N2—O1—H1O100.5 (13)C1—C6—C7123.03 (12)
C1—N1—H1NA117.7 (13)N2—C7—C8116.31 (12)
C1—N1—H1NB113.8 (13)N2—C7—C6125.78 (12)
H1NA—N1—H1NB112.5 (17)C8—C7—C6117.90 (11)
C7—N2—O1112.76 (11)C13—C8—C9119.48 (12)
N1—C1—C2120.65 (14)C13—C8—C7121.94 (12)
N1—C1—C6121.17 (13)C9—C8—C7118.58 (12)
C2—C1—C6118.03 (13)C10—C9—C8120.30 (13)
C3—C2—C1121.59 (13)C10—C9—H9119.9
C3—C2—H2119.2C8—C9—H9119.9
C1—C2—H2119.2C11—C10—C9119.97 (13)
C2—C3—C4119.53 (13)C11—C10—H10120.0
C2—C3—H3120.2C9—C10—H10120.0
C4—C3—H3120.2C12—C11—C10120.11 (13)
C3—C4—C5120.47 (13)C12—C11—H11119.9
C3—C4—Cl1119.77 (11)C10—C11—H11119.9
C5—C4—Cl1119.76 (11)C11—C12—C13120.14 (13)
C4—C5—C6120.23 (13)C11—C12—H12119.9
C4—C5—H5119.9C13—C12—H12119.9
C6—C5—H5119.9C12—C13—C8119.98 (13)
C5—C6—C1120.10 (12)C12—C13—H13120.0
C5—C6—C7116.75 (12)C8—C13—H13120.0
N1—C1—C2—C3176.07 (13)C1—C6—C7—N260.8 (2)
C6—C1—C2—C30.5 (2)C5—C6—C7—C855.87 (17)
C1—C2—C3—C41.5 (2)C1—C6—C7—C8120.15 (14)
C2—C3—C4—C52.5 (2)N2—C7—C8—C1339.36 (18)
C2—C3—C4—Cl1178.60 (11)C6—C7—C8—C13139.76 (13)
C3—C4—C5—C61.4 (2)N2—C7—C8—C9139.76 (13)
Cl1—C4—C5—C6179.73 (10)C6—C7—C8—C941.12 (17)
C4—C5—C6—C10.7 (2)C13—C8—C9—C101.7 (2)
C4—C5—C6—C7175.41 (12)C7—C8—C9—C10177.41 (12)
N1—C1—C6—C5177.17 (13)C8—C9—C10—C111.0 (2)
C2—C1—C6—C51.63 (19)C9—C10—C11—C120.4 (2)
N1—C1—C6—C71.3 (2)C10—C11—C12—C131.1 (2)
C2—C1—C6—C7174.25 (12)C11—C12—C13—C80.3 (2)
O1—N2—C7—C8178.54 (11)C9—C8—C13—C121.05 (19)
O1—N2—C7—C60.5 (2)C7—C8—C13—C12178.07 (12)
C5—C6—C7—N2123.16 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O10.91 (2)2.23 (2)2.8875 (19)128.7 (16)
O1—H1O···N2i0.95 (2)1.84 (2)2.7411 (16)156.4 (19)
Symmetry code: (i) x+1, y+1, z+1.
Comparison of conformation-defining torsion and dihedral angles (°) in mon-2A-5CBO and CSD entry REZSIB top
mon-2A-5CBOREZSIBa,b
Torsion angle
N1—C1—C6—C7-1.3 (2)-5.6
C1—C6—C7—N260.8 (2)56.7
C6—C7—N2—O10.5 (2)7.8
Dihedral angle
C1–C6/C8–C1380.53 (4)75.82
Notes: (a) The numbering scheme in REZSIB is different from mon-2A-5CBO; (b) Values from Mercury (Macrae et al., 2020), therefore there are no SUs.
Atom–atom contact coverages (%) for polymorphs mon-2A-5CBO and REZSIB top
Atom contactsamon-2A-5CBOREZSIB
H···H38.643.6
H···C27.117.6
H···Cl15.813.6
H···N7.88.8
H···O5.16.4
C···Cl4.46.0
C···C0.03.9
Note: (a) Includes reciprocal contacts. All other contact percentages are negligible.
 

Acknowledgements

DG is grateful to DOS in Chemistry, University of Mysore for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1625732 to SP).

References

First citationBeckmann, E. (1886). Ber. Dtsch. Chem. Ges. 19, 988–993.  CrossRef Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, S., Sharda, S., Prasad, D. N., Kumar, S. & Singh, R. K. (2018). Asia. J. Org. Med. Chem. 3, 107–115.  CrossRef Google Scholar
First citationDeleu, H., Maes, M. & Roelandts, R. (1992). Photodermatol. Photoimmunol. Photomed. 9, 29–32.  PubMed CAS Web of Science Google Scholar
First citationEvans, D., Cracknell, M. E., Saunders, J. C., Smith, C. E., Williamson, W. R. N., Dawson, W. & Sweatman, W. J. F. (1987). J. Med. Chem. 30, 1321–1327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGulam Mohamed, M., Rajarajan, K., Mani, G., Vimalan, M., Prabha, K., Madhavan, J. & Sagayaraj, P. (2007). J. Cryst. Growth, 300, 409–414.  Web of Science CrossRef Google Scholar
First citationJaved, S., Faizi, M. S. H., Nazia, S. & Iskenderov, T. (2018). IUCrData, 3, x181444.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLanzilotto, A., Housecroft, C. E., Constable, E. C. & Prescimone, A. (2018). CSD Communication (refcode REZSIB). CCDC, Cambridge, England.  Google Scholar
First citationLanzilotto, A., Prescimone, A., Constable, E. C. & Housecroft, C. E. (2018). CSD Communication (refcode YIFCIC). CCDC, Cambridge, England.  Google Scholar
First citationLiou, J. P., Chang, C. W., Song, J. S., Yang, Y. N., Yeh, C. F., Tseng, H. Y., Lo, Y. K., Chang, Y. L., Chang, C. M. & Hsieh, H. P. (2002). J. Med. Chem. 45, 2556–2562.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, J., Ma, M., Sun, L., Zeng, Z. & Jiang, H. (2015). J. Chem. 2015 Article ID 435219.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRykaczewski, K. A., Wearing, E. R., Blackmun, D. E. & Schindler, C. S. (2022). Nat. Synth. 1, 24–36.  CrossRef Google Scholar
First citationSharutin, V. V., Sharutina, O. K., Molokova, O. V., Ettenko, E. N., Krivolapov, D. B., Gubaidullin, A. T. & Litvinov, I. A. (2002). Zh. Obshch. Khim. 72, 893–898.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSieroń, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). Acta Cryst. E60, o1889–o1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSingh, R. K., Devi, S. & Prasad, D. N. (2015). Arab. J. Chem. 8, 307–312.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSternbach, L. H. & Reeder, E. (1961a). J. Org. Chem. 26, 1111–1118.  CrossRef CAS Web of Science Google Scholar
First citationSternbach, L. H. & Reeder, E. (1961b). J. Org. Chem. 26, 4936–4941.  CrossRef CAS Web of Science Google Scholar
First citationVasco-Mendez, N. L., Panneerselvam, K., Rudino-Pinera, E. & Soriano-Garcia, M. (1996). Anal. Sci. 12, 677–678.  CAS Google Scholar
First citationWalsh, D. A. (1980). Synthesis, pp. 677–688.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiesner, J., Kettler, K., Jomaa, H. & Schlitzer, M. (2002). Bioorg. Med. Chem. Lett. 12, 543–545.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds