research communications
Structure of (R,R)-4-bromo-2-{4-[4-bromo-1-(4-toluenesulfonyl)-1H-pyrrol-2-yl]-1,3-dinitrobutan-2-yl}-1-(4-toluenesulfonyl)-1H-pyrrole, another ostensible by-product in the synthesis of geminal-dimethyl hydrodipyrrins
aSchool of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., D02 R590, Dublin, Ireland, and bSchool of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
*Correspondence e-mail: sampleh@tcd.ie
The R,R)-4-bromo-2-{4-[4-bromo-1-(4-toluenesulfonyl)-1H-pyrrol-2-yl]-1,3-dinitrobutan-2-yl}-1-(4-toluenesulfonyl)-1H-pyrrole (1, C26H24Br2N4O8S2) is presented. The title compound was isolated in suitable yield as a by-product in our synthesis of geminal-dimethyl hydrodipyrrins. We observe an unforeseen enantiomeric resolution both in the bulk sample and the crystal of 1, with distinct C—H⋯O (Cmethyl—H⋯Onitro, Csp3—H⋯Osulfonyl) interactions observed in the enantiomers present, along with other interactions, namely C5-pyrrolyl—H⋯Osulfonyl, forming a polymer along the crystallographic c-axis direction. Whilst pyrrolic fragments are well documented in the literature, little data is found surrounding the 1,3-dinitrobutane scaffold.
of (Keywords: crystal structure; enantiomer; resolution; pyrrole; by-product.
CCDC reference: 2265533
1. Chemical context
geminal-Dimethyl hydroporphyrins were first made a reality via the de novo syntheses of (±)-bonellin presented in the 1980s and 1990s (Dutton et al., 1983; Montforts & Schwartz, 1991). However, for modern oxidation-resistant chlorins, we look to the Lindsey group (Lindsey, 2015). Beginning at the turn of the century (Strachan et al., 2000), their extension of Battersby's thermal route has become the go-to synthesis for oxidation-resistant hydroporphyrins. Since its inception there have been multiple refinements (Ptaszek et al., 2005; Laha et al., 2006; Krayer et al., 2009). Subsequently, this synthesis has found applications in understanding the electronics of the chlorin macrocycle (Mass et al., 2009), the generation of E-ring-functionalized hydroporphyrins (Ptaszek et al., 2010), the generation of hydroporphyrin dimers and arrays (Meares et al., 2015), and taking steps towards generating N-confused oxidation-resistant hydroporphyrins (Xiong et al., 2019).
Noted only once previously is the formation of a by-product, 1 (Krayer et al., 2009). Through our own ventures into the world of hydroporphyrins (Melissari et al., 2020; Kingsbury et al., 2021), we have in one instance generated a suitable amount of dimeric by-product 1, and single crystals therefrom. The of this elusive by-product, obtained in the synthesis of geminal-dimethyl hydrodipyrrins and hydroporphyrins, is described in this work. The structure presented in this work adds to an ever-increasing library of by-products from this field, which includes tricyclic undecane (CSD refcode CAJVUF; Taniguchi et al., 2001) and dihydrooxazine (BESZEI; Tran et al., 2022).
2. Structural commentary
The title compound 1 presents an of one molecule of the title compound with no solvate. Compound 1 was found to crystallize in the orthorhombic system (Pbca, Z = 8). Although a chiral compound, this is a racemate and the is shown in Fig. 1 as (R,R)-stereochemistry. In 1H NMR spectroscopy, along with the respective 2D NMR with analyses undertaken of the same sample, we observe only one set of resonances for the aliphatic nitrobutane system (full 1H, 13C and 1H-13C HSQC NMR spectra are presented in the supporting information). The implication herein is that the sample presented contains the enantiomers (R,R) and (S,S) only, with no other present; see Fig. 2 for the synthetic pathway.
Both pyrrole rings are essentially planar, with RMSD values of 0.009 Å in both instances, and exhibit bond distances comparable with previous data (Kingsbury et al., 2021). Both tosyl groups also exhibit the same conformation, i.e. with the p-tolyl ring coming out of the plane of the pyrrole ring, when viewing the respective pyrrole ring face on, as shown in Fig. 1, with N—S—C angles of 104.36 (9) and 105.26 (10)°, with the larger angle arising in the motif exhibiting an intramolecular Csp3–H⋯Osulfonyl interaction (see Table 1). Despite the hydrogen-bonding interactions present, the O=S=O angle changes minimally 120.34 (10)°, in comparison to 120.86 (11)° for the non-interacting tosyl moiety. The dihedral angle between the pyrrole rings is 72.00 (12)°. The bond distances are within normal ranges (Groom et al., 2016).
Lacking any protic donor or more traditional strong supramolecular interactions, this structure is dominated by weaker C—H⋯O interactions; see Table 1. There are several intramolecular C—H⋯O interactions. In the case of the bifurcated C8⋯O22sulfonyl and C8⋯O31sulfonyl interactions of 3.071 (3) and 3.072 (3) Å, we observe seven-membered ring formation. In another bifurcated intramolecular interaction, C12⋯O15nitro and C12⋯O31sulfonyl, 2.719 (2) and 2.913 (3) Å differing sized rings are formed, with the interaction between methine and nitro motifs yielding a five-membered ring, and a six-membered ring between the methine and sulfonyl motifs. With C13sp3⋯O10nitro at 3.038 (3)Å, we observe one of the two nitro groups forming a six-membered ring with an opposing nitromethyl motif.
We have no mechanistic evidence to rationalize the generation of 1, be it through a non-stereoselective nitronate addition followed by kinetic precipitation to yield 1, or simply through the impossibility of the formation of (R,S)-1 or (S,R)-1 as a direct result of steric interactions between two 1,2,4-trisubstituted pyrrolic motifs.
3. Supramolecular features
Regarding intermolecular interactions, there are several C—H⋯O synthons present involving the nitro motifs. The first is seen with the opposite oxygen to the intramolecular synthon described above, with the bromopyrrole linking to the adjacent nitro group, C21⋯O11ii, 3.459 (3) Å. The second involves the other nitromethyl motif which exhibits a C3⋯O15i interaction of 3.194 (3) Å with an adjacent molecule of the title compound arising from the 5-pyrrolyl position. The other nitro oxygen is involved with the methyl group on the tosyl phenyl ring with C38methyl⋯O16iv, 3.478 (3) Å and this also brings the methyl group into alignment with a neighbouring bromine, C38⋯Br1v, 3.639 (3) Å. These two interactions propagate along the crystallographic c-axis direction, which is shown in Fig. 3, forming loosely associated sheets. These sheets are weakly connected by C27tosyl⋯O10nitroiii, 3.413 (3) Å.
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016) for the 4-bromo-2-(2-nitroethyl)-1λ2-pyrrole subunit reveals only a few hits: HULBIA (Krayer et al., 2009), OXIKAK (Chung et al., 2021) and UNOYOO (Kingsbury et al., 2021). In each of these compounds, the pyrrole is protected by a p-tosylate group, as seen in 1, and bond lengths are similar within the 2-(2-nitroethyl)pyrrole moiety. Widening the parameters to the non-halogenated 2-(2-nitroethyl)-1λ2-pyrrole subunit does reveal several more structures, ranging from asymmetric Friedel–Crafts alkylation products as seen in KETBER (Stadler et al., 2006) and DADYIS (Arai et al., 2011), precursors in the synthesis of bacteriochlorins MIQHOL, MIQHUR (Jiang et al., 2014), OXIJUD (Chung et al., 2021) and CAXLEW (Jing et al., 2022) and building blocks for the synthesis of β-substituted chlorins (QEZCED; Balasubramanian et al., 2000).
A search encompassing the fragment 2-methyl-1,3-dinitrobutane was undertaken and a large number of structures returned, many containing nitro-adamantyl and nitro-cubane motifs (Zhang et al., 2000). Other motifs presented revealed strained geometries, e.g., 1,3-dinitrocyclobutane motifs. There were very few results of suitable structural similarity, those being DISGIX (Singha Roy & Mukherjee, 2014) and WOFJUX (Rabong et al., 2008). Across the series of metrics for these three structures, all values regarding the nitrobutane system are roughly within accordance to those presented herein. As noted vide supra, the pyrrolic fragments remain consistent with data previously reported (Kingsbury et al., 2021).
5. Synthesis and crystallization
Compounds 2 and 3 were synthesized following the reported procedures (Krayer et al., 2009). For 1, crystals were generated via slow evaporation at room temperature of a of 1 in CDCl3. We have previously described the crystallization of 2 (Kingsbury et al., 2021) and currently no structure of 3 has been reported. Compound 1 was obtained in 10% yield from 2, with yields for 3 we typically observe approx. 69%, close to those previously reported (Laha et al., 2006).
1H NMR spectroscopic data matched previously reported compounds 2 and 3. Whilst the isolation of compound 1 has been reported previously, no comment on its stereochemistry has been presented. Below, we present analytical data for (R,R)-1, and within the supporting information, we have attached the appropriate spectra, Figs. S1–S3. Furthermore, we also present the 1H NMR spectra of 2 and 3 overlayed with the 1H NMR spectra of (R,R)-1 for completeness (Fig. S4).
Analytical data for (R,R)-1: 1H NMR (298 K, CDCl3, 600 MHz): δ = 7.77 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.42 (s, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 1.6 Hz, 1H), 6.17 (d, J = 1.0 Hz, 1H), 5.99 (s, 1H), 5.29–5.32 (m, 1H), 4.93–4.96 (m, 1H), 4.77–4.80 (m, 1H), 4.44–4.47 (m, 1H), 3.27–3.30 (m, 1H), 3.07–3.12 (m, 1H), 2.45 (s, 3H), 2.44 (s, 3H) ppm; 13C{1H} NMR (298 K, CDCl3, 151 MHz): δ = 146.8, 146.2, 135.2, 134.6, 130.7 (2), 130.7 (0) 130.6, 128.0, 127.4, 127.0, 123.9, 122.8, 118.5, 117.2, 100.9 (5), 100.9 (3), 87.8, 74.2, 37.8, 27.9, 21.9, 21.8 ppm; HRMS (ESI−) m/z calculated for [C26H24N4O8S2Br2+Cl]−, [M + Cl]−: 776.9096, found: 776.9075; RF = 0.70 (silica, CH2Cl2:C6H14, 3:1); m.p.: 493–496 K (dec.), lit. (Krayer et al., 2009) 388–390 K.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2265533
https://doi.org/10.1107/S2056989023004644/vm2284sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023004644/vm2284Isup2.hkl
PDF Document containing 1H, 13C{1H}, and 1H-13-HSQC NMR Spectra of compound 1, and overlayed 1H NMR spectra of compounds 1, 2, and 3. DOI: https://doi.org/10.1107/S2056989023004644/vm2284sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989023004644/vm2284Isup4.cml
Data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C26H24Br2N4O8S2 | Dx = 1.722 Mg m−3 |
Mr = 744.43 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pbca | Cell parameters from 9744 reflections |
a = 13.9764 (7) Å | θ = 3.7–69.7° |
b = 17.8228 (9) Å | µ = 5.43 mm−1 |
c = 23.0590 (11) Å | T = 100 K |
V = 5744.0 (5) Å3 | Block, colourless |
Z = 8 | 0.41 × 0.14 × 0.13 mm |
F(000) = 2992 |
Bruker APEX2 Kappa Duo diffractometer | 5407 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 5392 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.040 |
Detector resolution: 8.33 pixels mm-1 | θmax = 69.9°, θmin = 3.8° |
ω and φ scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −20→21 |
Tmin = 0.429, Tmax = 0.753 | l = −26→27 |
55114 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0376P)2 + 8.4555P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
5407 reflections | Δρmax = 1.03 e Å−3 |
381 parameters | Δρmin = −1.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.38552 (2) | 0.11603 (2) | 0.78537 (2) | 0.02394 (8) | |
Br2 | 0.26600 (2) | 0.50453 (2) | 0.40962 (2) | 0.04351 (10) | |
C2 | 0.38553 (15) | 0.17833 (13) | 0.71975 (9) | 0.0179 (4) | |
C3 | 0.40706 (16) | 0.25232 (13) | 0.72050 (9) | 0.0196 (4) | |
H3 | 0.422447 | 0.281594 | 0.753638 | 0.024* | |
C5 | 0.37376 (14) | 0.21731 (12) | 0.62743 (9) | 0.0155 (4) | |
C6 | 0.36492 (15) | 0.15580 (12) | 0.66188 (9) | 0.0167 (4) | |
H6 | 0.348050 | 0.106685 | 0.649553 | 0.020* | |
C7 | 0.35869 (14) | 0.22272 (12) | 0.56344 (9) | 0.0159 (4) | |
H7A | 0.322995 | 0.269432 | 0.554982 | 0.019* | |
H7B | 0.318434 | 0.180014 | 0.550858 | 0.019* | |
C8 | 0.45083 (15) | 0.22258 (11) | 0.52779 (9) | 0.0157 (4) | |
H8 | 0.493485 | 0.263372 | 0.542559 | 0.019* | |
C12 | 0.43434 (15) | 0.23502 (11) | 0.46193 (8) | 0.0155 (4) | |
H12 | 0.493947 | 0.219779 | 0.441034 | 0.019* | |
C13 | 0.35197 (17) | 0.18725 (12) | 0.43891 (9) | 0.0203 (4) | |
H13A | 0.356118 | 0.136153 | 0.455558 | 0.024* | |
H13B | 0.290293 | 0.209552 | 0.451093 | 0.024* | |
C17 | 0.41664 (15) | 0.31683 (12) | 0.44962 (8) | 0.0154 (4) | |
C19 | 0.44913 (17) | 0.44091 (12) | 0.43708 (9) | 0.0228 (5) | |
H19 | 0.482321 | 0.487203 | 0.433591 | 0.027* | |
C20 | 0.35401 (18) | 0.42997 (13) | 0.43040 (9) | 0.0236 (5) | |
C21 | 0.33245 (16) | 0.35280 (13) | 0.43881 (9) | 0.0196 (4) | |
H21 | 0.270801 | 0.330445 | 0.437198 | 0.024* | |
C23 | 0.28460 (16) | 0.39795 (12) | 0.64711 (10) | 0.0189 (4) | |
C24 | 0.23767 (17) | 0.40596 (12) | 0.70006 (10) | 0.0233 (5) | |
H24 | 0.269146 | 0.393877 | 0.735365 | 0.028* | |
C25 | 0.14427 (18) | 0.43187 (13) | 0.70024 (11) | 0.0274 (5) | |
H25 | 0.111262 | 0.437031 | 0.736034 | 0.033* | |
C26 | 0.09807 (17) | 0.45044 (13) | 0.64881 (12) | 0.0275 (5) | |
C27 | 0.14605 (17) | 0.44162 (13) | 0.59641 (11) | 0.0254 (5) | |
H27 | 0.114396 | 0.453603 | 0.561148 | 0.031* | |
C28 | 0.23991 (17) | 0.41545 (12) | 0.59498 (10) | 0.0212 (5) | |
H28 | 0.272671 | 0.409680 | 0.559160 | 0.025* | |
C29 | −0.00249 (19) | 0.48175 (15) | 0.65026 (15) | 0.0391 (7) | |
H29A | −0.000681 | 0.533976 | 0.663503 | 0.059* | |
H29B | −0.041680 | 0.451961 | 0.676941 | 0.059* | |
H29C | −0.030263 | 0.479592 | 0.611271 | 0.059* | |
C32 | 0.62371 (14) | 0.34767 (12) | 0.36715 (9) | 0.0180 (4) | |
C33 | 0.63329 (16) | 0.41207 (13) | 0.33356 (10) | 0.0215 (4) | |
H33 | 0.634478 | 0.460162 | 0.351316 | 0.026* | |
C34 | 0.64106 (16) | 0.40521 (13) | 0.27395 (10) | 0.0222 (5) | |
H34 | 0.648336 | 0.448962 | 0.250835 | 0.027* | |
C35 | 0.63835 (15) | 0.33521 (13) | 0.24746 (10) | 0.0212 (4) | |
C36 | 0.63108 (16) | 0.27134 (13) | 0.28224 (10) | 0.0217 (5) | |
H36 | 0.631052 | 0.223194 | 0.264561 | 0.026* | |
C37 | 0.62390 (15) | 0.27679 (13) | 0.34204 (10) | 0.0206 (4) | |
H37 | 0.619199 | 0.233004 | 0.365358 | 0.025* | |
C38 | 0.64096 (18) | 0.32774 (15) | 0.18235 (10) | 0.0280 (5) | |
H38A | 0.576947 | 0.315054 | 0.168054 | 0.042* | |
H38B | 0.685970 | 0.287978 | 0.171515 | 0.042* | |
H38C | 0.661671 | 0.375340 | 0.165169 | 0.042* | |
N4 | 0.40231 (13) | 0.27742 (10) | 0.66314 (8) | 0.0167 (4) | |
N9 | 0.50181 (14) | 0.14805 (11) | 0.53523 (7) | 0.0202 (4) | |
N14 | 0.35545 (15) | 0.18255 (10) | 0.37393 (8) | 0.0222 (4) | |
N18 | 0.48917 (13) | 0.37130 (10) | 0.45008 (8) | 0.0176 (4) | |
O10 | 0.45646 (14) | 0.09033 (10) | 0.52684 (9) | 0.0353 (4) | |
O11 | 0.58591 (13) | 0.14916 (11) | 0.54810 (9) | 0.0350 (4) | |
O15 | 0.43320 (13) | 0.18728 (10) | 0.34992 (7) | 0.0294 (4) | |
O16 | 0.28002 (15) | 0.17100 (12) | 0.34869 (8) | 0.0381 (5) | |
O21 | 0.45337 (12) | 0.40320 (9) | 0.69459 (7) | 0.0260 (4) | |
O22 | 0.44181 (11) | 0.37517 (9) | 0.58944 (7) | 0.0218 (3) | |
O30 | 0.65028 (13) | 0.42732 (11) | 0.45989 (8) | 0.0321 (4) | |
O31 | 0.63020 (11) | 0.28973 (10) | 0.47091 (7) | 0.0252 (4) | |
S1 | 0.40504 (4) | 0.36902 (3) | 0.64696 (2) | 0.01761 (12) | |
S2 | 0.60804 (4) | 0.35847 (3) | 0.44193 (2) | 0.02007 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02037 (13) | 0.03358 (15) | 0.01786 (13) | 0.00193 (9) | 0.00022 (8) | 0.01063 (9) |
Br2 | 0.0594 (2) | 0.03287 (16) | 0.03827 (17) | 0.02900 (14) | −0.02077 (14) | −0.01200 (11) |
C2 | 0.0139 (10) | 0.0252 (11) | 0.0147 (10) | 0.0040 (8) | 0.0017 (7) | 0.0048 (8) |
C3 | 0.0190 (10) | 0.0276 (11) | 0.0124 (10) | 0.0041 (9) | −0.0011 (8) | −0.0009 (8) |
C5 | 0.0131 (9) | 0.0194 (10) | 0.0141 (10) | 0.0017 (8) | −0.0002 (7) | −0.0009 (8) |
C6 | 0.0134 (9) | 0.0193 (10) | 0.0173 (10) | 0.0016 (8) | 0.0013 (8) | 0.0010 (8) |
C7 | 0.0141 (9) | 0.0207 (10) | 0.0130 (10) | 0.0005 (8) | 0.0003 (8) | 0.0000 (8) |
C8 | 0.0165 (10) | 0.0167 (10) | 0.0139 (10) | 0.0008 (8) | 0.0000 (8) | 0.0001 (7) |
C12 | 0.0171 (10) | 0.0169 (10) | 0.0124 (9) | −0.0005 (8) | 0.0016 (8) | −0.0001 (7) |
C13 | 0.0279 (12) | 0.0212 (10) | 0.0120 (10) | −0.0060 (9) | −0.0003 (8) | −0.0001 (8) |
C17 | 0.0166 (10) | 0.0187 (10) | 0.0108 (9) | −0.0011 (8) | −0.0002 (7) | −0.0011 (7) |
C19 | 0.0324 (13) | 0.0168 (10) | 0.0191 (10) | 0.0023 (9) | 0.0012 (9) | −0.0010 (8) |
C20 | 0.0321 (12) | 0.0217 (11) | 0.0169 (10) | 0.0115 (9) | −0.0039 (9) | −0.0035 (8) |
C21 | 0.0183 (10) | 0.0247 (11) | 0.0159 (10) | 0.0025 (9) | −0.0016 (8) | −0.0031 (8) |
C23 | 0.0193 (10) | 0.0131 (9) | 0.0243 (11) | 0.0004 (8) | 0.0020 (8) | −0.0004 (8) |
C24 | 0.0293 (12) | 0.0167 (10) | 0.0239 (11) | −0.0014 (9) | 0.0048 (9) | 0.0010 (9) |
C25 | 0.0296 (13) | 0.0176 (11) | 0.0349 (13) | −0.0002 (9) | 0.0128 (11) | −0.0008 (9) |
C26 | 0.0221 (12) | 0.0135 (10) | 0.0469 (15) | −0.0007 (9) | 0.0050 (10) | 0.0020 (10) |
C27 | 0.0240 (12) | 0.0179 (11) | 0.0344 (13) | 0.0001 (9) | −0.0042 (10) | 0.0030 (9) |
C28 | 0.0238 (11) | 0.0158 (10) | 0.0239 (11) | −0.0004 (9) | 0.0005 (9) | 0.0000 (8) |
C29 | 0.0223 (12) | 0.0221 (12) | 0.073 (2) | 0.0019 (10) | 0.0084 (13) | 0.0039 (13) |
C32 | 0.0116 (9) | 0.0224 (11) | 0.0201 (10) | 0.0001 (8) | 0.0001 (8) | 0.0029 (8) |
C33 | 0.0180 (10) | 0.0189 (11) | 0.0276 (12) | −0.0022 (8) | 0.0011 (9) | 0.0013 (9) |
C34 | 0.0186 (10) | 0.0237 (11) | 0.0242 (11) | −0.0020 (9) | 0.0013 (9) | 0.0080 (9) |
C35 | 0.0136 (10) | 0.0277 (11) | 0.0223 (11) | 0.0022 (8) | 0.0019 (8) | 0.0035 (9) |
C36 | 0.0177 (10) | 0.0223 (11) | 0.0249 (11) | 0.0039 (9) | 0.0019 (8) | −0.0013 (9) |
C37 | 0.0160 (10) | 0.0197 (11) | 0.0263 (11) | 0.0026 (8) | 0.0012 (8) | 0.0054 (9) |
C38 | 0.0243 (12) | 0.0385 (14) | 0.0213 (11) | 0.0000 (10) | 0.0025 (9) | 0.0036 (10) |
N4 | 0.0180 (8) | 0.0172 (9) | 0.0148 (8) | 0.0016 (7) | −0.0004 (7) | −0.0003 (7) |
N9 | 0.0227 (10) | 0.0239 (10) | 0.0138 (8) | 0.0052 (8) | 0.0017 (7) | 0.0013 (7) |
N14 | 0.0351 (11) | 0.0157 (9) | 0.0158 (9) | −0.0048 (8) | −0.0053 (8) | 0.0005 (7) |
N18 | 0.0180 (9) | 0.0171 (8) | 0.0178 (9) | −0.0001 (7) | 0.0020 (7) | −0.0008 (7) |
O10 | 0.0391 (10) | 0.0188 (8) | 0.0481 (11) | 0.0008 (7) | −0.0077 (9) | −0.0008 (8) |
O11 | 0.0229 (9) | 0.0383 (10) | 0.0439 (11) | 0.0089 (8) | −0.0064 (8) | 0.0093 (8) |
O15 | 0.0381 (10) | 0.0335 (9) | 0.0167 (8) | −0.0003 (8) | 0.0045 (7) | −0.0013 (7) |
O16 | 0.0446 (11) | 0.0455 (11) | 0.0243 (9) | −0.0158 (9) | −0.0131 (8) | 0.0018 (8) |
O21 | 0.0262 (8) | 0.0235 (8) | 0.0285 (9) | −0.0030 (7) | −0.0046 (7) | −0.0069 (7) |
O22 | 0.0225 (8) | 0.0206 (8) | 0.0224 (8) | −0.0010 (6) | 0.0049 (6) | 0.0025 (6) |
O30 | 0.0302 (9) | 0.0379 (10) | 0.0282 (9) | −0.0165 (8) | −0.0019 (7) | −0.0045 (7) |
O31 | 0.0155 (7) | 0.0363 (9) | 0.0238 (8) | 0.0023 (7) | −0.0002 (6) | 0.0092 (7) |
S1 | 0.0178 (2) | 0.0160 (2) | 0.0190 (3) | −0.00104 (19) | −0.00008 (19) | −0.00084 (19) |
S2 | 0.0150 (3) | 0.0262 (3) | 0.0189 (3) | −0.0046 (2) | −0.00105 (19) | 0.0010 (2) |
Br1—C2 | 1.877 (2) | C25—C26 | 1.390 (4) |
Br2—C20 | 1.873 (2) | C26—C27 | 1.391 (4) |
C2—C3 | 1.353 (3) | C26—C29 | 1.513 (3) |
C2—C6 | 1.423 (3) | C27—H27 | 0.9500 |
C3—H3 | 0.9500 | C27—C28 | 1.393 (3) |
C3—N4 | 1.398 (3) | C28—H28 | 0.9500 |
C5—C6 | 1.359 (3) | C29—H29A | 0.9800 |
C5—C7 | 1.494 (3) | C29—H29B | 0.9800 |
C5—N4 | 1.409 (3) | C29—H29C | 0.9800 |
C6—H6 | 0.9500 | C32—C33 | 1.391 (3) |
C7—H7A | 0.9900 | C32—C37 | 1.390 (3) |
C7—H7B | 0.9900 | C32—S2 | 1.749 (2) |
C7—C8 | 1.528 (3) | C33—H33 | 0.9500 |
C8—H8 | 1.0000 | C33—C34 | 1.384 (3) |
C8—C12 | 1.552 (3) | C34—H34 | 0.9500 |
C8—N9 | 1.517 (3) | C34—C35 | 1.390 (3) |
C12—H12 | 1.0000 | C35—C36 | 1.396 (3) |
C12—C13 | 1.527 (3) | C35—C38 | 1.508 (3) |
C12—C17 | 1.506 (3) | C36—H36 | 0.9500 |
C13—H13A | 0.9900 | C36—C37 | 1.386 (3) |
C13—H13B | 0.9900 | C37—H37 | 0.9500 |
C13—N14 | 1.501 (3) | C38—H38A | 0.9800 |
C17—C21 | 1.363 (3) | C38—H38B | 0.9800 |
C17—N18 | 1.404 (3) | C38—H38C | 0.9800 |
C19—H19 | 0.9500 | N4—S1 | 1.6752 (19) |
C19—C20 | 1.353 (4) | N9—O10 | 1.224 (3) |
C19—N18 | 1.393 (3) | N9—O11 | 1.212 (3) |
C20—C21 | 1.421 (3) | N14—O15 | 1.222 (3) |
C21—H21 | 0.9500 | N14—O16 | 1.222 (3) |
C23—C24 | 1.393 (3) | N18—S2 | 1.6875 (19) |
C23—C28 | 1.390 (3) | O21—S1 | 1.4260 (17) |
C23—S1 | 1.760 (2) | O22—S1 | 1.4268 (16) |
C24—H24 | 0.9500 | O30—S2 | 1.4233 (18) |
C24—C25 | 1.385 (4) | O31—S2 | 1.4295 (17) |
C25—H25 | 0.9500 | ||
C3—C2—Br1 | 124.50 (17) | C26—C27—H27 | 119.6 |
C3—C2—C6 | 109.40 (19) | C26—C27—C28 | 120.8 (2) |
C6—C2—Br1 | 126.09 (17) | C28—C27—H27 | 119.6 |
C2—C3—H3 | 126.6 | C23—C28—C27 | 118.6 (2) |
C2—C3—N4 | 106.82 (19) | C23—C28—H28 | 120.7 |
N4—C3—H3 | 126.6 | C27—C28—H28 | 120.7 |
C6—C5—C7 | 128.06 (19) | C26—C29—H29A | 109.5 |
C6—C5—N4 | 107.30 (18) | C26—C29—H29B | 109.5 |
N4—C5—C7 | 124.63 (18) | C26—C29—H29C | 109.5 |
C2—C6—H6 | 126.2 | H29A—C29—H29B | 109.5 |
C5—C6—C2 | 107.57 (19) | H29A—C29—H29C | 109.5 |
C5—C6—H6 | 126.2 | H29B—C29—H29C | 109.5 |
C5—C7—H7A | 108.7 | C33—C32—S2 | 118.05 (17) |
C5—C7—H7B | 108.7 | C37—C32—C33 | 121.2 (2) |
C5—C7—C8 | 114.37 (17) | C37—C32—S2 | 120.75 (17) |
H7A—C7—H7B | 107.6 | C32—C33—H33 | 120.4 |
C8—C7—H7A | 108.7 | C34—C33—C32 | 119.2 (2) |
C8—C7—H7B | 108.7 | C34—C33—H33 | 120.4 |
C7—C8—H8 | 108.5 | C33—C34—H34 | 119.5 |
C7—C8—C12 | 113.65 (17) | C33—C34—C35 | 120.9 (2) |
C12—C8—H8 | 108.5 | C35—C34—H34 | 119.5 |
N9—C8—C7 | 109.66 (16) | C34—C35—C36 | 118.8 (2) |
N9—C8—H8 | 108.5 | C34—C35—C38 | 121.1 (2) |
N9—C8—C12 | 107.79 (16) | C36—C35—C38 | 120.1 (2) |
C8—C12—H12 | 108.0 | C35—C36—H36 | 119.3 |
C13—C12—C8 | 111.87 (17) | C37—C36—C35 | 121.3 (2) |
C13—C12—H12 | 108.0 | C37—C36—H36 | 119.3 |
C17—C12—C8 | 110.31 (16) | C32—C37—H37 | 120.7 |
C17—C12—H12 | 108.0 | C36—C37—C32 | 118.6 (2) |
C17—C12—C13 | 110.51 (17) | C36—C37—H37 | 120.7 |
C12—C13—H13A | 109.5 | C35—C38—H38A | 109.5 |
C12—C13—H13B | 109.5 | C35—C38—H38B | 109.5 |
H13A—C13—H13B | 108.1 | C35—C38—H38C | 109.5 |
N14—C13—C12 | 110.71 (17) | H38A—C38—H38B | 109.5 |
N14—C13—H13A | 109.5 | H38A—C38—H38C | 109.5 |
N14—C13—H13B | 109.5 | H38B—C38—H38C | 109.5 |
C21—C17—C12 | 129.2 (2) | C3—N4—C5 | 108.85 (17) |
C21—C17—N18 | 107.43 (18) | C3—N4—S1 | 121.44 (15) |
N18—C17—C12 | 123.34 (18) | C5—N4—S1 | 128.12 (15) |
C20—C19—H19 | 126.5 | O10—N9—C8 | 118.35 (18) |
C20—C19—N18 | 106.9 (2) | O11—N9—C8 | 117.95 (19) |
N18—C19—H19 | 126.5 | O11—N9—O10 | 123.7 (2) |
C19—C20—Br2 | 124.92 (18) | O15—N14—C13 | 118.49 (18) |
C19—C20—C21 | 109.4 (2) | O16—N14—C13 | 117.18 (19) |
C21—C20—Br2 | 125.61 (18) | O16—N14—O15 | 124.26 (19) |
C17—C21—C20 | 107.3 (2) | C17—N18—S2 | 128.06 (15) |
C17—C21—H21 | 126.4 | C19—N18—C17 | 108.91 (18) |
C20—C21—H21 | 126.4 | C19—N18—S2 | 119.48 (16) |
C24—C23—S1 | 118.80 (18) | N4—S1—C23 | 105.26 (10) |
C28—C23—C24 | 121.5 (2) | O21—S1—C23 | 109.05 (10) |
C28—C23—S1 | 119.58 (17) | O21—S1—N4 | 104.80 (10) |
C23—C24—H24 | 120.6 | O21—S1—O22 | 120.83 (10) |
C25—C24—C23 | 118.7 (2) | O22—S1—C23 | 108.89 (10) |
C25—C24—H24 | 120.6 | O22—S1—N4 | 106.87 (9) |
C24—C25—H25 | 119.5 | N18—S2—C32 | 104.36 (9) |
C24—C25—C26 | 121.0 (2) | O30—S2—C32 | 109.26 (11) |
C26—C25—H25 | 119.5 | O30—S2—N18 | 105.02 (10) |
C25—C26—C27 | 119.4 (2) | O30—S2—O31 | 120.86 (11) |
C25—C26—C29 | 120.0 (2) | O31—S2—C32 | 109.84 (10) |
C27—C26—C29 | 120.6 (2) | O31—S2—N18 | 106.11 (9) |
Br1—C2—C3—N4 | 177.87 (14) | C19—N18—S2—O31 | 166.71 (16) |
Br1—C2—C6—C5 | −179.30 (15) | C20—C19—N18—C17 | 1.6 (2) |
Br2—C20—C21—C17 | 176.01 (16) | C20—C19—N18—S2 | 162.05 (16) |
C2—C3—N4—C5 | 2.2 (2) | C21—C17—N18—C19 | −2.4 (2) |
C2—C3—N4—S1 | 168.90 (15) | C21—C17—N18—S2 | −160.62 (16) |
C3—C2—C6—C5 | −0.3 (2) | C23—C24—C25—C26 | −0.7 (3) |
C3—N4—S1—C23 | −90.00 (18) | C24—C23—C28—C27 | 0.1 (3) |
C3—N4—S1—O21 | 24.96 (19) | C24—C23—S1—N4 | 74.00 (19) |
C3—N4—S1—O22 | 154.32 (17) | C24—C23—S1—O21 | −38.0 (2) |
C5—C7—C8—C12 | −175.10 (17) | C24—C23—S1—O22 | −171.71 (17) |
C5—C7—C8—N9 | 64.2 (2) | C24—C25—C26—C27 | 1.1 (3) |
C5—N4—S1—C23 | 73.98 (19) | C24—C25—C26—C29 | −177.4 (2) |
C5—N4—S1—O21 | −171.06 (17) | C25—C26—C27—C28 | −0.9 (3) |
C5—N4—S1—O22 | −41.7 (2) | C26—C27—C28—C23 | 0.3 (3) |
C6—C2—C3—N4 | −1.2 (2) | C28—C23—C24—C25 | 0.1 (3) |
C6—C5—C7—C8 | −100.9 (2) | C28—C23—S1—N4 | −108.85 (18) |
C6—C5—N4—C3 | −2.4 (2) | C28—C23—S1—O21 | 139.16 (18) |
C6—C5—N4—S1 | −167.96 (15) | C28—C23—S1—O22 | 5.4 (2) |
C7—C5—C6—C2 | −179.46 (19) | C29—C26—C27—C28 | 177.6 (2) |
C7—C5—N4—C3 | 178.67 (19) | C32—C33—C34—C35 | 0.7 (3) |
C7—C5—N4—S1 | 13.1 (3) | C33—C32—C37—C36 | −1.8 (3) |
C7—C8—C12—C13 | −45.4 (2) | C33—C32—S2—N18 | 85.18 (18) |
C7—C8—C12—C17 | 78.0 (2) | C33—C32—S2—O30 | −26.7 (2) |
C7—C8—N9—O10 | 52.0 (2) | C33—C32—S2—O31 | −161.43 (17) |
C7—C8—N9—O11 | −129.4 (2) | C33—C34—C35—C36 | −2.3 (3) |
C8—C12—C13—N14 | −163.43 (17) | C33—C34—C35—C38 | 176.4 (2) |
C8—C12—C17—C21 | −102.3 (2) | C34—C35—C36—C37 | 1.8 (3) |
C8—C12—C17—N18 | 74.7 (2) | C35—C36—C37—C32 | 0.2 (3) |
C12—C8—N9—O10 | −72.2 (2) | C37—C32—C33—C34 | 1.4 (3) |
C12—C8—N9—O11 | 106.4 (2) | C37—C32—S2—N18 | −93.07 (18) |
C12—C13—N14—O15 | 28.9 (3) | C37—C32—S2—O30 | 155.04 (18) |
C12—C13—N14—O16 | −154.1 (2) | C37—C32—S2—O31 | 20.3 (2) |
C12—C17—C21—C20 | 179.5 (2) | C38—C35—C36—C37 | −176.9 (2) |
C12—C17—N18—C19 | −179.96 (18) | N4—C5—C6—C2 | 1.6 (2) |
C12—C17—N18—S2 | 21.8 (3) | N4—C5—C7—C8 | 77.9 (2) |
C13—C12—C17—C21 | 21.9 (3) | N9—C8—C12—C13 | 76.3 (2) |
C13—C12—C17—N18 | −161.05 (18) | N9—C8—C12—C17 | −160.20 (17) |
C17—C12—C13—N14 | 73.2 (2) | N18—C17—C21—C20 | 2.1 (2) |
C17—N18—S2—C32 | 79.0 (2) | N18—C19—C20—Br2 | −177.50 (15) |
C17—N18—S2—O30 | −166.11 (18) | N18—C19—C20—C21 | −0.3 (2) |
C17—N18—S2—O31 | −37.0 (2) | S1—C23—C24—C25 | 177.21 (17) |
C19—C20—C21—C17 | −1.2 (3) | S1—C23—C28—C27 | −176.98 (17) |
C19—N18—S2—C32 | −77.28 (18) | S2—C32—C33—C34 | −176.85 (17) |
C19—N18—S2—O30 | 37.63 (19) | S2—C32—C37—C36 | 176.36 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O15i | 0.95 | 2.29 | 3.194 (3) | 158 |
C8—H8···O22 | 1.00 | 2.38 | 3.071 (3) | 126 |
C8—H8···O31 | 1.00 | 2.57 | 3.072 (3) | 111 |
C13—H13A···O10 | 0.99 | 2.31 | 3.038 (3) | 130 |
C21—H21···O11ii | 0.95 | 2.63 | 3.459 (3) | 146 |
C27—H27···O10iii | 0.95 | 2.75 | 3.413 (3) | 128 |
C38—H38B···O16iv | 0.98 | 2.51 | 3.478 (3) | 170 |
C38—H38C···Br1v | 0.98 | 3.33 | 3.639 (3) | 100 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+1/2, y+1/2, z; (iv) x+1/2, y, −z+1/2; (v) x+1/2, −y+1/2, −z+1. |
Funding information
Funding for this research was provided by: H2020 Marie Skłodowska-Curie Actions (grant No. 764837).
References
Arai, T., Awata, A., Wasai, M., Yokoyama, N. & Masu, H. (2011). J. Org. Chem. 76, 5450–5456. Web of Science CSD CrossRef CAS PubMed Google Scholar
Balasubramanian, T., Strachan, J.-P., Boyle, P. D. & Lindsey, J. S. (2000). J. Org. Chem. 65, 7919–7929. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chung, D. T. M., Tran, P. V., Chau Nguyen, K., Wang, P. & Lindsey, J. S. (2021). New J. Chem. 45, 13302–13316. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dutton, C. J., Fookes, C. J. R. & Battersby, A. R. (1983). J. Chem. Soc. Chem. Commun. pp. 1237–1238. CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jiang, J., Vairaprakash, P., Reddy, K. R., Sahin, T., Pavan, M. P., Lubian, E. & Lindsey, J. S. (2014). Org. Biomol. Chem. 12, 86–103. Web of Science CSD CrossRef PubMed Google Scholar
Jing, H., Wang, P., Chen, B., Jiang, J., Vairaprakash, P., Liu, S., Rong, J., Chen, C.-Y., Nalaoh, P. & Lindsey, J. S. (2022). New J. Chem. 46, 5534–5555. Web of Science CSD CrossRef CAS Google Scholar
Kingsbury, C. J., Sample, H. C. & Senge, M. O. (2021). Acta Cryst. E77, 341–345. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098–1110. Web of Science CSD CrossRef CAS Google Scholar
Laha, J. K., Muthiah, C., Taniguchi, M., McDowell, B. E., Ptaszek, M. & Lindsey, J. S. (2006). J. Org. Chem. 71, 4092–4102. Web of Science CrossRef PubMed CAS Google Scholar
Lindsey, J. S. (2015). Chem. Rev. 115, 6534–6620. Web of Science CrossRef CAS PubMed Google Scholar
Mass, O., Ptaszek, M., Taniguchi, M., Diers, J. R., Kee, H. L., Bocian, D. F., Holten, D. & Lindsey, J. S. (2009). J. Org. Chem. 74, 5276–5289. Web of Science CSD CrossRef PubMed CAS Google Scholar
Meares, A., Satraitis, A., Santhanam, N., Yu, Z. & Ptaszek, M. (2015). J. Org. Chem. 80, 3858–3869. Web of Science CrossRef CAS PubMed Google Scholar
Melissari, Z., Sample, H. C., Twamley, B., Williams, R. M. & Senge, M. O. (2020). ChemPhotoChem, 4, 601–611. Web of Science CSD CrossRef CAS Google Scholar
Montforts, F. P. & Schwartz, U. M. (1991). Liebigs Ann. Chem. pp. 709–725. CrossRef Google Scholar
Ptaszek, M., Bhaumik, J., Kim, H.-J., Taniguchi, M. & Lindsey, J. S. (2005). Org. Process Res. Dev. 9, 651–659. Web of Science CrossRef PubMed CAS Google Scholar
Ptaszek, M., Lahaye, D., Krayer, M., Muthiah, C. & Lindsey, J. S. (2010). J. Org. Chem. 75, 1659–1673. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rabong, C., Hametner, C., Mereiter, K., Kartsev, V. & Jordis, U. (2008). Heterocycles, 75, 799–838. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singha Roy, S. J. & Mukherjee, S. (2014). Chem. Commun. 50, 121–123. Web of Science CSD CrossRef CAS Google Scholar
Stadler, D., Mühlthau, F., Rubenbauer, P., Herdtweck, E. & Bach, T. (2006). Synlett, 2006, 2573–2576. Google Scholar
Strachan, J. P., O'Shea, D. F., Balasubramanian, T. & Lindsey, J. S. (2000). J. Org. Chem. 65, 3160–3172. Web of Science CrossRef PubMed CAS Google Scholar
Taniguchi, M., Ra, D., Mo, G., Balasubramanian, T. & Lindsey, J. S. (2001). J. Org. Chem. 66, 7342–7354. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tran, V.-P., Matsumoto, N., Nalaoh, P., Jing, H., Chen, C.-Y. & Lindsey, J. S. (2022). Organics, 3, 262–274. CSD CrossRef CAS Google Scholar
Xiong, R., Arkhypchuk, A. I. & Eszter Borbas, K. (2019). J. Porphyrins Phthalocyanines, 23, 589–598. Web of Science CrossRef CAS Google Scholar
Zhang, M.-X., Eaton, P. E. & Gilardi, R. (2000). Angew. Chem. Int. Ed. 39, 401–404. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.