research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of (R,R)-4-bromo-2-{4-[4-bromo-1-(4-toluene­sulfon­yl)-1H-pyrrol-2-yl]-1,3-di­nitro­butan-2-yl}-1-(4-toluene­sulfon­yl)-1H-pyrrole, another ostensible by-product in the synthesis of geminal-di­methyl hydro­dipyrrins

crossmark logo

aSchool of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., D02 R590, Dublin, Ireland, and bSchool of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
*Correspondence e-mail: sampleh@tcd.ie

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 12 May 2023; accepted 25 May 2023; online 2 June 2023)

The crystal structure of (R,R)-4-bromo-2-{4-[4-bromo-1-(4-toluene­sulfon­yl)-1H-pyrrol-2-yl]-1,3-di­nitro­butan-2-yl}-1-(4-toluene­sulfon­yl)-1H-pyrrole (1, C26H24Br2N4O8S2) is presented. The title compound was isolated in suitable yield as a by-product in our synthesis of geminal-dimethyl hydro­dipyrrins. We observe an unforeseen enanti­omeric resolution both in the bulk sample and the crystal of 1, with distinct C—H⋯O (Cmeth­yl—H⋯Onitro, Csp3—H⋯Osulfon­yl) inter­actions observed in the enanti­omers present, along with other inter­actions, namely C5-pyrrol­yl—H⋯Osulfon­yl, forming a polymer along the crystallographic c-axis direction. Whilst pyrrolic fragments are well documented in the literature, little data is found surrounding the 1,3-di­nitro­butane scaffold.

1. Chemical context

geminal-Dimethyl hydro­porphyrins were first made a reality via the de novo syntheses of (±)-bonellin presented in the 1980s and 1990s (Dutton et al., 1983[Dutton, C. J., Fookes, C. J. R. & Battersby, A. R. (1983). J. Chem. Soc. Chem. Commun. pp. 1237-1238.]; Montforts & Schwartz, 1991[Montforts, F. P. & Schwartz, U. M. (1991). Liebigs Ann. Chem. pp. 709-725.]). However, for modern oxidation-resistant chlorins, we look to the Lindsey group (Lindsey, 2015[Lindsey, J. S. (2015). Chem. Rev. 115, 6534-6620.]). Beginning at the turn of the century (Strachan et al., 2000[Strachan, J. P., O'Shea, D. F., Balasubramanian, T. & Lindsey, J. S. (2000). J. Org. Chem. 65, 3160-3172.]), their extension of Battersby's thermal route has become the go-to synthesis for oxidation-resistant hydro­porphyrins. Since its inception there have been multiple refinements (Ptaszek et al., 2005[Ptaszek, M., Bhaumik, J., Kim, H.-J., Taniguchi, M. & Lindsey, J. S. (2005). Org. Process Res. Dev. 9, 651-659.]; Laha et al., 2006[Laha, J. K., Muthiah, C., Taniguchi, M., McDowell, B. E., Ptaszek, M. & Lindsey, J. S. (2006). J. Org. Chem. 71, 4092-4102.]; Krayer et al., 2009[Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098-1110.]). Subsequently, this synthesis has found applications in understanding the electronics of the chlorin macrocycle (Mass et al., 2009[Mass, O., Ptaszek, M., Taniguchi, M., Diers, J. R., Kee, H. L., Bocian, D. F., Holten, D. & Lindsey, J. S. (2009). J. Org. Chem. 74, 5276-5289.]), the generation of E-ring-functionalized hydro­porphyrins (Ptaszek et al., 2010[Ptaszek, M., Lahaye, D., Krayer, M., Muthiah, C. & Lindsey, J. S. (2010). J. Org. Chem. 75, 1659-1673.]), the generation of hydro­porphyrin dimers and arrays (Meares et al., 2015[Meares, A., Satraitis, A., Santhanam, N., Yu, Z. & Ptaszek, M. (2015). J. Org. Chem. 80, 3858-3869.]), and taking steps towards generating N-confused oxidation-resistant hydro­porphyrins (Xiong et al., 2019[Xiong, R., Arkhypchuk, A. I. & Eszter Borbas, K. (2019). J. Porphyrins Phthalocyanines, 23, 589-598.]).

Noted only once previously is the formation of a by-product, 1 (Krayer et al., 2009[Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098-1110.]). Through our own ventures into the world of hydro­porphyrins (Melissari et al., 2020[Melissari, Z., Sample, H. C., Twamley, B., Williams, R. M. & Senge, M. O. (2020). ChemPhotoChem, 4, 601-611.]; Kingsbury et al., 2021[Kingsbury, C. J., Sample, H. C. & Senge, M. O. (2021). Acta Cryst. E77, 341-345.]), we have in one instance generated a suitable amount of dimeric by-product 1, and single crystals therefrom. The crystal structure of this elusive by-product, obtained in the synthesis of geminal-dimethyl hydro­dipyrrins and hydro­porphyrins, is described in this work. The structure presented in this work adds to an ever-increasing library of by-products from this field, which includes tricyclic undecane (CSD refcode CAJVUF; Taniguchi et al., 2001[Taniguchi, M., Ra, D., Mo, G., Balasubramanian, T. & Lindsey, J. S. (2001). J. Org. Chem. 66, 7342-7354.]) and di­hydro­oxazine (BESZEI; Tran et al., 2022[Tran, V.-P., Matsumoto, N., Nalaoh, P., Jing, H., Chen, C.-Y. & Lindsey, J. S. (2022). Organics, 3, 262-274.]).

[Scheme 1]

2. Structural commentary

The title compound 1 presents an asymmetric unit of one mol­ecule of the title compound with no solvate. Compound 1 was found to crystallize in the ortho­rhom­bic system (Pbca, Z = 8). Although a chiral compound, this is a racemate and the asymmetric unit is shown in Fig. 1[link] as (R,R)-stereochemistry. In 1H NMR spectroscopy, along with the respective 2D NMR with analyses undertaken of the same sample, we observe only one set of resonances for the aliphatic nitro­butane system (full 1H, 13C and 1H-13C HSQC NMR spectra are presented in the supporting information). The implication herein is that the sample presented contains the enanti­omers (R,R) and (S,S) only, with no other diastereomers present; see Fig. 2[link] for the synthetic pathway.

[Figure 1]
Figure 1
Mol­ecular structure of 1. Displacement ellipsoids (non-H) are drawn at the 50% probability level, with H atoms presented as spheres of fixed radius (0.2 Å). Dotted lines indicate intra­molecular hydrogen bonding. Generated in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).
[Figure 2]
Figure 2
Synthesis of dimeric by-product 1 through the reduction of 2 to yield 3. Reagents are non-specific given the number of differing procedures in the literature. α and β labels added to heighten the disymmetry of 1.

Both pyrrole rings are essentially planar, with RMSD values of 0.009 Å in both instances, and exhibit bond distances comparable with previous data (Kingsbury et al., 2021[Kingsbury, C. J., Sample, H. C. & Senge, M. O. (2021). Acta Cryst. E77, 341-345.]). Both tosyl groups also exhibit the same conformation, i.e. with the p-tolyl ring coming out of the plane of the pyrrole ring, when viewing the respective pyrrole ring face on, as shown in Fig. 1[link], with N—S—C angles of 104.36 (9) and 105.26 (10)°, with the larger angle arising in the motif exhibiting an intra­molecular Csp3–H⋯Osulfon­yl inter­action (see Table 1[link]). Despite the hydrogen-bonding inter­actions present, the O=S=O angle changes minimally 120.34 (10)°, in comparison to 120.86 (11)° for the non-inter­acting tosyl moiety. The dihedral angle between the pyrrole rings is 72.00 (12)°. The bond distances are within normal ranges (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O15i 0.95 2.29 3.194 (3) 158
C8—H8⋯O22 1.00 2.38 3.071 (3) 126
C8—H8⋯O31 1.00 2.57 3.072 (3) 111
C13—H13A⋯O10 0.99 2.31 3.038 (3) 130
C21—H21⋯O11ii 0.95 2.63 3.459 (3) 146
C27—H27⋯O10iii 0.95 2.75 3.413 (3) 128
C38—H38B⋯O16iv 0.98 2.51 3.478 (3) 170
C38—H38C⋯Br1v 0.98 3.33 3.639 (3) 100
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Lacking any protic donor or more traditional strong supra­molecular inter­actions, this structure is dominated by weaker C—H⋯O inter­actions; see Table 1[link]. There are several intra­molecular C—H⋯O inter­actions. In the case of the bifurcated C8⋯O22sulfon­yl and C8⋯O31sulfon­yl inter­actions of 3.071 (3) and 3.072 (3) Å, we observe seven-membered ring formation. In another bifurcated intra­molecular inter­action, C12⋯O15nitro and C12⋯O31sulfon­yl, 2.719 (2) and 2.913 (3) Å differing sized rings are formed, with the inter­action between methine and nitro motifs yielding a five-membered ring, and a six-membered ring between the methine and sulfonyl motifs. With C13sp3⋯O10nitro at 3.038 (3)Å, we observe one of the two nitro groups forming a six-membered ring with an opposing nitro­methyl motif.

We have no mechanistic evidence to rationalize the generation of 1, be it through a non-stereoselective nitro­nate addition followed by kinetic precipitation to yield 1, or simply through the impossibility of the formation of (R,S)-1 or (S,R)-1 as a direct result of steric inter­actions between two 1,2,4-tris­ubstituted pyrrolic motifs.

3. Supra­molecular features

Regarding inter­molecular inter­actions, there are several C—H⋯O synthons present involving the nitro motifs. The first is seen with the opposite oxygen to the intra­molecular synthon described above, with the bromo­pyrrole linking to the adjacent nitro group, C21⋯O11ii, 3.459 (3) Å. The second involves the other nitro­methyl motif which exhibits a C3⋯O15i inter­action of 3.194 (3) Å with an adjacent mol­ecule of the title compound arising from the 5-pyrrolyl position. The other nitro oxygen is involved with the methyl group on the tosyl phenyl ring with C38meth­yl⋯O16iv, 3.478 (3) Å and this also brings the methyl group into alignment with a neighbouring bromine, C38⋯Br1v, 3.639 (3) Å. These two inter­actions propagate along the crystallographic c-axis direction, which is shown in Fig. 3[link], forming loosely associated sheets. These sheets are weakly connected by C27tos­yl⋯O10nitroiii, 3.413 (3) Å.

[Figure 3]
Figure 3
Inter­molecular inter­actions shown normal to the c axis. Only the atoms involved in these inter­actions are labelled. Generated in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). Symmetry codes: (i) −[{1\over 2}] + x, y, [{1\over 2}] − z; (ii) x, [{1\over 2}] − y, −[{1\over 2}] + z; (iii) [{1\over 2}] + x, [{1\over 2}] − y, 1 − z; (iv) x, [{1\over 2}] − y, [{1\over 2}] + z; (v) −[{1\over 2}] + x, y, [{3\over 2}] − z.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-bromo-2-(2-nitro­eth­yl)-1λ2-pyrrole subunit reveals only a few hits: HULBIA (Krayer et al., 2009[Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098-1110.]), OXIKAK (Chung et al., 2021[Chung, D. T. M., Tran, P. V., Chau Nguyen, K., Wang, P. & Lindsey, J. S. (2021). New J. Chem. 45, 13302-13316.]) and UNOYOO (Kingsbury et al., 2021[Kingsbury, C. J., Sample, H. C. & Senge, M. O. (2021). Acta Cryst. E77, 341-345.]). In each of these compounds, the pyrrole is protected by a p-tosyl­ate group, as seen in 1, and bond lengths are similar within the 2-(2-nitro­eth­yl)pyrrole moiety. Widening the parameters to the non-halogenated 2-(2-nitro­eth­yl)-1λ2-pyrrole subunit does reveal several more structures, ranging from asymmetric Friedel–Crafts alkyl­ation products as seen in KETBER (Stadler et al., 2006[Stadler, D., Mühlthau, F., Rubenbauer, P., Herdtweck, E. & Bach, T. (2006). Synlett, 2006, 2573-2576.]) and DADYIS (Arai et al., 2011[Arai, T., Awata, A., Wasai, M., Yokoyama, N. & Masu, H. (2011). J. Org. Chem. 76, 5450-5456.]), precursors in the synthesis of bacteriochlorins MIQHOL, MIQHUR (Jiang et al., 2014[Jiang, J., Vairaprakash, P., Reddy, K. R., Sahin, T., Pavan, M. P., Lubian, E. & Lindsey, J. S. (2014). Org. Biomol. Chem. 12, 86-103.]), OXIJUD (Chung et al., 2021[Chung, D. T. M., Tran, P. V., Chau Nguyen, K., Wang, P. & Lindsey, J. S. (2021). New J. Chem. 45, 13302-13316.]) and CAXLEW (Jing et al., 2022[Jing, H., Wang, P., Chen, B., Jiang, J., Vairaprakash, P., Liu, S., Rong, J., Chen, C.-Y., Nalaoh, P. & Lindsey, J. S. (2022). New J. Chem. 46, 5534-5555.]) and building blocks for the synthesis of β-substituted chlorins (QEZCED; Balasubramanian et al., 2000[Balasubramanian, T., Strachan, J.-P., Boyle, P. D. & Lindsey, J. S. (2000). J. Org. Chem. 65, 7919-7929.]).

A search encompassing the fragment 2-methyl-1,3-di­nitro­butane was undertaken and a large number of structures returned, many containing nitro-adamantyl and nitro-cubane motifs (Zhang et al., 2000[Zhang, M.-X., Eaton, P. E. & Gilardi, R. (2000). Angew. Chem. Int. Ed. 39, 401-404.]). Other motifs presented revealed strained geometries, e.g., 1,3-di­nitro­cyclo­butane motifs. There were very few results of suitable structural similarity, those being DISGIX (Singha Roy & Mukherjee, 2014[Singha Roy, S. J. & Mukherjee, S. (2014). Chem. Commun. 50, 121-123.]) and WOFJUX (Rabong et al., 2008[Rabong, C., Hametner, C., Mereiter, K., Kartsev, V. & Jordis, U. (2008). Heterocycles, 75, 799-838.]). Across the series of metrics for these three structures, all values regarding the nitro­butane system are roughly within accordance to those presented herein. As noted vide supra, the pyrrolic fragments remain consistent with data previously reported (Kingsbury et al., 2021[Kingsbury, C. J., Sample, H. C. & Senge, M. O. (2021). Acta Cryst. E77, 341-345.]).

5. Synthesis and crystallization

Compounds 2 and 3 were synthesized following the reported procedures (Krayer et al., 2009[Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098-1110.]). For 1, crystals were generated via slow evaporation at room temperature of a saturated solution of 1 in CDCl3. We have previously described the crystallization of 2 (Kingsbury et al., 2021[Kingsbury, C. J., Sample, H. C. & Senge, M. O. (2021). Acta Cryst. E77, 341-345.]) and currently no structure of 3 has been reported. Compound 1 was obtained in 10% yield from 2, with yields for 3 we typically observe approx. 69%, close to those previously reported (Laha et al., 2006[Laha, J. K., Muthiah, C., Taniguchi, M., McDowell, B. E., Ptaszek, M. & Lindsey, J. S. (2006). J. Org. Chem. 71, 4092-4102.]).

1H NMR spectroscopic data matched previously reported compounds 2 and 3. Whilst the isolation of compound 1 has been reported previously, no comment on its stereochemistry has been presented. Below, we present analytical data for (R,R)-1, and within the supporting information, we have attached the appropriate spectra, Figs. S1–S3. Furthermore, we also present the 1H NMR spectra of 2 and 3 overlayed with the 1H NMR spectra of (R,R)-1 for completeness (Fig. S4).

Analytical data for (R,R)-1: 1H NMR (298 K, CDCl3, 600 MHz): δ = 7.77 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.42 (s, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 1.6 Hz, 1H), 6.17 (d, J = 1.0 Hz, 1H), 5.99 (s, 1H), 5.29–5.32 (m, 1H), 4.93–4.96 (m, 1H), 4.77–4.80 (m, 1H), 4.44–4.47 (m, 1H), 3.27–3.30 (m, 1H), 3.07–3.12 (m, 1H), 2.45 (s, 3H), 2.44 (s, 3H) ppm; 13C{1H} NMR (298 K, CDCl3, 151 MHz): δ = 146.8, 146.2, 135.2, 134.6, 130.7 (2), 130.7 (0) 130.6, 128.0, 127.4, 127.0, 123.9, 122.8, 118.5, 117.2, 100.9 (5), 100.9 (3), 87.8, 74.2, 37.8, 27.9, 21.9, 21.8 ppm; HRMS (ESI) m/z calculated for [C26H24N4O8S2Br2+Cl], [M + Cl]: 776.9096, found: 776.9075; RF = 0.70 (silica, CH2Cl2:C6H14, 3:1); m.p.: 493–496 K (dec.), lit. (Krayer et al., 2009[Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098-1110.]) 388–390 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C26H24Br2N4O8S2
Mr 744.43
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 13.9764 (7), 17.8228 (9), 23.0590 (11)
V3) 5744.0 (5)
Z 8
Radiation type Cu Kα
μ (mm−1) 5.43
Crystal size (mm) 0.41 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker APEX2 Kappa Duo
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.429, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 55114, 5407, 5392
Rint 0.040
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.08
No. of reflections 5407
No. of parameters 381
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.03, −1.27
Computer programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(R,R)-4-Bromo-2-{4-[4-bromo-1-(4-toluenesulfonyl)-1H-pyrrol-2-yl]-1,3-dinitrobutan-2-yl}-1-(4-toluenesulfonyl)-1H-pyrrole top
Crystal data top
C26H24Br2N4O8S2Dx = 1.722 Mg m3
Mr = 744.43Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9744 reflections
a = 13.9764 (7) Åθ = 3.7–69.7°
b = 17.8228 (9) ŵ = 5.43 mm1
c = 23.0590 (11) ÅT = 100 K
V = 5744.0 (5) Å3Block, colourless
Z = 80.41 × 0.14 × 0.13 mm
F(000) = 2992
Data collection top
Bruker APEX2 Kappa Duo
diffractometer
5407 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs5392 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.040
Detector resolution: 8.33 pixels mm-1θmax = 69.9°, θmin = 3.8°
ω and φ scansh = 1616
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2021
Tmin = 0.429, Tmax = 0.753l = 2627
55114 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0376P)2 + 8.4555P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
5407 reflectionsΔρmax = 1.03 e Å3
381 parametersΔρmin = 1.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.38552 (2)0.11603 (2)0.78537 (2)0.02394 (8)
Br20.26600 (2)0.50453 (2)0.40962 (2)0.04351 (10)
C20.38553 (15)0.17833 (13)0.71975 (9)0.0179 (4)
C30.40706 (16)0.25232 (13)0.72050 (9)0.0196 (4)
H30.4224470.2815940.7536380.024*
C50.37376 (14)0.21731 (12)0.62743 (9)0.0155 (4)
C60.36492 (15)0.15580 (12)0.66188 (9)0.0167 (4)
H60.3480500.1066850.6495530.020*
C70.35869 (14)0.22272 (12)0.56344 (9)0.0159 (4)
H7A0.3229950.2694320.5549820.019*
H7B0.3184340.1800140.5508580.019*
C80.45083 (15)0.22258 (11)0.52779 (9)0.0157 (4)
H80.4934850.2633720.5425590.019*
C120.43434 (15)0.23502 (11)0.46193 (8)0.0155 (4)
H120.4939470.2197790.4410340.019*
C130.35197 (17)0.18725 (12)0.43891 (9)0.0203 (4)
H13A0.3561180.1361530.4555580.024*
H13B0.2902930.2095520.4510930.024*
C170.41664 (15)0.31683 (12)0.44962 (8)0.0154 (4)
C190.44913 (17)0.44091 (12)0.43708 (9)0.0228 (5)
H190.4823210.4872030.4335910.027*
C200.35401 (18)0.42997 (13)0.43040 (9)0.0236 (5)
C210.33245 (16)0.35280 (13)0.43881 (9)0.0196 (4)
H210.2708010.3304450.4371980.024*
C230.28460 (16)0.39795 (12)0.64711 (10)0.0189 (4)
C240.23767 (17)0.40596 (12)0.70006 (10)0.0233 (5)
H240.2691460.3938770.7353650.028*
C250.14427 (18)0.43187 (13)0.70024 (11)0.0274 (5)
H250.1112620.4370310.7360340.033*
C260.09807 (17)0.45044 (13)0.64881 (12)0.0275 (5)
C270.14605 (17)0.44162 (13)0.59641 (11)0.0254 (5)
H270.1143960.4536030.5611480.031*
C280.23991 (17)0.41545 (12)0.59498 (10)0.0212 (5)
H280.2726710.4096800.5591600.025*
C290.00249 (19)0.48175 (15)0.65026 (15)0.0391 (7)
H29A0.0006810.5339760.6635030.059*
H29B0.0416800.4519610.6769410.059*
H29C0.0302630.4795920.6112710.059*
C320.62371 (14)0.34767 (12)0.36715 (9)0.0180 (4)
C330.63329 (16)0.41207 (13)0.33356 (10)0.0215 (4)
H330.6344780.4601620.3513160.026*
C340.64106 (16)0.40521 (13)0.27395 (10)0.0222 (5)
H340.6483360.4489620.2508350.027*
C350.63835 (15)0.33521 (13)0.24746 (10)0.0212 (4)
C360.63108 (16)0.27134 (13)0.28224 (10)0.0217 (5)
H360.6310520.2231940.2645610.026*
C370.62390 (15)0.27679 (13)0.34204 (10)0.0206 (4)
H370.6191990.2330040.3653580.025*
C380.64096 (18)0.32774 (15)0.18235 (10)0.0280 (5)
H38A0.5769470.3150540.1680540.042*
H38B0.6859700.2879780.1715150.042*
H38C0.6616710.3753400.1651690.042*
N40.40231 (13)0.27742 (10)0.66314 (8)0.0167 (4)
N90.50181 (14)0.14805 (11)0.53523 (7)0.0202 (4)
N140.35545 (15)0.18255 (10)0.37393 (8)0.0222 (4)
N180.48917 (13)0.37130 (10)0.45008 (8)0.0176 (4)
O100.45646 (14)0.09033 (10)0.52684 (9)0.0353 (4)
O110.58591 (13)0.14916 (11)0.54810 (9)0.0350 (4)
O150.43320 (13)0.18728 (10)0.34992 (7)0.0294 (4)
O160.28002 (15)0.17100 (12)0.34869 (8)0.0381 (5)
O210.45337 (12)0.40320 (9)0.69459 (7)0.0260 (4)
O220.44181 (11)0.37517 (9)0.58944 (7)0.0218 (3)
O300.65028 (13)0.42732 (11)0.45989 (8)0.0321 (4)
O310.63020 (11)0.28973 (10)0.47091 (7)0.0252 (4)
S10.40504 (4)0.36902 (3)0.64696 (2)0.01761 (12)
S20.60804 (4)0.35847 (3)0.44193 (2)0.02007 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02037 (13)0.03358 (15)0.01786 (13)0.00193 (9)0.00022 (8)0.01063 (9)
Br20.0594 (2)0.03287 (16)0.03827 (17)0.02900 (14)0.02077 (14)0.01200 (11)
C20.0139 (10)0.0252 (11)0.0147 (10)0.0040 (8)0.0017 (7)0.0048 (8)
C30.0190 (10)0.0276 (11)0.0124 (10)0.0041 (9)0.0011 (8)0.0009 (8)
C50.0131 (9)0.0194 (10)0.0141 (10)0.0017 (8)0.0002 (7)0.0009 (8)
C60.0134 (9)0.0193 (10)0.0173 (10)0.0016 (8)0.0013 (8)0.0010 (8)
C70.0141 (9)0.0207 (10)0.0130 (10)0.0005 (8)0.0003 (8)0.0000 (8)
C80.0165 (10)0.0167 (10)0.0139 (10)0.0008 (8)0.0000 (8)0.0001 (7)
C120.0171 (10)0.0169 (10)0.0124 (9)0.0005 (8)0.0016 (8)0.0001 (7)
C130.0279 (12)0.0212 (10)0.0120 (10)0.0060 (9)0.0003 (8)0.0001 (8)
C170.0166 (10)0.0187 (10)0.0108 (9)0.0011 (8)0.0002 (7)0.0011 (7)
C190.0324 (13)0.0168 (10)0.0191 (10)0.0023 (9)0.0012 (9)0.0010 (8)
C200.0321 (12)0.0217 (11)0.0169 (10)0.0115 (9)0.0039 (9)0.0035 (8)
C210.0183 (10)0.0247 (11)0.0159 (10)0.0025 (9)0.0016 (8)0.0031 (8)
C230.0193 (10)0.0131 (9)0.0243 (11)0.0004 (8)0.0020 (8)0.0004 (8)
C240.0293 (12)0.0167 (10)0.0239 (11)0.0014 (9)0.0048 (9)0.0010 (9)
C250.0296 (13)0.0176 (11)0.0349 (13)0.0002 (9)0.0128 (11)0.0008 (9)
C260.0221 (12)0.0135 (10)0.0469 (15)0.0007 (9)0.0050 (10)0.0020 (10)
C270.0240 (12)0.0179 (11)0.0344 (13)0.0001 (9)0.0042 (10)0.0030 (9)
C280.0238 (11)0.0158 (10)0.0239 (11)0.0004 (9)0.0005 (9)0.0000 (8)
C290.0223 (12)0.0221 (12)0.073 (2)0.0019 (10)0.0084 (13)0.0039 (13)
C320.0116 (9)0.0224 (11)0.0201 (10)0.0001 (8)0.0001 (8)0.0029 (8)
C330.0180 (10)0.0189 (11)0.0276 (12)0.0022 (8)0.0011 (9)0.0013 (9)
C340.0186 (10)0.0237 (11)0.0242 (11)0.0020 (9)0.0013 (9)0.0080 (9)
C350.0136 (10)0.0277 (11)0.0223 (11)0.0022 (8)0.0019 (8)0.0035 (9)
C360.0177 (10)0.0223 (11)0.0249 (11)0.0039 (9)0.0019 (8)0.0013 (9)
C370.0160 (10)0.0197 (11)0.0263 (11)0.0026 (8)0.0012 (8)0.0054 (9)
C380.0243 (12)0.0385 (14)0.0213 (11)0.0000 (10)0.0025 (9)0.0036 (10)
N40.0180 (8)0.0172 (9)0.0148 (8)0.0016 (7)0.0004 (7)0.0003 (7)
N90.0227 (10)0.0239 (10)0.0138 (8)0.0052 (8)0.0017 (7)0.0013 (7)
N140.0351 (11)0.0157 (9)0.0158 (9)0.0048 (8)0.0053 (8)0.0005 (7)
N180.0180 (9)0.0171 (8)0.0178 (9)0.0001 (7)0.0020 (7)0.0008 (7)
O100.0391 (10)0.0188 (8)0.0481 (11)0.0008 (7)0.0077 (9)0.0008 (8)
O110.0229 (9)0.0383 (10)0.0439 (11)0.0089 (8)0.0064 (8)0.0093 (8)
O150.0381 (10)0.0335 (9)0.0167 (8)0.0003 (8)0.0045 (7)0.0013 (7)
O160.0446 (11)0.0455 (11)0.0243 (9)0.0158 (9)0.0131 (8)0.0018 (8)
O210.0262 (8)0.0235 (8)0.0285 (9)0.0030 (7)0.0046 (7)0.0069 (7)
O220.0225 (8)0.0206 (8)0.0224 (8)0.0010 (6)0.0049 (6)0.0025 (6)
O300.0302 (9)0.0379 (10)0.0282 (9)0.0165 (8)0.0019 (7)0.0045 (7)
O310.0155 (7)0.0363 (9)0.0238 (8)0.0023 (7)0.0002 (6)0.0092 (7)
S10.0178 (2)0.0160 (2)0.0190 (3)0.00104 (19)0.00008 (19)0.00084 (19)
S20.0150 (3)0.0262 (3)0.0189 (3)0.0046 (2)0.00105 (19)0.0010 (2)
Geometric parameters (Å, º) top
Br1—C21.877 (2)C25—C261.390 (4)
Br2—C201.873 (2)C26—C271.391 (4)
C2—C31.353 (3)C26—C291.513 (3)
C2—C61.423 (3)C27—H270.9500
C3—H30.9500C27—C281.393 (3)
C3—N41.398 (3)C28—H280.9500
C5—C61.359 (3)C29—H29A0.9800
C5—C71.494 (3)C29—H29B0.9800
C5—N41.409 (3)C29—H29C0.9800
C6—H60.9500C32—C331.391 (3)
C7—H7A0.9900C32—C371.390 (3)
C7—H7B0.9900C32—S21.749 (2)
C7—C81.528 (3)C33—H330.9500
C8—H81.0000C33—C341.384 (3)
C8—C121.552 (3)C34—H340.9500
C8—N91.517 (3)C34—C351.390 (3)
C12—H121.0000C35—C361.396 (3)
C12—C131.527 (3)C35—C381.508 (3)
C12—C171.506 (3)C36—H360.9500
C13—H13A0.9900C36—C371.386 (3)
C13—H13B0.9900C37—H370.9500
C13—N141.501 (3)C38—H38A0.9800
C17—C211.363 (3)C38—H38B0.9800
C17—N181.404 (3)C38—H38C0.9800
C19—H190.9500N4—S11.6752 (19)
C19—C201.353 (4)N9—O101.224 (3)
C19—N181.393 (3)N9—O111.212 (3)
C20—C211.421 (3)N14—O151.222 (3)
C21—H210.9500N14—O161.222 (3)
C23—C241.393 (3)N18—S21.6875 (19)
C23—C281.390 (3)O21—S11.4260 (17)
C23—S11.760 (2)O22—S11.4268 (16)
C24—H240.9500O30—S21.4233 (18)
C24—C251.385 (4)O31—S21.4295 (17)
C25—H250.9500
C3—C2—Br1124.50 (17)C26—C27—H27119.6
C3—C2—C6109.40 (19)C26—C27—C28120.8 (2)
C6—C2—Br1126.09 (17)C28—C27—H27119.6
C2—C3—H3126.6C23—C28—C27118.6 (2)
C2—C3—N4106.82 (19)C23—C28—H28120.7
N4—C3—H3126.6C27—C28—H28120.7
C6—C5—C7128.06 (19)C26—C29—H29A109.5
C6—C5—N4107.30 (18)C26—C29—H29B109.5
N4—C5—C7124.63 (18)C26—C29—H29C109.5
C2—C6—H6126.2H29A—C29—H29B109.5
C5—C6—C2107.57 (19)H29A—C29—H29C109.5
C5—C6—H6126.2H29B—C29—H29C109.5
C5—C7—H7A108.7C33—C32—S2118.05 (17)
C5—C7—H7B108.7C37—C32—C33121.2 (2)
C5—C7—C8114.37 (17)C37—C32—S2120.75 (17)
H7A—C7—H7B107.6C32—C33—H33120.4
C8—C7—H7A108.7C34—C33—C32119.2 (2)
C8—C7—H7B108.7C34—C33—H33120.4
C7—C8—H8108.5C33—C34—H34119.5
C7—C8—C12113.65 (17)C33—C34—C35120.9 (2)
C12—C8—H8108.5C35—C34—H34119.5
N9—C8—C7109.66 (16)C34—C35—C36118.8 (2)
N9—C8—H8108.5C34—C35—C38121.1 (2)
N9—C8—C12107.79 (16)C36—C35—C38120.1 (2)
C8—C12—H12108.0C35—C36—H36119.3
C13—C12—C8111.87 (17)C37—C36—C35121.3 (2)
C13—C12—H12108.0C37—C36—H36119.3
C17—C12—C8110.31 (16)C32—C37—H37120.7
C17—C12—H12108.0C36—C37—C32118.6 (2)
C17—C12—C13110.51 (17)C36—C37—H37120.7
C12—C13—H13A109.5C35—C38—H38A109.5
C12—C13—H13B109.5C35—C38—H38B109.5
H13A—C13—H13B108.1C35—C38—H38C109.5
N14—C13—C12110.71 (17)H38A—C38—H38B109.5
N14—C13—H13A109.5H38A—C38—H38C109.5
N14—C13—H13B109.5H38B—C38—H38C109.5
C21—C17—C12129.2 (2)C3—N4—C5108.85 (17)
C21—C17—N18107.43 (18)C3—N4—S1121.44 (15)
N18—C17—C12123.34 (18)C5—N4—S1128.12 (15)
C20—C19—H19126.5O10—N9—C8118.35 (18)
C20—C19—N18106.9 (2)O11—N9—C8117.95 (19)
N18—C19—H19126.5O11—N9—O10123.7 (2)
C19—C20—Br2124.92 (18)O15—N14—C13118.49 (18)
C19—C20—C21109.4 (2)O16—N14—C13117.18 (19)
C21—C20—Br2125.61 (18)O16—N14—O15124.26 (19)
C17—C21—C20107.3 (2)C17—N18—S2128.06 (15)
C17—C21—H21126.4C19—N18—C17108.91 (18)
C20—C21—H21126.4C19—N18—S2119.48 (16)
C24—C23—S1118.80 (18)N4—S1—C23105.26 (10)
C28—C23—C24121.5 (2)O21—S1—C23109.05 (10)
C28—C23—S1119.58 (17)O21—S1—N4104.80 (10)
C23—C24—H24120.6O21—S1—O22120.83 (10)
C25—C24—C23118.7 (2)O22—S1—C23108.89 (10)
C25—C24—H24120.6O22—S1—N4106.87 (9)
C24—C25—H25119.5N18—S2—C32104.36 (9)
C24—C25—C26121.0 (2)O30—S2—C32109.26 (11)
C26—C25—H25119.5O30—S2—N18105.02 (10)
C25—C26—C27119.4 (2)O30—S2—O31120.86 (11)
C25—C26—C29120.0 (2)O31—S2—C32109.84 (10)
C27—C26—C29120.6 (2)O31—S2—N18106.11 (9)
Br1—C2—C3—N4177.87 (14)C19—N18—S2—O31166.71 (16)
Br1—C2—C6—C5179.30 (15)C20—C19—N18—C171.6 (2)
Br2—C20—C21—C17176.01 (16)C20—C19—N18—S2162.05 (16)
C2—C3—N4—C52.2 (2)C21—C17—N18—C192.4 (2)
C2—C3—N4—S1168.90 (15)C21—C17—N18—S2160.62 (16)
C3—C2—C6—C50.3 (2)C23—C24—C25—C260.7 (3)
C3—N4—S1—C2390.00 (18)C24—C23—C28—C270.1 (3)
C3—N4—S1—O2124.96 (19)C24—C23—S1—N474.00 (19)
C3—N4—S1—O22154.32 (17)C24—C23—S1—O2138.0 (2)
C5—C7—C8—C12175.10 (17)C24—C23—S1—O22171.71 (17)
C5—C7—C8—N964.2 (2)C24—C25—C26—C271.1 (3)
C5—N4—S1—C2373.98 (19)C24—C25—C26—C29177.4 (2)
C5—N4—S1—O21171.06 (17)C25—C26—C27—C280.9 (3)
C5—N4—S1—O2241.7 (2)C26—C27—C28—C230.3 (3)
C6—C2—C3—N41.2 (2)C28—C23—C24—C250.1 (3)
C6—C5—C7—C8100.9 (2)C28—C23—S1—N4108.85 (18)
C6—C5—N4—C32.4 (2)C28—C23—S1—O21139.16 (18)
C6—C5—N4—S1167.96 (15)C28—C23—S1—O225.4 (2)
C7—C5—C6—C2179.46 (19)C29—C26—C27—C28177.6 (2)
C7—C5—N4—C3178.67 (19)C32—C33—C34—C350.7 (3)
C7—C5—N4—S113.1 (3)C33—C32—C37—C361.8 (3)
C7—C8—C12—C1345.4 (2)C33—C32—S2—N1885.18 (18)
C7—C8—C12—C1778.0 (2)C33—C32—S2—O3026.7 (2)
C7—C8—N9—O1052.0 (2)C33—C32—S2—O31161.43 (17)
C7—C8—N9—O11129.4 (2)C33—C34—C35—C362.3 (3)
C8—C12—C13—N14163.43 (17)C33—C34—C35—C38176.4 (2)
C8—C12—C17—C21102.3 (2)C34—C35—C36—C371.8 (3)
C8—C12—C17—N1874.7 (2)C35—C36—C37—C320.2 (3)
C12—C8—N9—O1072.2 (2)C37—C32—C33—C341.4 (3)
C12—C8—N9—O11106.4 (2)C37—C32—S2—N1893.07 (18)
C12—C13—N14—O1528.9 (3)C37—C32—S2—O30155.04 (18)
C12—C13—N14—O16154.1 (2)C37—C32—S2—O3120.3 (2)
C12—C17—C21—C20179.5 (2)C38—C35—C36—C37176.9 (2)
C12—C17—N18—C19179.96 (18)N4—C5—C6—C21.6 (2)
C12—C17—N18—S221.8 (3)N4—C5—C7—C877.9 (2)
C13—C12—C17—C2121.9 (3)N9—C8—C12—C1376.3 (2)
C13—C12—C17—N18161.05 (18)N9—C8—C12—C17160.20 (17)
C17—C12—C13—N1473.2 (2)N18—C17—C21—C202.1 (2)
C17—N18—S2—C3279.0 (2)N18—C19—C20—Br2177.50 (15)
C17—N18—S2—O30166.11 (18)N18—C19—C20—C210.3 (2)
C17—N18—S2—O3137.0 (2)S1—C23—C24—C25177.21 (17)
C19—C20—C21—C171.2 (3)S1—C23—C28—C27176.98 (17)
C19—N18—S2—C3277.28 (18)S2—C32—C33—C34176.85 (17)
C19—N18—S2—O3037.63 (19)S2—C32—C37—C36176.36 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O15i0.952.293.194 (3)158
C8—H8···O221.002.383.071 (3)126
C8—H8···O311.002.573.072 (3)111
C13—H13A···O100.992.313.038 (3)130
C21—H21···O11ii0.952.633.459 (3)146
C27—H27···O10iii0.952.753.413 (3)128
C38—H38B···O16iv0.982.513.478 (3)170
C38—H38C···Br1v0.983.333.639 (3)100
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+1/2, z+1.
 

Funding information

Funding for this research was provided by: H2020 Marie Skłodowska-Curie Actions (grant No. 764837).

References

First citationArai, T., Awata, A., Wasai, M., Yokoyama, N. & Masu, H. (2011). J. Org. Chem. 76, 5450–5456.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBalasubramanian, T., Strachan, J.-P., Boyle, P. D. & Lindsey, J. S. (2000). J. Org. Chem. 65, 7919–7929.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, D. T. M., Tran, P. V., Chau Nguyen, K., Wang, P. & Lindsey, J. S. (2021). New J. Chem. 45, 13302–13316.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDutton, C. J., Fookes, C. J. R. & Battersby, A. R. (1983). J. Chem. Soc. Chem. Commun. pp. 1237–1238.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, J., Vairaprakash, P., Reddy, K. R., Sahin, T., Pavan, M. P., Lubian, E. & Lindsey, J. S. (2014). Org. Biomol. Chem. 12, 86–103.  Web of Science CSD CrossRef PubMed Google Scholar
First citationJing, H., Wang, P., Chen, B., Jiang, J., Vairaprakash, P., Liu, S., Rong, J., Chen, C.-Y., Nalaoh, P. & Lindsey, J. S. (2022). New J. Chem. 46, 5534–5555.  Web of Science CSD CrossRef CAS Google Scholar
First citationKingsbury, C. J., Sample, H. C. & Senge, M. O. (2021). Acta Cryst. E77, 341–345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098–1110.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaha, J. K., Muthiah, C., Taniguchi, M., McDowell, B. E., Ptaszek, M. & Lindsey, J. S. (2006). J. Org. Chem. 71, 4092–4102.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLindsey, J. S. (2015). Chem. Rev. 115, 6534–6620.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMass, O., Ptaszek, M., Taniguchi, M., Diers, J. R., Kee, H. L., Bocian, D. F., Holten, D. & Lindsey, J. S. (2009). J. Org. Chem. 74, 5276–5289.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMeares, A., Satraitis, A., Santhanam, N., Yu, Z. & Ptaszek, M. (2015). J. Org. Chem. 80, 3858–3869.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMelissari, Z., Sample, H. C., Twamley, B., Williams, R. M. & Senge, M. O. (2020). ChemPhotoChem, 4, 601–611.  Web of Science CSD CrossRef CAS Google Scholar
First citationMontforts, F. P. & Schwartz, U. M. (1991). Liebigs Ann. Chem. pp. 709–725.  CrossRef Google Scholar
First citationPtaszek, M., Bhaumik, J., Kim, H.-J., Taniguchi, M. & Lindsey, J. S. (2005). Org. Process Res. Dev. 9, 651–659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPtaszek, M., Lahaye, D., Krayer, M., Muthiah, C. & Lindsey, J. S. (2010). J. Org. Chem. 75, 1659–1673.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRabong, C., Hametner, C., Mereiter, K., Kartsev, V. & Jordis, U. (2008). Heterocycles, 75, 799–838.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingha Roy, S. J. & Mukherjee, S. (2014). Chem. Commun. 50, 121–123.  Web of Science CSD CrossRef CAS Google Scholar
First citationStadler, D., Mühlthau, F., Rubenbauer, P., Herdtweck, E. & Bach, T. (2006). Synlett, 2006, 2573–2576.  Google Scholar
First citationStrachan, J. P., O'Shea, D. F., Balasubramanian, T. & Lindsey, J. S. (2000). J. Org. Chem. 65, 3160–3172.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTaniguchi, M., Ra, D., Mo, G., Balasubramanian, T. & Lindsey, J. S. (2001). J. Org. Chem. 66, 7342–7354.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTran, V.-P., Matsumoto, N., Nalaoh, P., Jing, H., Chen, C.-Y. & Lindsey, J. S. (2022). Organics, 3, 262–274.  CSD CrossRef CAS Google Scholar
First citationXiong, R., Arkhypchuk, A. I. & Eszter Borbas, K. (2019). J. Porphyrins Phthalocyanines, 23, 589–598.  Web of Science CrossRef CAS Google Scholar
First citationZhang, M.-X., Eaton, P. E. & Gilardi, R. (2000). Angew. Chem. Int. Ed. 39, 401–404.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds